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ABSTRACT 

Maintenance of heating, ventilation and air conditioning (HVAC) 

systems in building portfolios becomes increasingly challenging as 

systems become more complex, and as the number of systems 

increases across a managed portfolio. Data-driven maintenance 

approaches employ multiple data sources to analyze the system’s 

operation and maintenance (O&M) status, and hence can 

effectively support decision making for complex systems’ 

maintenance. Automated fault detection and diagnostics (FDD) 

tools are used to identify abnormal operations and resolve the types 

and locations of problems in HVAC systems. Data generated by 

FDD tools contain essential information in terms of the system's 

abnormal operation such as fault causes, fault location, fault 

occurrence, and duration. Therefore, the integration of FDD tools’ 

output data into data-driven maintenance tools can significantly 

support the maintenance decision-making procedure, and 

streamline HVAC system’s O&M processes. However, the 

semantic heterogeneity and the structural heterogeneity in FDD 

data lower data interpretability and interoperability, and hence 

hinder the integration of the data by other maintenance tools. In this 

paper, we propose a framework to organize and integrate FDD data, 

so that the data can be efficiently queried by or integrated into other 

maintenance tools. The framework includes the FDD data model, 

the fault taxonomy library, and organized FDD data structure. The 

case study demonstrates that the FDD data reorganized under the 

framework can be efficiently analyzed to assist HVAC system 

maintenance.   
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1. Introduction 

     Heating, ventilation and air conditioning (HVAC) systems, 

which are used to provide satisfactory indoor thermal comfort and 

air quality, have become one of the most critical facilities in 

commercial buildings. Therefore, it is essential to perform the 

efficient operation and maintenance (O&M) to ensure the system's 

operational performance. The adoption of building analytics tools 

provides insights on the system operation to building operators [1]. 

However, effective maintenance of HVAC systems becomes 

challenging because of the increasing complexity of the HVAC 

system, as well as the growing maintenance scale especially in 

building portfolios [2].  

    Data-driven maintenance approaches employ multiple data 

sources to implement advanced decision-making algorithms so that 

the efficient and cost-effective system O&M activities can be 

carried out. Examples of these data sources in commercial 

buildings include building automations systems (BAS), fault 

detection and diagnostics (FDD) tools, as well as the computerized 

maintenance management systems (CMMS) [3]. Each tool 

generates a large volume of data on a continuous basis. However, 

very little research investigated FDD data characteristics, and how 

FDD data can be used to support HVAC O&M activities. 

     FDD tools show promise for HVAC system maintenance [4]  

FDD tools employ building operational data to identify abnormal 
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operations and resolve the types and locations of root causes of 

problems in HVAC systems. Today, more than 30 commercialized 

FDD software tools are available in the market in the U.S., 

commonly provided as software-as-a-service (SaaS) to building 

operators [5]. FDD data provide valuable information including 

fault occurrence, fault duration and fault impacts in HVAC 

systems. In building portfolios, a considerable amount of FDD data 

can be generated by the FDD tools due to 1) the increasing 

complexity of HVAC systems; 2) more comprehensive fault 

detection capabilities; and 3) wider deployment of FDD solutions. 

For example, it is reported that the average number of reported 

HVAC faults per building per month can reach up to 245 (buildings 

equipped with air handling (AHU) and air terminal unit (ATU)) in 

commercial buildings in the U.S [6]. This situation becomes 

convoluted when FDD data is continuously and automatically 

generated and stored in a database for a time period. For instance, 

Heinemeier reported that an HVAC FDD tool could generate 25 

million fault messages across all Walmart buildings in one year of 

operation [7]. Although some fault messages, which reflect severe 

fault impacts, could be handled in a timely manner by building 

facility staff, most FDD data would be ignored due to limited 

facility staff resource and high maintenance costs. FDD data 

mining and analytics will not only uncover knowledge on fault 

occurrences such as fault prevalence in HVAC systems [10], but 

also support decision making in data-driven maintenance tools to 

improve maintenance activities.  

     However, the incompleteness, lower interpretability and lack of 

interoperability in FDD data may cause considerable barriers for 

FDD data analytics and prevent its integration from other data-

driven applications for HVAC maintenance. The unstructured FDD 

data generated by some FDD tools miss the exact information such 

as component type and locations. For example, the FDD data 

indicates a temperature sensor fault but does not provide the sensor 

location information, causing the data incompleteness. 

Additionally, various FDD tools employ customized ways to 

describe HVAC faults and generate FDD data. For instance, for a 

damper stuck fault, one FDD tool uses “Damper position feedback 

lower than command”, but another FDD tool uses an abbreviation 

format as “OA_FULL_OPEN_HIGH_OAT”. This causes semantic 

heterogeneity and the structural heterogeneity in FDD data. 

Although some semantic models such as Brick schema [8] or other 

ontology-based FDD solutions [9] may contain some fault status 

elements, those models do not provide complete fault descriptions 

or the fault data model.  

     In this paper, we proposed a framework for integrating HVAC 

system FDD data into CMMS tools to support the O&M process. 

The framework includes a FDD data model, the fault taxonomy 

library, and the organized FDD data structure. We demonstrate the 

effectiveness of the framework to enhance the FDD data 

interpretability and interoperability, as well as to evaluate the 

maintenance status.   

2. Methodology 

2.1 Overall description of the framework 

      Figure 1 shows the integration framework of FDD data and the 

CMMS tool. It can be seen that apart from the maintenance cost 

data, maintenance work orders, staff schedule and 

building/equipment schedules which the CMMS tool often uses, 

the FDD data generated by the FDD tool can be integrated with the 

maintenance decision making algorithms in the CMMS tool. 

2.2 FDD data model  
 To effectively employ FDD data in HVAC system maintenance 

practices, an FDD data model is developed to ensure the 

completeness of data as shown in Figure 2. This chain data model 

contains four levels: 1) the fault occurrence time (i.e., the 

timestamp when the fault is flagged and recorded by the FDD tool); 

2) the building ID and equipment ID which are used to indicate the 

fault location at the building level and the equipment level;  3) the 

fault ID which provides a unified HVAC fault name as described 

in Section 2.3; and 4) additional fault information which indicates 

other characteristics associated an HVAC fault to support 

maintenance activities. It is noted that the additional information 

can be generated either by the FDD tool or by the CMMS tool after 

the first three level FDD data are post processed.  

 

 

Figure 1. Data integration framework between the FDD tool 

and the CMMS tool 

 

Figure 2. FDD data model 

2.3 Fault taxonomy library  
     The previously developed HVAC fault taxonomy is used to 

unify the inconsistent fault naming conventions [11]. In the HVAC 

fault taxonomy, a four-level fault structure, which includes the 

equipment type, location within the equipment, the component 

category and fault nature, is defined to represent an HVAC fault as 

illustrated in [11]. Accordingly, a four-element structured fault ID 

is assigned to each HVAC fault. In addition, the faults reported by 

FDD tools were categorized into condition-based faults (CB), 

behavior-based faults (BB) and outcome-based faults (OB) [12].  
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2.4 Description of the FDD data format 
     Under the framework, FDD data can be restructured to generate 

a concise format to increase its interoperability. Table 1 shows an 

example of the one piece of FDD message which includes the first 

three levels of information in the FDD data model. Using the 

structured FDD data format, fault messages can be harmonized to 

a daily binary fault (BDF) message, i.e., for a calendar day, a fault 

for a piece of equipment in the building is flagged as one fault 

message and stored in the FDD tool database for later analysis or 

query.     

Table 1. Structured FDD data. 

Timestamp 
Building 

ID 

Equipment 

ID 
Fault ID 

20220102 15 RTU-001 RTU-Outdoor_air-Damper-Stuck 

      

2.5 FDD data for HVAC system maintenance  
     Using the proposed framework, the FDD data can be efficiently 

post-processed to evaluate the system operation and maintenance 

status in the long term. For example, Figure 3 illustrates the FDD 

data for an HVAC fault (e.g., the ‘RTU-Outdoor_air-Damper-

Stuck’ fault) in a piece of RTU under the normalized BDF format 

in one year. In the figure, four colors are used to indicate four 

operational conditions of an equipment as: 1) the red color shows 

the BDF messages for the true positive fault messages flagged by 

the FDD tool; 2) the purple color shows the BDF messages for the 

false positive messages  reported by the FDD tool; 3) the blue color 

shows the false negative period in which there is a fault but the 

FDD tool does not detect or diagnose such a fault; and 4) the green 

color shows true negative operational period. It can be seen that 

both the red color bars and the purple color bars represent the 

flagged faults reported by the FDD tools. However, it is noted that 

the ground truth (i.e., whether it indicates a true fault or false 

alarms) should be validated by the building facility staff. 

Contrarily, the periods labeled by the green color and blue color 

represent there are no BDF messages flagged by the FDD tool. It is 

noted the ground truth should be further validated by the building 

facility staff.  

 
Figure 3. Reorganized FDD message (in the BDF format) 

     FDD data can be integrated into the decision-making algorithms 

in a CMMS tool to support maintenance activities. For example, if 

the flagged fault messages for critical components/equipment (i.e., 

fans and chillers) indicate severe fault impacts on the HVAC 

system or on the thermal comforts, the prioritized maintenance 

strategy can be carried out for facility staff to quickly address the 

issues [13]. On the contrary, if the fault messages are generated for 

a less critical fault for a long time, the preventative maintenance or 

routine maintenance strategies can be activated to optimally assign 

facility staff to address the issue. In addition, various metrics can 

be developed to evaluate a system's O&M. In such practice, cost 

effective maintenance can be achieved while ensuring few faults to 

be ignored. In this study, we proposed a metric, namely continuous 

reported fault duration (CRFD), which is calculated by the 

reorganized FDD data, to evaluate the HVAC O&M status. The 

CRFD is defined as for a piece of equipment, the FDD tool 

continuously reports faults (i.e., either a specific type of fault, or a 

set of faults). For example, if the FDD tool continuously reports the 

fault for the RTU-001 for six consecutive days in the BDF format, 

then the CRFD for this type of fault is six. It is noted that the CRFD 

may include either true positive messages (e.g., six red bars in 

Figure 3) or false positive messages (e.g., five purple bars in Figure 

3).  

      For each type of fault or each piece of equipment, the maximum 

CRFD (i.e., MaxCRFD) can be obtained through comparing the 

CRFDs in a certain time range as given by:  

MaxCRFD = Maximum (𝐶𝑅𝐹𝐷1,  𝐶𝑅𝐹𝐷2,  … 𝐶𝑅𝐹𝐷𝑛 )  (1) 

where n is the number of the CRFD counted within a time period.  

    The MaxCRFD reflect equipment O&M status within a time 

scope. For example, a higher MaxCRFD value indicates that the 

equipment operates under faulty conditions for a long time and 

need to be scheduled for maintenance works.  

     For a specific type of HVAC fault, the mean MaxCRFD 

(mean_MaxCRFD) can be obtained by averaging the MaxCRFD 

from multiple pieces of equipment as given by:  

mean_MaxCRFD = ∑ 𝑀𝑎𝑥𝐶𝑅𝐹𝐷𝑖
𝑛
𝑖=1     (2) 

3. Case Study 

    The FDD data from one commercial FDD tool vendor was used 

to demonstrate the effectiveness of the reorganized FDD data in 

interpreting the system's O&M. The FDD data include fault 

diagnostics for 2162 RTUs from 131 mercantile buildings across 

the U.S. from 2018 to 2019. 

3.1 Fault name mapping result 

     Raw fault names were first extracted from the FDD data because 

there is not a complete fault library available. A total of 135 raw 

fault names were identified. The raw fault names were mapped 

according to the taxonomy library to ensure data interpretability 

and completeness as shown in Figure 4.  

 
Figure 4. Taxonomy mapping results 

    Among the 135 raw fault names, 33 fault names were identified 

as the CB faults, 39 fault names were identified as the BB faults, 

and 7 fault names were identified as the OB faults. Some fault 

names represent a same fault. For example, both the “Zone Air 

Relative Humidity Sensor Reading is Unchanging” and the “Zone 

Air Relative Humidity Sensor: Stuck” were mapped to the “RTU-

Zone-Relative_humidity_sensor-Frozen” fault as provided in the 
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taxonomy library. Consequently, a total of 23 fault IDs, which 

included 11 sensor related faults, 3 control related faults, 2 actuator 

related faults, 6 single measurement related faults, and 1 multiple 

measurement related faults from the taxonomy library were 

assigned. Additionally, 56 fault names were found to lack complete 

information such as the component location, or the component 

type, or the fault types. For example, a “Stuck Carbon Dioxide C1 

Sensor” raw fault name was flagged in the FDD data, but this fault 

message did not indicate the CO2 sensor location. Hence, the 

“RTU-NA-CO2_sensor-Frozen” fault ID was mapped to those 

fault names. Finally, a total of 12 fault IDs, which include a “NA”, 

were mapped. 

 

3.2 Reorganized FDD data 

     A Python language-based wrapper script was developed to 

generate the BDF format data via translating data from multiple 

sources including the FDD data, the fault mapping file, and FDD 

metadata files (i.e., building ID and equipment ID mapping files). 

Consequently, the FDD data was reorganized to generate 2.8 

million messages in the BDF format as given in Table 1.   

3.3 FDD data for the O&M evaluation 

     The FDD data can be used to evaluate the system O&M status 

in terms of each type of the fault. Table 2 shows 10 CB faults of 

which the number of RTUs reporting such a fault is higher than 

100. For example, the zone temperature sensor frozen fault in 

75.9% of RTUs (the total number is 2162) was flagged at least 

once. 

Table 2. Number and percentage of RTUs reporting faults  

Fault ID 
Num of 

RTUs 

Pct of 

RTUs 

RTU-Zone-Temperature_sensor-Frozen 1641 75.9% 

RTU-Control-Economizer_sequence-Setting 1444 66.8% 

RTU-Zone-Dewpoint_sensor-Frozen 1396 64.6% 

RTU-Supply_air-Temperature_sensor-Frozen 1328 61.4% 

RTU-Zone-Relative_humidity_sensor-Frozen 1276 59.0% 

RTU-Outdoor_air-Temperature_sensor-Frozen 1028 47.5% 

RTU-Return_air-Temperature_sensor-Frozen 952 44.0% 

RTU-Control-Sequence-Setting 347 16.0% 

RTU-Zone-Temperature_sensor-Drift 211 9.8% 

RTU-Outdoor_air-Relative_humidity_sensor-Frozen 135 6.2% 

     Figure 5 shows the mean_MaxCRFD results for the 10 CB faults 

given in Table 2. It can be seen that the mean_MaxCRFD for the 

zone temperature sensor frozen fault is around 231 days in a two-

year time scope. This means that when this type of fault is 

frequently flagged by the FDD tool, the fault tends to be ignored by 

the building facility team. Similarly, this mean_MaxCRFD can be 

used to evaluate a piece of equipment to optimize O&M activities.    

4. Conclusion and future work 

     Data generated by FDD tools is valuable to support the 

maintenance process. In this paper, we propose a framework to 

augment FDD data interpretability and interoperability. This 

framework includes the FDD data model, fault taxonomy library 

and the organized data structure. The case study demonstrates good 

potential in effectively streamlining the FDD data in the HVAC 

O&M. The reorganized FDD data can be efficiently queried and 

integrated by other maintenance applications. Our on-going and 

future works include analyzing the HVAC fault prevalence, and 

investigating the HVAC fault prioritization via FDD data. 

Additionally, we will investigate the integration of the FDD data 

model with other semantic models such as Brick Schema to further 

enhance the interoperability of FDD data.        

 
Figure 5. Result of the mean_MaxCRFD  
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