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ABSTRACT 

Groundwater is a relevant source of drinking and agricultural water in many regions of the world, but 

many aquifers have been unsustainably over-drafted and polluted. This has significant environmental, 

health, and economic implications. We rely on panel analysis, with small-sample corrections for cluster-

robust variance estimation and hypothesis testing, to investigate the dynamics of groundwater extraction. 

We focus on California, yet our approach could be helpful to analyze the dynamics of groundwater 

extraction in other groundwater-reliant regions of the world. In California, over-reliance on groundwater 

has led to significant overdraft, affecting long-term water supply reliability and groundwater pumping 

costs. It further caused subsidence and infrastructure damage, harmed groundwater-dependent 

ecosystems, and threatened the sustainability of groundwater resources in the state. We use panel data of 

the 56 California Water Plan planning areas over the 1998–2015 period. We concentrate on agricultural 

and urban water use and the major water projects in the state, to provide a better understanding of the 

relationships between groundwater extraction and water use and supply. Results suggest that reducing 

agricultural water in Central California and urban water in Southern California could reduce groundwater 

extraction in these regions by approximately the same amount of the reduced water. Other opportunities 

to reduce the stress on the groundwater resources in the state are available for other regions, yet with 

lower benefits. Results also suggest that a decrease in deliveries from the Central Valley Project to the 

southern part of the Central Valley would increase groundwater extraction by approximately the same 

proportion. Changes in deliveries from the major water projects in the state, as well as from other sources 

of surface water, would also have some, yet lower impacts on groundwater extraction in the Central and 

Southern California.  
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A Panel Analysis of Groundwater Use in California 

 

1. Introduction 

Groundwater is one of the most important natural resources in the world and vital for drinking water and 

agricultural production. The clean production and effective use of groundwater are crucial for 

environmental protection and sustainable development. However, groundwater resources have been 

overexploited in many major agricultural and urban areas in the world. Also, climate change, 

characterized by more frequent and intense hydrologic extremes, amplifies groundwater use and affects 

groundwater recharge (Lall et al., 2020). Overdraft, depletion, and pollution of groundwater have become 

a global sustainability concern (Lall et al., 2020) and have environmental, health, and economic 

implications. In the United States, the rate of groundwater depletion has increased significantly since the 

1950s, and the total groundwater depletion during the 1900-2008 period was estimated to be 

approximately 1,000 cubic kilometers (km3) (Konikow, 2013). India and Mexico, two of the largest users 

of groundwater in the world, both face critical overdraft challenges (Scott and Shah, 2004). Groundwater 

overexploitation is also a critical issue in North China Plain, with significant adverse impacts on the 

environment (Changming et al., 2001). Other large groundwater users in the world, such as Pakistan 

(Watto and Mugera, 2016), are also facing groundwater depletion challenges. 

In the United States, groundwater is a relevant source of fresh water in several states, particularly in 

California. California is the most populated state and is the one with the largest economy in the United 

States, with a total population of approximately 40 million and a gross state product of about 3 trillion 

dollars as of 2018 (BEA, 2019). Water resources play an important role in California’s social and 

economic development (DWR, 2019b). California relies on both surface water and groundwater for its 

water supplies, and groundwater is vital for sustaining the state’s environmental, social, and economic 

conditions (DWR, 2016). Groundwater contributes approximately 38 percent to the state’s total water 

supply during an average year and up to 46 percent (or even more) during dry years (DWR, 2019c). 

Groundwater also supports California’s 46 billion dollars agricultural economy (Mehta et al., 2018). 

Many rural and municipal communities depend on groundwater for up to 100 percent of their water 

supply (DWR, 2019c). While groundwater use varies across the state and over time, it has overall largely 

increased from approximately 11 km3, or 9 million acre-feet1 (MAF) in 1947 to about 24 km3 (20 MAF) 

per year from 2005 to 2009 (Mehta et al., 2018). 

Groundwater serves as a critical buffer against the severe impacts from droughts in California, 

contributing up to 46 percent (or even more) of the state’s annual supply during dry years (DWR, 2019c; 

Lund et al., 2018). However, the ability to mitigate those impacts has significant implications: Over-

reliance on groundwater has led to significant overdraft, which reduces water supply reliability in the long 

term, increases groundwater pumping costs, causes subsidence and infrastructure damage, harms the 

                                                            
1 One acre-foot is equivalent to approximately 1233 cubic meters. 
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groundwater-dependent ecosystems, and seriously threatens the sustainability of state’s groundwater 

resources (Mehta et al., 2018; Moran et al., 2014). The Central Valley in California, with an area of 

approximately 52,000 km2 (Famiglietti et al., 2011) and a population of 6.5 million, cultivates more than 

250 different types of crops and claims more than 70% of state’s groundwater supply (Ojha et al., 2018). 

Ojha et al. (2018) found that droughts significantly exacerbated the stress on the aquifer systems that 

serve the region, when over-drafting and low rates of natural recharge resulted in an accelerated decline 

of groundwater levels across the area. By investigating the depletion and degradation of the aquifer-

system during the 2007–2010 severe drought in the region, they found that about 2% of the total aquifer-

system storage in the area was permanently lost due to irreversible compaction of the system. They 

estimated that a total of 21.3 ± 7.2 km3 of groundwater storage was lost from December 2006 to January 

2010. Ojha et al. (2019) further estimated that a total volume of 24.2 ± 9.3 km3 of groundwater storage 

was lost in the San Joaquin Valley, part of the Central Valley, during the so-called California’s 

millennium drought of 2012–2015.  

Given California’s heavy reliance on groundwater, a more unreliable and unsustainable groundwater 

supply to the state will unavoidably lead to greater environmental damages and economic losses in the 

long run. According to Gleeson et al (2010), groundwater residence times greater than 11,000 years are 

common in the United States, and the social and economic benefits from large volume withdrawals may 

not make up for the significant depletion of aquifers that are non-renewable on human timescales. The 

exploitation of such slowly renewed aquifers should therefore follow sustainability goals set on a 

multigenerational time horizon. Mays (2013) suggests that the development of groundwater sustainable 

solutions requires “both holistic and multi-objective approaches” that include the economics of 

overexploitation and sustainability indices. Pandey et al (2011) propose a “groundwater sustainability 

infrastructure index” as a framework to measure and evaluate progress of groundwater sustainability. In 

their framework, infrastructure refers to the knowledge, practices, and institutions that contribute to 

achieving groundwater sustainability. Elshall et al (2020) review the concept of groundwater 

sustainability from the scientific and policy perspectives. They conclude that the effective implementation 

of groundwater sustainability policies requires (a) the engagement of stakeholders through collaborative 

modeling and social learning; (b) an improved understanding of the coevolving surface water-

groundwater systems, ecosystems, and human activities; and (c) addressing the uncertainty in our 

scientific knowledge and diversity of societal preferences. 

In 2014, during the severe drought of 2012–2015, California passed the Sustainable Groundwater 

Management Act (SGMA). For the first time in its history, the state has implemented a framework to 

guide the sustainable management and use of groundwater. The Act established a new structure for 

managing groundwater resources at the local level and by local actors.2 SGMA mandates the formation of 

                                                            
2 This is consistent with the sustainability strategy proposed by Gleeson et al (2010), who suggest that community 
involvement is essential for the success of long-term management strategies. Aquifer- or watershed-based 
communities should understand the fragility of the resource and therefore be involved in setting specific goals for 
groundwater use. 
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groundwater sustainability agencies for all over-drafted groundwater basins across the state.3 The 

agencies are required to develop and implement groundwater sustainability plans to mitigate overdraft 

and avoid the undesirable results within 20 years. The development of such plans requires reliable data 

and appropriate tools, and one important aspect of SGMA is the support the Act provides to data and tools 

that inform groundwater management decision-making (DWR, 2019d). 

Indeed, groundwater data collection, modeling and analysis have been playing an important role in 

planning, implementing, monitoring, and evaluating groundwater supply and management. Commonly 

used groundwater data can be roughly classified into three categories: time series, cross-sectional and 

panel data. The latter is also referred to as longitudinal data and includes both the cross-sectional and time 

series dimensions. This study uses panel data for its analysis.  

Panel data has received increasing attention from research in the environmental, energy, resources, 

climate, and sustainability areas. Chen et al. (2004) used maximum likelihood panel data estimates to 

examine the potential effects of climate change on crop yield variance for the major agricultural crops in 

the United States. Asici (2013) employed a panel data regression method to investigate the environmental 

sustainability of economic growth in 213 countries. Chakraborty and Mukherjee (2013) used panel data to 

analyze how trade and investment flows affect environmental sustainability in 114 countries. Hao et al. 

(2016) investigated the influence of climate change on carbon dioxide emissions using Chinese provincial 

panel data. Fan et al. (2017) used panel data of 31 Chinese provinces over the period 2000 to 2014 to 

investigate the relationship between energy production and water resource utilization. Altintas and 

Kassouri (2020) employed panel data methods and data on 14 European countries to investigate whether 

the environmental Kuznets Curve hypothesis is related to the per-capita ecological footprint or CO2 

emissions. Omojolaibi and Nathaniel (2020) used panel data econometric techniques to assess the impact 

of environmental regulations, trade, economic growth, and energy consumption on ecological footprint in 

Middle East and North Africa countries. Sadik-Zada and Gatto (2021) employed panel data methods to 

assess the significance of their proposed theoretical framework, where they relied on a three-sector 

decision model to assess the interaction of the structural and institutional factors that affect environmental 

pollution in oil-reliant economies. There are several reasons for this increasing attention (Dougherty, 

2011). First, panel data may provide a solution to the problem of omitted variable bias caused by 

unobserved heterogeneity. Second, panel data record the timing of various events and can provide 

information of changes, trends and durations of events. As a consequence, exploiting panel data may 

reveal dynamics that are difficult to detect with cross-sectional data only. Finally, panel data often 

includes a large number of observations4 (Dougherty, 2011).  

                                                            
3 This is in line with the notion of territorial social responsibility introduced by Del Baldo (2013). Territorial social 
responsibility is a form of governance based on the concept of Corporate Social Responsibility (Dahlsrud 2008; 
Freeman and Hasnaoui, 2011) and sustainability-oriented strategies. The idea is promoted by networks of public and 
private, for and non-profit local actors who share the same territory and whose policies are oriented toward 
sustainable development (Rusciano, 2019). 
4 More specifically, a panel data set of N units of observation (entities) and T time periods may potentially include 
observations consisting of time series of length T on N parallel units. This may potentially lead to data sets with as 
many as N×T data points (Dougherty, 2011). 
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Recent research has used panel data analysis methods to investigate groundwater supply and use and 

demonstrated the potential of these methods to analyze large and complex groundwater data sets. Izady et 

al. (2012) used a panel-data model to predict groundwater levels in the Neishaboor plain, Iran, and found 

that the two-way fixed-effects model was superior to a model based on artificial neural network. 

Hendricks and Peterson (2012) employed the fixed-effects approach to decompose and estimate the price 

elasticity of irrigation water demand, using a 16-year panel dataset of more than 14,000 individual fields 

in Western Kansas, United States, overlying the High Plains Aquifer. The estimates of the price elasticity 

of water demand were used to evaluate the cost of reducing the use of irrigation water through three 

classes of water management policies: water pricing, irrigation cessation, and intensity reduction. Pfeiffer 

and Lin (2014) utilized panel data from groundwater-irrigated fields in Western Kansas over the period of 

1996–2005 to investigate the effect of conversion to efficient irrigation technology on groundwater 

extraction. They found that the intended reduction in groundwater use did not occur and the amount of 

groundwater extraction in the area increased along with the shift to more efficient irrigation technology 

during the study period. They attributed the increase in groundwater extraction to changes in cropping 

patterns. Balasubramanian (2015) examined the impact of climate variables on groundwater sources used 

for irrigation and on agricultural income in Tamil Nadu, India. They used panel data of 11 districts 

observed over a 40-year period and found that increases in rainfall had a significant effect in reducing the 

depth to water table and increases in maximum temperature significantly reduced groundwater 

availability. Kishore et al. (2020) used panel regression to analyze the determinants for groundwater 

decline and depletion in 41 districts in India where groundwater level declined more than 4 meters 

between 2002 and 2016. They found that increases in irrigated area and water intensive crops led to 

groundwater level declines. 

This study investigates the dynamics of groundwater extraction in California, and the impact that water 

use and supply have on that extraction. The study is motivated by the SGMA’s focus on tools that can 

inform groundwater management. We rely on a panel of data estimated by the California Department of 

Water Resources (DWR) for the 56 California Water Plan planning areas over the period of 1998–2015. 

Our emphasis is on the agricultural and urban water use and major water projects in the state. We employ 

panel regression and robust inference to quantitatively assess the relationship between groundwater 

extraction and water use and supplies in the state. To the best of our knowledge, this is the first study to 

rely on panel analysis with small-sample corrections for inference to estimate these relationships. Our 

estimates allow for inter- and intraregional assessment of how changes in water supply and use impact 

groundwater extraction. The econometric, data-oriented approach we propose can therefore be used to 

inform water management and policy at the macro- and meso-level in California, where it can be 

periodically reused, with new data, to evaluate the progress of measures designed to reduce stress on 

aquifers in the state. Our approach can also support groundwater management in other regions of the 

world.  

The remaining of the paper is organized as follows. Section 2 briefly describes the water resources and 

major water projects in California. Section 3 describes the water data used in the study. Section 4 

describes the panel regression analysis and inference methods we used. Section 5 presents main results 

and a discussion of those results. Finally, Section 6 concludes with final remarks. 
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2. Water resources and major water projects in California 

2.1 Water resources and hydrologic regions 

The spatial and temporal distribution of water resources is highly uneven in California. California 

contains multiple climate zones and hydrologic conditions in the state vary greatly from place to place 

and time to time (Bureau of Reclamation, 2008). The volume of annual average precipitation in California 

is approximately 240 km3, or 200 MAF. Much of this water is lost through evaporation, particularly in the 

hot and dry areas of the state, and the remaining part of the water, known as “unimpaired runoff” and 

averaging approximately 93 km3 (75 MAF) per year, flows into streams and groundwater basins, and 

becomes water resources available for management and use (Hanak et al., 2011). Note that the available 

water resources for the state could vary greatly year to year and decrease significantly during dry years. 

For example, in 2015, a recent critically dry year for California, the volume of statewide precipitation was 

only about 81 km3 (66 MAF), approximately one third of the precipitation in an average year.  

Furthermore, the state’s variable topography and hydrologic conditions contribute to the large variation in 

the amount of regional precipitation (DWR, 2016). Most of California’s precipitation falls in the northern 

part of the state during the winter, while much of the water is used in the central and southern parts of the 

state during the spring and summer (Bureau of Reclamation, 2008). 

California’s regional differences make it necessary to divide the state into regions for the purpose of 

statewide planning and operation. The DWR divides the state into 10 hydrologic regions that characterize 

the large watersheds in the state (DWR, 2016) and further into 56 planning areas. Figure 1 shows these 

hydrologic regions and planning areas. For the purpose of discussing water demand and supply, especially 

the impacts of major water projects in California, we aggregate these 10 hydrologic regions into five 

geographic zones based on geography and hydrologic conditions (Bureau of Reclamation, 2008; DWR, 

2016). The five zones are the North Coast and Lahontan zone, the San Francisco (SF) Bay and Central 

Coast zone, the Northern Central Valley zone, the Southern Central Valley zone, and the Southern 

California zone. The five zones are shown in Figure 2.   

 

2.2 Major water projects in California 

California has invested great efforts into water supplies by implementing many water projects. The 

projects move water from its source to where it is used, sometimes over thousands of kilometers away 

(Bureau of Reclamation, 2008). 

2.2.1 State Water Project (SWP) 

The California State Water Project (SWP) is a water storage and delivery system that extends from 

Northern California to Southern California. It includes 36 storage facilities, 21 pumping plants, five 

hydroelectric power plants, four pumping-generating plants, and about 1100 kilometers (700 miles) of 
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canals, tunnels, and pipelines (DWR, 2019e). The SWP was planned and constructed and is operated by 

DWR. It is the nation’s largest state-built, multi-purpose, user-financed water project. Its primary purpose 

is to supply water, although the project was designed to also provide additional benefits, such as flood 

control, power generation, recreation, and fish and wildlife habitat, while balancing the needs of water 

delivery and environmental protection. The SWP was designed to deliver about 5.2 km3 (4.2 MAF) of 

water per year to farms, homes, and industries through 29 long-term SWP Water Supply Contractors 

(DWR, 2019e). The project supplies water to almost 27 million people in northern California, the San 

Francisco Bay Area, the San Joaquin Valley, the Central Coast and southern California. The project also 

irrigates about 300 thousand hectares (750 thousand acres) of farmland, mainly in the San Joaquin Valley 

(DWR, 2019e). SWP's water supply depends on rainfall, snowpack, runoff, stored water, pumping 

capacity,5 and multiple environmental and operational constraints (DWR, 2019e).  

2.2.2 Central Valley Project (CVP) 

The Central Valley Project (CVP) is a federal water management project in California that is under the 

supervision of the United States Bureau of Reclamation (USBR). The project consists of a series of dams, 

reservoirs, canals, aqueducts, and pump plants. The CVP extends through 640 kilometers (400 miles) in 

central California, providing flood protection for the Central Valley and supplying domestic and industrial 

water to the valley (Bureau of Reclamation, 2017). The project also supplies water to major urban areas in 

the Greater Sacramento and San Francisco Bay areas and provides water to restore and protect fish and 

wildlife, and to enhance water quality (Bureau of Reclamation, 2017). The CVP manages some 11 km3 (9 

MAF) of water, with an annual delivery of about 8.6 km3 (7 MAF) of water for agricultural, urban and 

wildlife use (Bureau of Reclamation, 2019b).  

2.2.3 Colorado River supplies 

The Colorado River is one of the major water sources for Southern California and is critical for sustaining 

Southern California’s municipal and agricultural water supplies. 

2.2.3.1 Colorado River Aqueduct 

The Colorado River Aqueduct (CRA), a 389-kilometer (242-mile) water conveyance system in Southern 

California, is built and operated by the Metropolitan Water District of Southern California (MWD). The 

CRA includes two reservoirs, five pumping plants, 101 kilometers (63 miles) of lined canals, 148 

kilometers (92 miles) of tunnels, 89 kilometers (55 miles) of covered canals and 46 kilometers (29 miles) 

of inverted siphons (Zetland, 2011). The project takes water out of the Colorado River, from Lake Havasu 

at the California-Arizona border to Lake Mathews in Riverside, California. The delivery capacity of the 

CRA is over 1.5 km3 (1.2 MAF) a year. Along with the SWP, the CRA is one of two sources of drinking 

water imported to Southern California (MWD, 2019). 

                                                            
5 From the Sacramento-San Joaquin Delta. 
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2.2.3.2 All-American Canal System 

The All-American Canal System is located in the southeastern corner of California. It includes the 

Imperial Diversion Dam and Desilting Works, the 129-kilometer (80-mile) All-American Canal, and the 

198-kilometer (123-mile) Coachella Canal (Bureau of Reclamation, 2019a). The system diverts water 

from the Colorado River, at the Imperial Dam, to irrigate about 214 thousand hectares (530 thousand 

acres) of fertile land in the Imperial Valley and about 32 thousand hectares (79 thousand acres) in the 

Coachella Valley (Bureau of Reclamation, 2019a). 

 

 

 
Fig. 1. California hydrologic regions and planning areas  

Sources: (DWR, 2016, 2019a). 
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Fig. 2. California geographic zones and hydrologic regions  

Sources: (Bureau of Reclamation, 2008; DWR, 2016, 2019a) 

 

3 Data 

This study relies mainly on the data that underlie the 2018 California Water Plan (CWP), developed by 

the DWR (2019a). The CWP is the state’s “strategic plan for sustainably managing and developing water 

resources for current and future generations.”  The plan documents the development and status of 

California’s water resources and demands and is updated every 5 years. The data we rely on include 

(water-year based) annual water balances from 1998 to 2015. The balances comprise water use and 

supply. Water use data are disaggregated into several types of application organized in three major 

categories of use: urban, agriculture, and environmental. Water supply data are provided by source, and 

include supplies from multiple sources of surface water, such as local sources, the SWP, the CVP, 

Colorado River supplies, and other federal deliveries. The balances further include supplies from 

groundwater extraction and reused/recycled water. All data are provided at the level of planning area.  

In addition to the data provided by the CWP, we rely on groundwater data from the California’s 

Groundwater Update 2013 (DWR, 2016), developed for the 2013 CWP. The data include, for each 
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hydrologic region, information on groundwater supply for urban and agricultural use at the level of 

planning area. Table 1 summarizes the data used in this study according to the five geographic zones 

represented in Figure 2. 

 

Table 1. Descriptive statistics of the data by geographic zone 

Geographic zone Variable (TAF) Observations* Mean Std. Dev. Min Max 

North Coast and Lahontan 

Groundwater extraction 108 85 61 13 285 
Agricultural water use 108 194 169 19 664 
Urban water use 108 30 25 8 94 
Misc. surface water supply 108 3347 5350 98 22358 
Precipitation (MAF) 108 9 8 1 27 

Northern Central Valley  

Groundwater extraction 198 243 209 1 822 
Agricultural water use 198 653 691 3 2538 
Urban water use 198 75 109 1 474 
Environmental water use 198 52 100 0 372 
Misc. surface water supply 198 995 2034 2 12026 
CVP deliveries 198 350 635 0 2224 
Precipitation (MAF) 198 4 5 0 27 

SF Bay and Central Coast 

Groundwater extraction 72 349 260 4 863 
Agricultural water use 72 290 253 14 776 
Urban water use 72 335 339 105 1010 
Misc. surface water supply 72 225 234 13 669 
SWP deliveries 72 40 43 0 168 
CVP deliveries 72 44 55 0 202 
Recycled water supply 72 9 11 0 40 
Precipitation (MAF) 72 4 2 1 11 

Southern Central Valley 

Groundwater extraction 360 492 549 0 2447 
Agricultural water use 360 844 716 0 2765 
Urban water use 360 63 59 0 307 
Environmental water use 360 29 93 0 456 
Misc. surface water supply 360 330 379 0 2844 
SWP deliveries 360 53 144 0 810 
CVP deliveries 360 167 316 0 1511 
Precipitation (MAF) 360 1      3 0 15 

Southern California 

Groundwater extraction 270 164 220 0 972 
Agricultural water use 270 304 590 2 2665 
Urban water use 270 298 482 0 1908 
Misc. surface water supply 270 48 85 0 463 
SWP deliveries 270 88 147 0 794 
Colorado River deliveries 270 323 673 0 3056 
Recycled water supply 270 14 27 0 109 
Precipitation (MAF) 270 1      1 0 8 

* Our panel data dataset is balanced. Variations in the number of observations are due to variations in the number of planning 

areas included in each geographic zone. TAF means thousand acre-feet, and MAF million acre-feet. 
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4. Methodology 

4.1 Model and estimation 

We rely on panel regression modeling for our analysis (Greene, 2018; Pesaran, 2015; Wooldridge, 2015). 

Consider the following unobserved-effects regression model:  

, , ,i t i t i i ty t     x β  (1) 

where ,i ty  is the dependent variable, ,i tx  is a vector of observed explanatory variables, β  is a vector of 

regression coefficients, i  represents unobserved entity-specific effects, where the index i refers to the 

entity or unit of observation (in this case, planning area), and t refers to the time period. The error 

(disturbance) term ,i t  is assumed to satisfy the usual regression model conditions. The trend term t is 

introduced here to allow for a shift of the intercept over time and could be replaced by a set of dummy 

variables if the implicit assumption of a constant trend seemed too strong (Dougherty, 2011). Assuming 

the unobserved entity-specific effects, represented by i , are time-invariant, the model in (1) could be 

estimated using the fixed-effects estimator (also known as the within estimator) or the least square 

dummy variable (LSDV) estimator approaches (Dougherty, 2011).  

For our study, the dependent variable ,i ty is the total groundwater use (extraction) estimated for planning 

area i in year t, denoted below as (gw )
,i tU . We further define: 

(urb) (lnd) (com) (ind) (enr) (int) (ext)
, , , , , , ,i t i t i t i t i t i t i tU U U U U U U       (2) 

(sf ) (msf ) (swp) (cvp) (col)
, , , , ,i t i t i t i t i tS S S S S     (3) 

(msf ) (loc) (imp) (fed)
, , , ,i t i t i t i tS S S S    (4) 

to express, respectively, urban water use (U) and surface water supplies (S). 

Using (2)–(4) we define panel data regression models that are specific to each of the five geographic 

zones we analyze:6 

(gw) (ag) (urb) (msf ) (prp)
, ag , urb , msf , prp , ,i t i t i t i t i t i i tU U U S S t              (5)  

                                                            
6 Note that the dummy variable trap is avoided in the fixed-effects estimations by omitting one of the values that the 
dummy variable represents or dropping the overall constant (Greene, 2018). This is implemented in the statistical 
software we used. 
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(gw) (ag) (urb) (msf ) (swp) (cvp) (rec)
, ag , urb , msf , swp , cvp , rec , ,i t i t i t i t i t i t i t i i tU U U S S S S t                  (6)  

(gw) (ag) (urb) (env) (msf ) (cvp)
, ag , urb , env , msf , cvp , ,i t i t i t i t i t i t i i tU U U U S S t                (7)  

(gw) (ag) (urb) (env) (msf ) (swp) (cvp)
, ag , urb , env , msf , swp , cvp , ,i t i t i t i t i t i t i t i i tU U U U S S S t                    (8) 

(gw) (ag) (urb) (msf ) (swp) (col) (rec)
, ag , urb , msf , swp , col , rec , ,i t i t i t i t i t i t i t i i tU U U S S S S t                   (9) 

where equation (5) refers to the North Coast and Lahontan zone, (6) to the SF Bay and Central Coast 

zone, (7) to the northern Central Valley zone, (8) to the southern Central Valley zone, and (9) to the 

Southern California zone, and: 

i  index of the planning area,  

t  water-year index ( 1, 2,...,18t  , corresponding to water-years from 1998 to 2015), 

(ag)
,i tU  on-farm applied water, 

(urb)
,i tU  total urban applied water, 

(env)
,i tU  water applied for environmental purposes (wetland management only), 

(lnd )
,i tU  water applied for large urban landscape irrigation, 

(com)
,i tU  water applied for commercial purposes, 

(ind )
,i tU  water applied for industrial purposes,  

(enr )
,i tU  water applied for energy production,  

(int)
,i tU  water applied for indoor residential purposes,  

(ext )
,i tU  water applied for outdoor residential purposes,  

(sf )
,i tS  total surface water deliveries,  

(swp)
,i tS  deliveries from the California State Water Project,  

(cvp)
,i tS  deliveries from the Central Valley Project,  

(col)
,i tS  deliveries from the Colorado River,  
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(msf )
,i tS  deliveries from other sources of surface water (excluding SWP, CVP, and Colorado River), 

(loc)
,i tS  deliveries from local sources of surface water, 

(imp)
,i tS  deliveries from imported water, 

(fed)
,i tS  deliveries from other federal projects, 

(rec)
,i tS  deliveries from recycled water, and  

(prp)
,i tS  precipitation,  

with all applied water and water supplies in thousand acre-feet (TAF), and precipitation in MAF.  

We note that models (6)–(9) do not include precipitation as an independent variable. This is partially 

because the number of variables in these models is relatively large for the size of their samples. After 

performing a variable selection process, we concluded that precipitation is not a statistically significant 

driver to the dynamics of groundwater extraction in the corresponding geographic zones.  

We also note that fixed-effects estimations relax the strict exogeneity assumption and can address 

endogeneity problems under much weaker assumptions when compared to common ordinary least squares 

(OLS) estimations (Collischon and Eberl, 2020; Roberts and Whited, 2013). Generally speaking, fixed 

effects estimations are more credible and preferable to common OLS estimations, despite not being 

perfect and presenting limitations or drawbacks (Collischon and Eberl, 2020). It should also be noted that 

“in most cases, it is not correct to interpret the coefficients of any standard OLS, fixed-effects, or 

comparable model as causal effects but rather as partial correlations” (Collischon and Eberl, 2020). 

 

4.2 Inference 

A distinctive feature of panel data is that they are clustered. In panel data studies, the clusters are 

composed of the repeated measurements obtained from a single entity (or unit of observation) at different 

occasions. The measurements on units within a cluster are usually more similar than the measurements of 

units in different clusters, or more precisely, measurements within a cluster will typically be correlated, 

and the degree of clustering can be described using the correlation among the measurements on units 

within the same cluster. Because this correlation invalidates the assumption of independence that is 

crucial for many standard statistical techniques, statistical models for clustered data need to account for 

this correlation. As panel data are a special case of clustered data, this correlation must be accounted for 

in panel data analysis (Fitzmaurice et al., 2011). 

For policy studies at the regional (e.g., state or provincial) level, inference is typically conducted based on 

standard errors clustered at the regional level to account for correlation in the variables across entities or 
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units (Jones et al., 2015). The commonly used procedure is the cluster-robust variance estimator, or 

CRVE (Cameron et al., 2008; MacKinnon, 2019). However, CRVE is asymptotic consistent, i.e., the 

consistency of CRVE is asymptotic in the number of independent clusters (Pustejovsky and Tipton, 

2018). Recent methodological work and simulation studies have demonstrated that CRVE can be 

significantly biased downward when there are only few clusters and lead to high Type I error rates for 

associated hypothesis tests (Cameron et al., 2008; Matthew, 2014; Pustejovsky and Tipton, 2018). Bell 

and McCaffrey (2002) proposed a bias-reduced linearization (BRL) method to improve the small-sample 

properties of CRVE. Tipton and Pustejovsky (2015) and Pustejovsky and Tipton (2018) further developed 

the BRL method and extended it for general application. Simulations and empirical studies showed that 

the small-sample methods proposed by Tipton and Pustejovsky (2015) and Pustejovsky and Tipton (2018) 

maintained promising performance over a wide range of scenarios. 

For this study, we investigated five geographic zones in California. As some of these zones include few 

planning areas,7 the issue of small number of clusters needs to be addressed. Therefore, for inference, we 

adopt the small-sample method proposed by Tipton and Pustejovsky (2015) and Pustejovsky and Tipton 

(2018) for cluster-robust standard errors and t-tests (Marcelo et al., 2017). We also compare the results 

from the small-sample method with those from the conventional asymptotic CRVE. 

 

5. Results and analysis 

We used the models described in (5)–(9) to evaluate the panel data we organized for each of the five 

geographic zones represented in Figure 2. Fixed-effect variables control time-invariant unobserved effects 

associated with planning areas, and trend terms capture any deterministic trend in regional (geographic 

zone) groundwater use.8 We present our panel analysis results for each geographic zone. 

 

5.1. North Coast and Lahontan zone 

Table 2 shows statistical results for model (5), where groundwater extraction in the North Coast and 

Lahontan zone is evaluated from agricultural and urban water use, deliveries from miscellaneous surface 

water sources, precipitation, and time trend. 

 

 

                                                            
7 For instance, the North Coast and Lahontan zone is comprised of six planning areas, and the SF Bay and Central 
Coast zone includes only four planning areas. 
8 It is common, in studies that rely on univariate time series, that the time-varying data are tested for stationarity 
(unit root test). We note that the test usually applies to when the time series are relatively long, which is not the case 
of the time series we rely on for this study. 
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Table 2. Fixed effects model estimation results for the North Coast and Lahontan zone 

Dependent variable Groundwater extraction 

Method Asymptotic CRVE Small sample method 

Independent variables Coef. SE p 95% CI Coef. SE p 95% CI 

Agricultural water 0.224 0.114 0.1066 [–0.069, 0.518] 0.224 0.165 0.3351 [–0.697, 1.146] 

Urban water 0.756 0.919 0.4484 [–1.61, 3.119] 0.756 1.354 0.6351 [–5.323, 6.835] 

Misc. surface water –0.000562 0.001 0.4845 [–0.0025, 0.00135] –0.000562 0.001 0.7084 [–0.0123, 0.0112]

Precipitation –1.227 0.465 0.0462 [–2.42, –0.0305] –1.227 0.593 0.2321 [–5.399, 2.946] 

Time 0.705 0.664 0.3370 [–1.00, 2.411] 0.705 0.720 0.3782 [–1.225, 2.635] 

R–squared 0.907 0.907 

Observations 108 108 

Cluster number 6 6 

Note: SE stands for standard error, and CI stands for confidence interval.  

 

As shown in Table 2, none of the estimated coefficients on agricultural water use, urban water use, 

miscellaneous surface water, precipitation, and time is statistically significant at the conventional 

significance levels, if the tests are based on the small sample method. If, however, the test is based on the 

asymptotic CRVE method, the coefficient estimated for precipitation becomes statistically significant at 

the 5% level ( 0.05p  ), and the one for agricultural water use becomes statistically significant just shy 

of 10% level ( 0.11p  ).  

We should note that the four independent variables used for the estimation are correlated, and such 

multicollinearity makes it somewhat difficult for the estimation process to detect and estimate the partial 

effect of each variable (Wooldridge, 2015). In an attempt to still assess the effects of those variables on 

groundwater extraction in this geographic zone, we try alternative, similar fixed-effects models where we 

combine the four independent variables in different ways. Table 3 lists estimation results from the 

alternative fixed effects models, solved with the small-sample method. As shown in the table, the R–

squared of the alternative model (5a) is 0.897. This suggests that nearly 90% of the variation of 

groundwater extraction could be explained by the alternative model (5a). In other words, agricultural 

water use could explain – although not statistically significant at the conventional levels – nearly 90% of 

the variation in groundwater extraction, while the other variables seem to have little effect on that 

extraction. Note that the estimated coefficient of agricultural water is quite consistent when adding or 

removing other variables to the model, and it suggests that one extra TAF of agricultural water would 

likely lead to an increase in groundwater extraction by approximately 0.2 TAF. Note also that the 

coefficient estimated for precipitation, which is the close to being statistically significant at the 20% level 

(with an average p-value of around 0.2), is consistent with the notion that increased precipitation reduces 

the pressure on groundwater extraction. The estimates suggest that one extra MAF of precipitation in the 

zone would likely lead to a decrease of approximately 1.3 ± 1.1 TAF in groundwater extraction. 
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Table 3. Alternative fixed-effects models for the North Coast and Lahontan zone 

Dependent variable: groundwater extraction 

Independent variables (5a) (5b) (5c) (5d) (5e) (5f) 

Agricultural water 0.228 0.218 0.215 0.211  0.227 

Standard error 0.170 0.174 0.171 0.163  0.166 

p-value 0.347 0.369 0.368 0.359  0.341 

Urban water  0.407 0.477 0.618  

Standard error  1.563 1.555 1.500  

p-value  0.824 0.794 0.726  

Misc. surface water   –0.00111 –0.00093  

Standard error   0.001 0.001  

p-value   0.480 0.552  

Precipitation   –1.360 –1.225 –1.181 

Standard error   0.645 0.556 0.449 

p-value   0.222 0.218 0.178 

R–squared 0.897 0.899 0.900 0.904 0.871 0.900 

Observations 108 108 108 108 108 108 

Cluster number 6 6 6 6 6 6 

 

 

5.2. SF Bay and Central Coast zone 

Table 4 shows statistical results for model (6), where groundwater extraction in the SF Bay and Central 

Coast zone is evaluated from agricultural and urban water use, deliveries from miscellaneous surface 

water sources, recycled water, SWP and CVP, and time trend.  

 

Table 4. Fixed effects model estimation results for the SF Bay and Central Coast zone 

Dependent variable Groundwater extraction 

Method Asymptotic CRVE Small sample method 

Independent variables Coef. SE p 95% CI Coef. SE p 95% CI 

Agricultural water 0.978 0.025 0.0000 [0.90, 1.058] 0.978 0.035 0.0123 [0.675, 1.282] 

Urban water 0.785 0.042 0.0003 [0.65, 0.919] 0.785 0.084 0.0311 [0.228, 1.342] 

Misc. surface water –0.171 0.131 0.2832 [–0.59, 0.246] –0.171 0.147 0.3701 [–0.837, 0.495] 

SWP deliveries –0.408 0.095 0.0232 [–0.71, –0.106] –0.408 0.196 0.2421 [–1.961, 1.144] 

CVP deliveries –0.0707 0.093 0.5020 [–0.37, 0.225] –0.0707 0.178 0.7543 [–1.924, 1.783] 

Recycled water –0.315 0.200 0.2126 [–0.95, 0.320] –0.315 0.200 0.2687 [–1.269, 0.638] 

Time 2.320 0.806 0.0635 [–0.24, 4.883] 2.320 1.017 0.1081 [–0.943, 5.583] 

R-squared 0.995 0.995 

Observations 72 72 

Cluster number 4 4 

Note: SE stands for standard error, and CI stands for confidence interval.  
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The estimated coefficient of agricultural water use is statistically significant at the 5% level ( 0.05p  ) 

and indicates that one extra TAF of agricultural water use is expected to increase groundwater extraction 

by an average of 0.98 TAF. As for urban water use, the estimated coefficient is also statistically 

significant at the 5% level ( 0.05p  ) and suggests that, on average, one extra TAF of urban water use is 

expected to increase groundwater extraction by 0.79 TAF. The coefficient associated with time suggests 

that —at the statistical significance of approximately 10% level ( 0.11p  )—groundwater extraction has 

been increasing by an annual amount of approximately 2.3 TAF. 

The coefficients estimated for the other variables are not statistically significant at the conventional 

significance levels. If, however, the test is based on the asymptotic CRVE method, the coefficients 

estimated for SWP deliveries and time are statistically significant at approximately the 5% level. 

 

5.3. Northern Central Valley zone 

Table 5 shows statistical results for model (7), where groundwater extraction in the Northern Central 

Valley zone is evaluated from agricultural, urban and environmental (managed wetlands) water use, 

deliveries from miscellaneous surface water sources and CVP, and time trend.   

 

Table 5. Fixed effects model estimation results for the Northern Central Valley zone 

Dependent variable Groundwater extraction 

Method Asymptotic CRVE Small sample method 

Independent variables Coef. SE p 95% CI Coef. SE p 95% CI 

Agricultural water 0.141 0.068 0.0647 [–0.010, 0.292] 0.141 0.076 0.1899 [–0.153, 0.435] 

Urban water 0.484 0.086 0.0002 [0.29, 0.676] 0.484 0.089 0.0708 [–0.146, 1.115] 

Environmental water 0.657 0.087 0.0000 [0.46, 0.850] 0.657 0.116 0.0504 [–0.00348, 1.317]

Misc. surface water –0.000917 0.003 0.7401 [–0.0069, 0.00508] –0.000917 0.005 0.8677 [–0.0348, 0.0330]

CVP deliveries –0.00908 0.010 0.4019 [–0.032, 0.0140] –0.00908 0.042 0.8617 [–0.401, 0.383] 

Time 2.614 0.929 0.0183 [0.55, 4.683] 2.614 0.916 0.0186 [0.548, 4.681] 

R-squared 0.952 0.952 

Observations 198 198 

Cluster number 11 11 

Note: SE stands for standard error, and CI stands for confidence interval.  

 

The coefficient estimated for urban water use is statistically significant at the 10% level ( 0.1p  ) and 

indicates that one extra TAF of urban water use is expected to increase groundwater extraction by an 

average of 0.48 TAF. As for environmental water use, the coefficient estimated suggests that—at the 

statistical significance of 10% level ( 0.1p  )—one additional TAF of environmental water use is 
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expected to increase groundwater extraction by approximately 0.66 TAF. Further, the coefficient 

associated with time is statistically significant at the 5% level ( 0.05p  ) and indicates that groundwater 

extraction exhibits an increasing trend of 2.6 TAF per year. 

The coefficients estimated for agricultural water use and for deliveries from miscellaneous surface water 

sources and CVP are not statistically significant at the conventional significance levels. The coefficients 

associated with deliveries from miscellaneous surface water sources and CVP are very small (in absolute 

term), which implies that the impact of those deliveries on groundwater extraction in this zone is likely 

insignificant. Note that, if the test is based on the asymptotic CRVE method, the coefficient estimated for 

agricultural water use becomes statistically significant at the 10% level ( 0.1p  ). 

 

5.4. Southern Central Valley zone 

Table 6 shows statistical results for model (8), where groundwater extraction in the Southern Central 

Valley zone is evaluated from agricultural, urban and environmental (managed wetlands) water use, 

deliveries from miscellaneous surface water sources and CVP, and time trend.  

 

Table 6. Fixed effects model estimation results for the Southern Central Valley zone 

Dependent variable Groundwater extraction 

Method Asymptotic CRVE Small sample method 

Independent variables Coef. SE p 95% CI Coef. SE p 95% CI 

Agricultural water 1.079 0.114 0.0000 [0.84, 1.317] 1.079 0.147 0.0001 [0.741, 1.416] 

Urban water 0.349 0.314 0.2807 [–0.31, 1.006] 0.349 0.389 0.4331 [–0.854, 1.551] 

Environmental water 0.398 0.843 0.6417 [–1.37, 2.162] 0.398 1.286 0.7892 [–5.863, 6.660] 

Misc. surface water –0.200 0.166 0.2431 [–0.55, 0.147] –0.200 0.313 0.5997 [–1.850, 1.450] 

SWP deliveries –0.521 0.067 0.0000 [–0.66, –0.381] –0.521 0.086 0.0360 [–0.949, –0.0933] 

CVP deliveries –1.011 0.114 0.0000 [–1.25, –0.773] –1.011 0.142 0.0068 [–1.477, –0.545] 

Time 1.229 1.700 0.4783 [–2.33, 4.787] 1.229 1.892 0.5249 [–2.777, 5.235] 

R-squared 0.975 0.975 

Observations 360 360 

Cluster number 20 20 

Note: SE stands for standard error, and CI stands for confidence interval.  

 

The coefficient estimated for agricultural water use is statistically significant at the 0.1% level 

( 0.001p  ) and indicates that one additional TAF of agricultural water use is expected to increase 

groundwater extraction by an average of 1.1 TAF. The large and highly significant coefficient on 

agricultural water use demonstrates—and is consistent with—the high reliance of agriculture on 

groundwater in the Southern Central Valley zone. The coefficient estimated for SWP deliveries is 
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statistically significant at the 5% level ( 0.05p  ) and suggests that one additional TAF of SWP 

deliveries is expected to decrease groundwater extraction by an average of 0.52 TAF. As for deliveries 

from CVP, the coefficient estimated is statistically significant at the 1% level ( 0.01p  ) and indicates 

that one additional TAF of CVP deliveries is expected to decrease groundwater extraction by 1.0 TAF. 

The large absolute values of the coefficients associated with deliveries from SWP and CVP, along with 

their statistical significance, confirms the relevance of deliveries from the two projects to reduce the 

pressure, mainly from agricultural activities, on groundwater extraction in the zone. The coefficients 

estimated for the other variables are not statistically significant at the conventional significance levels, 

even if the test is based on the asymptotic CRVE method.  

 

5.5. Southern California zone 

Table 7 shows statistical results for model (9), where groundwater extraction in the Southern California 

zone is evaluated from agricultural and urban water use, deliveries from miscellaneous surface water 

sources, recycled water, SWP and the Colorado River, and time trend.  

 

Table 7. Fixed effects model estimation results for the Southern California zone 

Dependent variable Groundwater extraction 

Method Asymptotic CRVE Small sample method 

Independent variables Coef. SE p 95% CI Coef. SE p 95% CI 

Agricultural water 0.577 0.188 0.0083 [0.17, 0.981] 0.577 0.220 0.0618 [–0.0470, 1.202] 

Urban water 0.635 0.081 0.0000 [0.46, 0.808] 0.635 0.096 0.0046 [0.350, 0.920] 

Misc. surface water –0.577 0.067 0.0000 [–0.72, –0.434] –0.577 0.080 0.0103 [–0.867, –0.287] 

SWP deliveries –0.592 0.160 0.0024 [–0.93, –0.249] –0.592 0.181 0.0295 [–1.089, –0.0946] 

Colorado River –0.573 0.131 0.0006 [–0.86, –0.292] –0.573 0.143 0.0111 [–0.946, –0.201] 

Recycled water –0.531 0.151 0.0035 [–0.86, –0.206] –0.531 0.180 0.0891 [–1.249, 0.188] 

Time –0.184 1.116 0.8716 [–2.58, 2.210] –0.184 1.142 0.8746 [–2.647, 2.279] 

R-squared 0.969 0.969 

Observations N 270 270 

Cluster number 15 15 

Note: SE stands for standard error, and CI stands for confidence interval.  

 

The coefficient estimated for agricultural water use is statistically significant at the 10% level ( 0.1p  ) 

and indicates that one extra TAF of agricultural water use is expected to increase groundwater extraction 

by an average of 0.58 TAF. The coefficient estimated for urban water use is statistically significant at the 

1% level ( 0.01p  ) and suggests that one extra TAF of urban water use would increase groundwater 

extraction by 0.63 TAF. The Greater Los Angeles and Greater San Diego areas, which are among the 
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most populated areas in the nation, are in this zone. Urban water use accounts for a large fraction of the 

total water used in the zone.  

The coefficient estimated for deliveries from miscellaneous surface water sources is statistically 

significant at the 5% level ( 0.05p  ) and indicates that one extra TAF of delivery is expected to decrease 

groundwater use by an average of 0.58 TAF. The large absolute value and statistical significance of this 

result shows the practical impact that the availability of local water resources and other supplemental 

surface water sources (excluding SWP and Colorado River) have on groundwater extraction in this zone.  

The coefficient estimated for deliveries from SWP is statistically significant at the 5% level ( 0.05p  ) 

and indicates that one additional TAF of delivery from SWP is expected to reduce groundwater extraction 

by an average of 0.59 TAF. The coefficient estimated for deliveries from the Colorado River is also 

statistically significant at the 5% level ( 0.05p  ) and suggests that one extra TAF of water delivered 

from the Colorado River is expected to reduce groundwater extraction in the zone by an average of 0.57 

TAF. The large absolute value and statistical significance of these coefficients demonstrate the relevance 

of deliveries from SWP and the Colorado River on groundwater extraction in the Southern California 

zone. In addition, the coefficient associated with recycled water is statistically significant at the 10% level 

( 0.1p  ) and suggests that one additional TAF of recycled water would reduce groundwater extraction 

by an average of 0.53 TAF. This demonstrates the practical effects that increasing water recycling and 

reuse in the Southern California zone have on reducing the pressure on groundwater extraction in the 

zone.  

The coefficient associated with time is not statistically significant and, therefore, nothing can be said 

about a potential time trend associated with groundwater extraction in the zone. All results are consistent 

across the two inference methods used. 

 

5.6. Further discussion 

The results presented above point to opportunities that could potentially reduce the pressure from water 

use and supplies on the groundwater resources in the state. In the North Coast and Lahontan zone, we 

estimate (with a moderate level of uncertainty) that reducing agricultural water by a certain amount would 

reduce groundwater extraction by approximately 20 percent of that amount. In the SF Bay and Central 

Coast zone we estimate that reducing urban water use would avoid groundwater extraction by 

approximately 80 percent of that reduction and reducing agricultural water could reduce groundwater 

extraction by almost the same amount. We also find that groundwater extraction could be increasing over 

time. The latter aspect could be associated with a scaling effect (e.g., an increase in population or irrigated 

land) and/or with an intensity effect (e.g., an increase in the gallons per capita per day, or a shift towards 

more water intensive crops).  

For the Northern Central Valley zone, the results suggest that urban and environmental water use are the 

main drivers to variations in groundwater extraction. A reduction in the former could reduce groundwater 
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extraction by approximately 50 percent of that reduction, and a reduction in the latter by approximately 

66 percent. We also find that groundwater extraction has been increasing over time. The increase could be 

associated with an increase in population or in the gallons per capita per day, or with an increase in the 

environmental use of water. 

The Southern Central Valley zone is an agriculture intensive area, where groundwater plays a relevant 

role. We estimate that a decrease in agricultural water in the zone reduces groundwater extraction by 

approximately the same amount. We also estimate that a decrease in deliveries from the SWP and CVP 

can increase groundwater extraction, respectively, in approximately 50 percent and 100 percent of that 

decrease. 

Finally, in the Southern California zone, we estimate that reducing agriculture and urban water use can 

reduce groundwater extraction, respectively, by approximately 58 percent and 64 percent of the reduced 

water. We also estimate that a decrease in deliveries from the SWP, the Colorado River, and from local 

and other sources of surface water available in the zone, could increase groundwater extraction in 

approximately 57 to 59 percent of the decreased deliveries. In addition, increasing water recycling and 

reuse in the zone could contribute to reducing groundwater extraction by approximately 53 percent of the 

amount of water recycled or reused. 

While the above results and panel analysis methodology based on robust inference can be useful in 

several ways, it is important to recognize the limitations of the results and methodology. We note the 

following major limitations. First, the water balance data we rely on are estimated mainly from modeling. 

Due to the very limited availability of groundwater pumping data, particularly when the pumping is 

conducted on farm, the amount of groundwater extracted in each planning area could be either under- or 

overestimated. Nevertheless, we believe that analyzing the data at the level of the geographic zones we 

defined, should partially compensate for the differences between the estimated and the actual groundwater 

extractions. Second, the cross-sectional and time dimensions in our panel data are short. Our dataset, 

despite being a balanced panel data, includes only 18 years of observations, and in some cases as few as 

four clusters of data. We attempt to reduce the bias that could result from analyzing a small sample of 

panel data using the conventional CRVE method. We employ a method with small-sample corrections for 

inference. The method we employ leads to larger confidence intervals that are adjusted to if our samples 

were larger and, therefore, to more appropriate results. 

We assumed that panel data models satisfy the usual regression model conditions (Dougherty, 2011), 

which mainly include (1) linearity—the relationship between the dependent variable and the independent 

variables is linear; (2) homoscedasticity—the disturbance term is homoscedastic; (3) independence—the 

values of the disturbance term are independent of each other; and (4) normality—the disturbance term is 

normally distributed. However, it is unlikely that real-world applications strictly satisfy all these 

conditions. Therefore, it is often required to check the model against the assumptions (Dougherty, 2011; 

Wooldridge, 2015) and make trade-offs between simplicity and complexity in the modeling (Zellner et 

al., 2001). Specifically, we note two considerations for time series and panel data modeling: stationarity 

and endogeneity. Stationarity testing is often applied in time series modeling to avoid spurious regression. 

Generally speaking, stationarity testing does not work well with short time series due to distortions from 
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the size of the sample and low power of the testing. A few stationarity testing methods have been 

developed for when the time and cross-section dimensions of the panel data are sufficiently large 

(Pesaran, 2015). Endogeneity problems could potentially exist in any complex real-world applications and 

there is no perfect solution for this problem (Roberts and Whited, 2013). Although, as mentioned above, 

fixed-effect estimations relax the strict exogeneity assumption and are more credible and preferable to 

common OLS estimations (Collischon and Eberl, 2020; Roberts and Whited, 2013), as pointed out by 

Roberts and Whited (2013), “fixed effects cannot remedy any arbitrary endogeneity problem and are by 

no means an endogeneity panacea”. 

 

6. Conclusions 

California relies on both surface water and groundwater for its water supplies. In some regions of the 

state, groundwater is the main—if not the only—source of water. Population growth and economic 

activity, particularly agricultural activity, have exerted increasing pressure on groundwater resources, 

with long term implications. A sustainable approach for groundwater management and use is therefore 

necessary. An important aspect for a sustainable management of groundwater resources is the 

understanding of what factors put pressure on groundwater resources and what factors can help to 

alleviate some of that pressure.  

This study investigates the dynamics of groundwater extraction and the impact that water use and surface 

water supplies have on groundwater extraction in California. We rely on a panel with data from the state’s 

56 Water Plan planning areas over the 1998–2015 period. We emphasize in our analyses agricultural and 

urban water use and the major water projects in the state. Our results, despite being somehow intuitive, 

quantify the trade-offs between groundwater extraction and water use and surface water supplies in five 

geographic zones in the state. They further shed light on the potential opportunities to reduce pressure on 

groundwater resources in the state and can, therefore, inform policy making. Policies that increase 

irrigation water efficiency or lead growers to switch to less water intensive crops would reduce 

agricultural water requirements in central California and, consequently, reduce the pressure on 

groundwater resources in the region by the same magnitude as the reduced requirements of agricultural 

water. Similarly, policies that limit the amount of urban indoor and outdoor (landscape irrigation) water 

use in Southern California would contribute to reducing groundwater extraction in the region by the same 

extent as the water use is reduced. Additional policy measures targeting other regions in the state can also 

be informed by our findings. 

Care should be taken, however, when using our results. First, some of the water data we rely on are 

modeled, not observed, and the amount of groundwater extracted could be either under- or overestimated. 

Second, longer time-series would better reflect the long-term dynamics of groundwater extraction and 

use, and therefore provide more accurate results. Third, the linear regression approach we used does not 

capture the non-linear aspects of the dynamics of the systems we investigated. Despite those limiting 

factors, the approach we used can provide valuable information for groundwater resource planning and 

management. Future research should combine our results with energy and economic parameters to 
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evaluate the cost-effectiveness of policies that would reduce groundwater extraction and potential 

overdraft. New studies can also rely on this approach to evaluate the impacts from water supply and use 

on groundwater resources usage and sustainability in other regions of the world. 

Finally, in addition to contributing to a better understanding of the relationships between groundwater 

extraction and water use and supply in California, our study calls attention to the potential sensitivity of 

results from panel data analysis to the inference method used. Particularly, we show that in case of small 

samples, like the ones we relied on for some of the geographic zones we analyzed, and which can be 

found in several other research subjects and studies, the choice of the inference method can significantly 

affect the statistical significance of some regressors, and thus change what can be concluded from the 

model. 
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