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ABSTRACT 

The U.S. residential building sector is responsible for thirty-eight percent of electricity 
use, as well as for 49%, 8%, 19% and 2% of U.S. SO2, NOx, CO2 and PM2.5 emissions, 
respectively. The residential building sector is also a key target of customer funded energy 
efficiency programs, which have typically been designed to reduce energy consumption (kWh). 
Today, energy efficiency is also being used to meet air emissions goals. However, not every 
kWh saved has the same mitigation potential. The goal of this work is to evaluate energy 
efficiency potential in the U.S. residential building sector and determine how energy 
conservation measures (ECMs) that reduce electricity consumption correlate to air emissions 
reductions. To assess energy efficiency potential, this analysis uses Scout, a software program 
developed by the U.S. Department of Energy that estimates the energy and CO2 impact potential 
of various ECMs on the U.S. residential and commercial building sectors. Here, Scout is first 
used to assess the total long term national energy (electricity, gas, and oil), CO2, and cost savings 
of deploying residential ECM portfolios. Then, electricity savings results from Scout in 2021 are 
used to assess the regional differences in emissions reductions with the AVoided Emissions and 
geneRation Tool (AVERT) model from different end uses. Better understanding the relationship 
between ECMs and cost-effective emission reductions will enable states, municipalities and 
other interested parties to meet multiple policy objectives through energy efficiency. 

Introduction 

The U.S. residential building sector is responsible for thirty-eight percent of electricity 
use and 19% of CO2 (EIA), as well as 49%, 8% and 2% respectively of U.S. SO2, NOx, and 
PM2.5 emission (EPAa). The residential sector is also a primary target of customer-funded energy 
efficiency programs. In the past, residential energy efficiency programs were established to 
reduce energy use and peak demand in an effort to support the reliability of the power system, 
mitigate environmental impacts and reduce costs. Today, such efficiency programs are also 
increasingly being used by states and localities as a means to achieve carbon reduction and air 
quality targets (ACEEE Local Government Energy Efficiency Goals; EPA, 2009). However, 
each MWh saved may not result in the same emissions reduction; thus, states have an incentive 
to prioritize energy conservation measures (ECMs) that align with emissions reductions to help 
achieve multiple benefits with a single intervention.  

Efficiency program performance has traditionally been measured primarily by electricity 
(MWh) saved. On a grid powered by fossil fuels, MWh savings also generally result in a 
reduction in criteria pollutant and greenhouse gas emissions. However, with a changing grid and 



 

 

the rapid deployment of emission-free power, the historically observed correlations between 
MWhs saved and emissions reductions may no longer hold.  

The goal of this work is to assess the national energy, CO2, and cost impact potential of a 
series of residential energy conservation measures (ECMs) spanning multiple energy 
performance levels, and to examine the alignment of end-use electricity savings from these 
ECMs with regional emissions reductions. National energy CO2, and energy cost savings are first 
estimated using the U.S. Department of Energy’s Scout modeling program (BTO 2018); 
restricting the application of these ECMs to electric segments of baseline energy use, we then 
evaluate the regional displaced emissions over a near-term time horizon using the EPA’s 
AVoided Emissions and geneRation Tool (AVERT) model (EPAb). Assessing the relationship 
between emission reductions and electricity savings across end uses can help determine which 
measures may have common benefits across regions and which are only beneficial for specific 
regions and their goals.  

Methods 

Estimating the national energy, CO2, and cost impacts of building efficiency measures 

The potential impacts of residential building efficiency portfolios on national energy use, 
air emissions, and operating costs are estimated using Scout, a software program developed by 
the U.S. Department of Energy’s Building Technologies Office (BTO). The Scout framework 
allows a bottom-up exploration of the long-term impacts of one or more energy conservation 
measures (ECMs) on U.S. residential and commercial building energy use. Scout ECMs are 
characterized by their energy efficiency, installed cost, lifetime, and applicable baseline market. 
The energy reduction potential of an ECM 𝑚 is calculated as: 

∆𝐸(𝑦) = 𝐸!(𝑦)𝑓"(𝑦)𝑓#(𝑦) + 𝐸!(𝑦)∑ 𝑓"(𝑘)𝑓#(𝑘)
$%&
'(&              (1) 

Where ∆𝐸(𝑦) is the total primary energy savings for the ECM in simulation year 𝑦; 𝐸!(𝑦) is the 
total baseline energy use segment to which the ECM applies in year 𝑦; 𝑓"(𝑦) is the fraction of 
the total baseline market that the ECM competes for and captures in year 𝑦; 𝑓#(𝑦) is the fraction 
of energy use that the ECM saves at the unit level relative to a comparable baseline technology 
in year 𝑦; and the right hand term represents energy savings from previous years.  

The magnitude of an ECM’s applicable baseline building energy use segment 𝐸!(𝑦) is 
generally drawn from U.S. Energy Information Administration’s Annual Energy Outlook (AEO) 
Reference Case projection for the years 2013–2050. Baseline AEO segments are defined by 
climate zone, building type, building vintage, fuel type, end use, and technology type.  CO2 
emissions are calculated by applying national average CO2 emissions intensities by fuel type to 
the baseline energy use segments; similarly, national fuel prices are applied to the baseline 
energy use segments to yield baseline energy costs.1  

In Eq. 1, the baseline market share variable 𝑓"(𝑦) is further defined as:  

𝑓"(𝑦) = 	𝑓)*(𝑦)𝑓)+(𝑦)                 (2) 

 
1 CO2 intensities are derived from AEO tables A2 and A18; fuel price data are taken from table A3 (EIA 2017a). 



 

 

where 𝑓)*(𝑦) is the fraction of the applicable baseline stock that the ECM can compete for in 
year 𝑦 and 𝑓)+(𝑦) is the fraction of the competed stock that the ECM captures in year 𝑦. 𝑓)*(𝑦) is 
calculated under two adoption scenarios: 1) a technical potential case where all baseline stock 
turns over in each year of the simulation (𝑓)*(𝑦) = 1), and 2) a maximum adoption potential 
case where only a portion of the baseline stock turns over in each year: 

𝑓)*(𝑦) = 𝜆, + 𝜆-. + 𝜆- (3) 

where in Eq. 3 𝜆,	is the rate of new stock additions (determined by new construction rates in 
AEO), 𝜆-. is a user-specified annual technology retrofit rate,2 and 𝜆-is the rate of existing 
equipment end-of-life replacement. 

 Finally, the ECM’s captured stock fraction 𝑓)+(𝑦) in Eq. 2 is calculated for residential 
sector ECMs using the market share calculation approach used in AEO (EIA 2017b): 

𝑓)+(𝑦) = 	𝑓)+,"(𝑦)/∑ 𝑓)+,'(𝑦),				𝑓)+,"(𝑦) = exp5𝛽0𝐶0 + 𝛽*+𝐶*+8								1
'(&   (4) 

where 𝑀 is the set of competing ECMs that ECM 𝑚 belongs to, 𝐶0 is the ECM’s incremental 
installed cost over a comparable baseline technology, 𝐶*+ is the ECM’s operating cost savings 
over the baseline, 𝛽0 and 𝛽*+ are regression coefficients.  

Given the calculations outlined in Eqs. 1-4, energy, CO2, and cost outputs are yielded for 
four scenarios: 1) technical potential without ECM competition, 2) technical potential with ECM 
competition, 3) maximum adoption potential without ECM competition, and 4) maximum 
adoption potential with ECM competition. For simplicity, results for this paper will focus on 
scenario 4. 

Scout ECM portfolio definitions 

ECMs are building technologies or operational approaches that improve the efficiency 
and/or operational cost of a ‘business-as-usual’ technology. ECMs in this analysis include 
lighting, appliances, water heating, HVAC, envelope/windows, and sensor and control 
technologies. Given the calculation approach above, the energy, CO2, and cost impacts of three 
Scout ECM portfolios are explored representing a wide range of technology performance 
scenarios, from today’s cost effective and best performing technologies to future prospective 
technologies that BTO is looking to develop: 1) performance standards (ENERGY STAR, IECC 
2018, ASHRAE 90.1 2016), 2) best available technologies on the market, and 3) prospective 
technologies that exceed the efficiencies of any building technologies on the market.3 Each ECM 
can be tied to published cost, performance, and lifetime data from performance standards or 
policy planning documents (e.g., the BTO Multi-Year Program Plan). 

High Performance Standards ECMs. This portfolio consists of residential building 
technologies that meet the minimum performance for ENERGY STAR in 2018 (EPA 2018); for 
the three technologies that did not have ENERGY STAR specifications (floors, walls, and oil-
fired water heaters), ASHRAE 90.1 2016 and IECC 2018 standards were used instead (ASHRAE 
2016, IECC 2018). The energy efficiency data for the ENERGY STAR ECMs were obtained 

 
2 Set to 1% in Scout by default. 
3 Download the ECM JSONs: https://www.dropbox.com/s/r4ivp0mhykkgjf7/ecms_full_ACEEE_run.zip?dl=0. Note 
that fuel switching is generally assumed for all heat pump ECMs in the ‘Prospective’ portfolio. 



 

 

from the latest version of the ENERGY STAR Program Requirements Product Specification for 
each technology. For the IECC ECMs, Chapter 4- Residential Energy Efficiency of the 2018 
International Energy Conservation Code was used to obtain energy efficiency data. All data on 
the installed costs and lifetimes of the technologies were found in the 2016 version of the U.S. 
Energy Information Agency’s Updated Buildings Sector Appliance and Equipment Costs and 
Efficiencies (EIA 2016). Data were taken from the corresponding table for each technology from 
the 2013 ‘ENERGY STAR’ column; the median lifetime and installed cost were taken from the 
reported ranges. 

Best Available Technology ECMs. This portfolio consists of residential building 
technologies that represent the most efficient technologies that will be market available in 2020. 
Data for energy efficiency, installed cost, and lifetime were drawn from the 2016 version of the 
U.S. Energy Information Agency’s Updated Buildings Sector Appliance and Equipment Costs 
and Efficiencies (EIA 2016). Data were taken from the corresponding table for each technology 
from the 2020 ‘High’ column; the median lifetime and installed cost were taken from the 
reported ranges. For each lighting ECM, the energy efficiency data were taken from the highest 
ENERGY STAR fluorescent and LED light bulb available on the market according to the 
ENERGY STAR Certified Light Bulbs site (EPA 2018); cost and lifetime data were found from 
online retailers. 

Prospective Technology ECMs. This portfolio consists of residential building 
technologies that represent target efficiency and cost levels for technologies in 2020-2030 
developed by BTO. These technologies exceed the efficiency levels of the most efficient 
technologies available in the market. Most efficiency and cost levels for each technology were 
taken from Emerging Technology’s sub-program goals in BTO’s Multi-Year Program Plan 
(BTO 2016).4 Additionally, new cost and efficiency targets developed for the Sensors and 
Controls sub-program were included (the reader is referred to the posted ECM definitions for 
details). Lifetime data for non-controls ECMs were drawn from the 2016 version of the U.S. 
Energy Information Agency’s Updated Buildings Sector Appliance and Equipment Costs and 
Efficiencies, using the 2020 ‘High’ column in the technology tables.5 

All ECMs. In this portfolio, all ECMs included in the three portfolios above compete for 
market share based on installed cost and operating cost savings (see Eq. 4). Additionally, an 
‘electric-only’ version of this scenario was developed for subsequent use in an AVERT analysis 
(next section). Here, only electric ECMs are included and their application is restricted to electric 
segments of baseline energy use (e.g., no fuel switching is assumed). Such a portfolio allows a 
more focused exploration of the power sector’s potential for energy and emission reductions as a 
result of building efficiency improvements.      

Estimating regional emissions reductions potential 

While Scout calculates national level avoided air emissions, it does not capture all of the 
criteria air pollutants and does not provide regional data for avoided emissions; moreover, 
Scout’s air emission estimates are based on average emissions intensities. In order to calculate 

 
4 Specifically, the data were adapted from the tables found in sections 2.1, 2.2, and 2.3. 
5 The controls technologies are assumed to be limited by the typical lifetime of supporting sensing equipment, which 
is assumed to be 10 years. 



 

 

regional emissions reductions using marginal emissions estimates, 2021 electricity savings 
identified in Scout were run in AVERT. The reduction in generation is used to calculate avoided 
emissions in AVERT which is based on a statistical analysis of historical generation, heat input 
and emissions data. AVERT calculates avoided emissions associated with reduced generation but 
does not asses at the impact of those changes on atmospheric concentrations or the interaction 
among pollutants, which requires additional air quality modeling. Potential changes to the grid, 
such as new transmission resources, generator retirement, emissions controls or others, make it 
difficult to estimate the dynamics of generator dispatch on the grid. Thus without scenario data to 
determine a future grid and generator dispatch order EPA recommends that AVERT not be used 
to assess scenarios further than five years from the base case using the default inputs (EPA 
2017). Since the current version of AVERT uses 2016 generation data, savings data for this 
regional emissions analysis uses the 2021 results from Scout. Additional limitations and caveats 
to the AVERT model can be found in the User Manual (EPA 2017).  

In order to convert between Scout and AVERT, the 2021 annual climate zone level 
savings from the electric-only version of the All ECM scenario in Scout were mapped to the 
AVERT grid regions shown in Figure 1. Each county within an  AIA climate zones (derived 
from Baechler et al. 2015), was prescribed a portion of the zone level savings based on the 
county’s fraction of 2015 residential electricity use within the climate zone. These savings were 
then re-aggregated into AVERT regions to determine MWh savings for each measure and 
portfolio. 

 

 
Figure 1: Maps of the Scout climate zones (left) and AVERT grid regions (right) used in this analysis. 

 
AVERT allows the user to describe how the MWh savings are distributed over the 8760 

hours of the year. Ideally, observed hourly savings shapes for each ECM portfolio in each 
AVERT region would be available for use in the tool. However, such data is very limited and is 
expensive to collect and was not available for this analysis. In lieu of hourly savings shapes, end-
use load shapes can be used, meaning that energy savings are assumed to be distributed based on 
the hourly consumption of the end use that the ECM addresses. For end uses such as lighting, 
that assumption is reasonable. For others, such as cooling or water heating, savings may not 
mimic the underlying end use and thus this assumption can be inaccurate. Availability of end-use 
load shape data is also very limited. Mims, Eckman, and Goldman (2017) provide a detailed 
review of existing and planned end-use and savings shape data collection efforts.  

Despite these limitations and because observed hourly savings or end-use load shape data 
are not available for the entire U.S., we used NREL’s ResStock tool to generate modeled 



 

 

estimates of end-use load shapes for single-family detached housing in each AVERT region, 
using 2012 weather, which was the year most readily available (Wilson et al. 2017).  ResStock 
uses physics-based subhourly simulations of hundreds of thousands of representative homes, 
statistically sampled from a relational database of housing stock characteristics, to achieve a 
high-level of granularity and accuracy in modeling energy efficiency potential across diverse 
housing stocks. ResStock can also generate hourly savings shapes for various ECMs, but end-use 
load shapes were used at this stage of the analysis. 

The ResStock end-use load curves for 350,000 households were aggregated up to average 
end-use load shapes for each AVERT region. The 2021 annual savings for each end use (cooling, 
heating, lighting, water heating, refrigeration, washer/dryer, peak reduction) at the AVERT 
region were then distributed in proportion to the respective 8760 load shape. For example, if a 
given hour represents 1% of the yearly electricity use for lighting, it was given 1% of the annual 
savings for lighting. Load shapes were available by end use for cooling, heating, lighting, and 
water heating derived from ResStock and weighted by the number of households in each county. 
The refrigeration and washing/drying savings identified in Scout do not have corresponding 8760 
load shapes available from ResStock. Because no specific load shape was available for these 
measures, the load shape for interior equipment load shape from ResStock was used to allocate 
the savings for these end uses.  

In addition to the Scout-derived end-use electricity savings described above, an additional 
scenario was constructed in AVERT to represent a peak reduction ECM. AVERT has a built-in 
function that lets the user specify the percentage of “top hours” in terms of fossil generation and 
the percent reduction, which was used to construct this representative scenario. The top hours 
represent the hours throughout the year that have the highest fossil generation. To model a peak 
reduction ECM and to be able to compare it to another end use, the annual electricity savings 
identified for cooling were distributed to 10% of the top hours. At each of these identified hours, 
the percent reduction in generation was calculated for each region to make the electricity savings 
match the input regional cooling savings. Across regions this percent reduction ranged from 
1.31% to 4.96%. This scenario is identified as ‘Peak Reduction’ in the analysis. To illustrate 
these differences, Figure 2 shows the savings over the course of the year for cooling and peak in 
the Northwest region, both representing 722 GWh of savings. 

 

 
Figure 2. Representative load curve savings for cooling (left) and peak reduction (right) for the Great Lakes/Mid 
Atlantic region. 

 
The resulting hourly reductions in electricity demand were input into AVERT, which 

determines avoided emissions based on the dynamics of electricity dispatch using historical 



 

 

regional data.6  

Results 

National energy use, CO2, and cost reductions of ECM portfolios 

Figure 3 compares the national primary energy, CO2 emissions, and energy cost savings 
potential of the three ECM portfolios separately, and when all ECMs are simulated together. All 
results are shown for the maximum adoption potential in Scout, meaning that realistic stock 
turnover dynamics are considered and ECMs may take several years to fully penetrate their 
baseline markets. Accordingly, total energy savings, avoided CO2 emissions, and energy cost 
reductions generally increase over time in Figure 3. In 2020, reductions are highest in the ‘All’ 
ECMs scenario (1.32 quads, 72 Mt CO2, and $16 billion); by 2050, reductions are highest in the 
‘Prospective’ ECM scenario (5.91 quads, 270 Mt, and $93 billion). 

  

Figure 3. Total primary residential energy savings (a), avoided CO2 emissions (b), and energy cost savings 
potential (c) by ECM portfolio and year. Note: “electric-only” portfolio used for AVERT is shown for reference. 

Figure 4 attributes the total energy savings of the ‘All ECMs’ scenario in Figure 3 to 
particular climate zones, building vintages, and end uses. Regarding climate, the most notable 
result is the muted reductions in climate zone 1, the coldest of the AIA climate zones. This is 
attributable to population, as climate zone 1 has roughly 60% the average population of the other 
four zones (U.S. Census Bureau 2016). Primary energy savings are also most pronounced in 
existing buildings, though the opportunity peaks by 2045. Finally, while lighting energy savings 
are most pronounced in the early years of simulation, over the long-term lighting’s impact 
declines as the baseline lighting stock efficiency increases. By 2050, energy savings from water 
heating, envelope, and heating equipment ECMs are most pronounced.  

 
6 In addition to the annual regional displacement data presented here, AVERT also calculates the displacement data 
for the top ten peak days, the annual and monthly avoided emissions by county and other data.  
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Figure 4. Breakdown of total annual savings for the ‘All ECMs’ portfolio by climate (a), by building class (b), and 
by end use (c). 

Finally, Figure 5 examines the cost-effectiveness of the energy savings and avoided CO2 
emissions shown for the ‘All’ ECMs scenario in Figures 3 and 4, focusing on the years 2020 and 
2040; Figure 5 also indicates which ECMs make the greatest contribution to the cost-effective 
energy and CO2 impacts in these years. In these future years, 0.9 and 3.2 quads of primary 
energy savings are associated with ECMs with less than a 10-year payback; these totals represent 
68% and 73% of the total energy savings for the ‘All’ portfolio in 2020 and 2040, respectively. 
Cost-effective CO2 reductions (not shown) mirror the energy results: 43 Mt and 148 Mt CO2 
emissions are avoided cost-effectively in 2020 and 2040, representing 63% and 72% of total 
avoided CO2 emissions in these years. 

 

 
Figure 5. Cost effectiveness of primary energy savings in 2020 (a) and 2040 (b) for the ‘All ECMs’ portfolio, 
where points on the plot represent individual ECMs. 

In 2020, all cost-effective ECMs are from the ENERGY STAR portfolio, as ECMs from 
other portfolios are just beginning to enter the market and accrue savings. Of the ENERGY 
STAR ECMs, those affecting lighting and gas heating/water heating are the most cost effective, 
owing to their relatively low capital costs and comparatively low baseline stock performance 
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levels in this year.7 By 2040, two individual ECMs make notably large contributions to the cost-
effective portfolio impacts: heat pump water heaters (HPWH) and comfort-driven controls. Both 
of these target ECMs were developed by BTO to meet aggressive paybacks (1-3 years) with high 
unit-level energy performance and large applicable baseline energy use segments.8   

Regional emissions reduction potential across all measures 

To assess the regional implications of this energy efficiency potential, the 2021 
nationwide savings generated through Scout for electric-only portion of the ‘All’ ECMs scenario 
were disaggregated to individual AVERT regions as described above and input into AVERT to 
determine the regional avoided emissions associated with these energy savings. Figure 6 shows 
the electricity savings potential by end use for each region that were entered into AVERT. The 
full set of emissions reduction rates (emissions reduction per MWh saved) calculated for each 
end use in each AVERT region are shown in Figures 7a-d. 

 

 
Figure 6. Total potential savings by end use for each AVERT region, as 
calculated based on climate zone-specific data from the ‘’electric-only ‘All’ 
ECMs scenario in Scout. These savings are used as the input for the regional 
avoided emissions analysis in AVERT.   

 

 
7 Note in Figure 5a that ENERGY STAR electric heat pump water heaters (towards the right of the plot) 
demonstrate large savings but do not yet meet the 10-year payback threshold in 2020. 
8 Specifically, the baseline segments are all water heating for the HPWH ECM (2.6 quads primary energy in 2040) 
and all heating, cooling, and lighting for the controls ECM (7.3 quads in 2040). 



 

 

 
Figure 7. Emissions savings rate (emissions avoided per MWh saved) by end use for each AVERT region and the 
U.S. average, calculated based on total emissions reductions divided by total MWh saved for each end use as 
determined by AVERT for SO2 (a), NOx (b), CO2 (c), and d) PM2.5 (d). 

 
To better illustrate the regional differences in emissions reductions, Figure 8 focuses on 

three regions and three end uses: cooling, lighting, and peak reduction (‘Peak Reduction’). These 
results show that emissions reductions depend both on the grid region where energy savings 
occur and on the load shape for a given end use. Comparing the Cooling and the Peak Reduction 
cases for avoided SO2/MWh, it is shown that the same level of savings from different end uses 
offer different emissions reductions in a given region. For instance, in the Great Lakes/Mid 
Atlantic region, cooling offers greater savings of SO2 per MWh than the Peak Reduction savings. 
Cooling savings, which are distributed throughout the day, reduce load across a broader range of 
generators--including coal generation which is associated with SO2 emissions (Monitoring 
Analytics 2017, 15). In comparison, peak reduction simulates a reduction in fossil load in the top 
10% of hours, which in the Great Lakes/Mid Atlantic region is often provided by natural gas 



 

 

generation, with its lower SO2 emissions rate. The savings rate for Lighting, however, suggests 
greater SO2 reductions than either Cooling or Peak Reduction, indicating higher alignment with 
times when coal is the marginal generator in the region. Thus if a state in the Great Lakes/Mid 
Atlantic region were looking to target SO2 reductions through energy efficiency, the greatest 
savings from these three end uses on a per MWh basis could be achieved through lighting ECMs.  

 

 
Figure 8. Emissions savings rate (emissions avoided per MWh saved by end use for Cooling, Peak Reduction and 
Lighting in three AVERT regions and the U.S. Average, calculated based on total emissions reductions divided by 
total MWh for each end use as determined by AVERT for SO2 (a), NOx (b), CO2 (c), and d) PM2.5 (d). 

 
In the Northeast, the relative emissions rates of Cooling and Peak Reduction are reversed 

compared to the Great Lakes region. The lower SO2 emissions rate for Cooling versus Peak 
Reduction is likely due to the use of fuel oil to meet peak demand in the Northeast (Monitoring 
Analytics 2017; ISO-NE 2018). In both the Northeast and the Rocky Mountains, the low SO2 
emissions rate for Cooling and Lighting relative to the national average is reflective of the lower 
prevalence of coal, though fuel oil, natural gas and biomass also contribute to SO2 emissions. 
The results for NOx and PM2.5 emissions, also primarily associated with the combustion of coal, 
show a similar overall trend, though individual generating units and the associated emissions 



 

 

controls likely drive the differences shown here. Of note is the high avoided NOx emissions rate 
in the Northeast, also likely associated with fuel oil (Massetti 2017, 7). 

In terms of avoided CO2 emissions rates, there is less difference between different end 
uses than between regions. These differences primarily reflect the relative balance of natural gas 
to coal generation. The Northeast (i.e., ISO-NE and NYISO) (NREL 2018a) has very low levels 
of coal generation, thus resulting in lower avoided CO2 emission rates than in regions with 
higher levels of coal generation. Because each end use provides roughly the same avoided CO2 
emissions, states looking to maximize carbon reductions could focus on least cost measures 
rather than specific avoided carbon dioxide emissions rates. 

While this work does not currently assess changes on the electric grid over time, 
comparing the CO2 results of the Great Lakes/Mid Atlantic, the Northeast and the Rocky 
Mountain gives an idea of how efficiency measures would change if renewable energy or natural 
gas deployment increases. A greater reliance on natural gas may lower the avoided SO2, NOx, 
CO2, and PM2.5 emissions rates, while a grid that sometimes relies wholly on zero-carbon energy 
could see more time dependent results, where only the measures that coincide with fossil 
generation would provide emissions savings.  

Discussion 

This analysis provides an initial evaluation of how energy efficiency measures and 
programs can be used to achieve national and regional energy and emissions goals. Identifying 
the measures that provide large energy savings potential and correlating those savings with 
emissions reductions along with costs can help states and localities pursue multiple benefits 
through a single program and adapt the program to meet local objectives. 

Assessing the magnitude and timing of national building efficiency impacts 

The three residential ECM portfolios studied at the national scale in this paper represent a 
range of possible building efficiency levels that can serve as benchmarks for the development of 
future residential building efficiency programs. In Figure 3, for example, it is shown that by 
2040, introducing a prospective set of technologies that correspond with BTO’s R&D portfolio 
more than doubles the potential national energy, CO2, and cost reductions realized under 
maximum penetration of ENERGY STAR, IECC, and 90.1 ECMs.   

Additionally, the consideration for stock-and-flow dynamics in the Scout modeling 
framework establishes the period over which continued growth in ECM portfolio impacts might 
be expected. Examining Figure 3 again, national energy, CO2, and cost reductions from current 
ENERGY STAR technologies peak by 2030, while reductions from best available ECMs do not 
peak until 2050 and reductions from the prospective ECM portfolio grow through the end of the 
modeling time horizon. The latter result underscores the need to develop technologies with both 
high energy savings and rapid market penetration potential, shifting the Figure 3 savings curve 
for the prospective portfolio to earlier years. 

Regional opportunities for emissions reductions through building efficiency 

While regional differences exist, with the fuel mix of the current grid, all end uses reduce 



 

 

emissions of SO2, NOx, CO2 and PM2. Savings from cooling and peak reduction as modeled here 
resulted in larger avoided air emissions in many, but not all, regions. An individual state or 
region can use this analysis to focus efforts on pollutants that are larger drivers of local air 
quality concerns. As the grid mix changes, further evaluation of the air pollution savings from 
energy efficiency measures will be necessary and further model development is needed to 
support such analyses. 

Traditionally, energy efficiency has not often been explicitly used to meet air quality 
targets; however, this paper shows that the regional and time sensitive emissions reductions 
associated with energy efficiency can be used to inform strategies for meeting both energy and 
air quality targets. The approach provided here is a starting point that should inform a discussion 
between stakeholders on the environmental benefits of different end use portfolios. 

Conclusion 

Using the BTO Scout and EPA AVERT tools, we evaluated the potential national energy, 
CO2, and energy cost reductions from residential building efficiency measures out to 2050 and 
regionally assessed the avoided electricity generation emissions from those end uses in 2021. 
Looking ahead, the ability to assess the impacts of such measures on a future grid can inform 
policy makers, utility operators, and industry professionals in framing the development of new 
building technologies and energy efficiency programs that cost effectively reduce both energy 
use and air emissions at multiple scales of analysis. Updated data, including load savings shapes 
for each ECM and the ability to model the dispatch order of a future grid will improve the 
capability of these tools to assess such impacts. Partnering with utilities or evaluators who have 
access to additional hourly datasets and dispatch curves for future grid scenarios may also help 
strengthen the results and generalizability of such analysis.  
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