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Abstract 
Energy Management and Information Systems are a family of analytics technologies that 
include energy information systems, fault detection and diagnostics (FDD), and automated 
system optimization tools. Such systems have the potential to enable buildings to meet energy 
management goals of reducing total energy consumption and cost. Most current market 
offerings use data-driven and rule-based analytics. However, the use of physics-based models 
in the analytics offers potential improvements by providing an accurate estimation of outputs 
based on representation of the physical principles governing the building system behaviors. This 
also permits the use of design stage models to inform commissioning and operation.   
 
This paper describes the development and testing of a hybrid data-driven and physics model-
based operational tool for energy efficiency in central cooling plants. The tool offers FDD 
functionality, setpoint optimization, and visualization of key performance parameters. It was 
demonstrated at a university campus in the mixed-humid ASHRAE Climate Zone 4A. Key 
performance metrics that were analyzed include plant electricity use reduction, plant model 
calibration, and system economics. Annual simulations indicate the tool can provide electricity 
savings of greater than 10% for approximately six months of the year, mainly during the winter 
season when wet bulb temperatures are low, though only 1.38% savings for the entire year.  
Additionally, over a 4-day period in April, recommended optimal setpoints were implemented, 
resulting in 17% savings versus metered baseline consumption. With respect to model 
calibration, the difference between model-predicted and measured parameters was less than 
10% for 90% of data points acquired for three of six chillers, and for each ten cooling towers. 
Finally, the tool users reported that satisfaction with the capabilities was equal to or better than 
that with the preexisting BAS system. 
 
Keywords: Energy management and information systems (EMIS); fault detection and 
diagnostics (FDD); optimization; Modelica; physics-based modeling; central cooling plant. 
 
Introduction 
The building sector is widely recognized as a significant consumer of energy (IEA 2017). 
Commercial and residential buildings, together, account for 41% of primary energy consumption 
in the United States and 40% in the European Union (U.S. DOE 2011, Friedrich 2013). Existing 
buildings are often not properly commissioned for efficient operations, and performance 
degrades when retrofits, faults and other improvements are not appropriately monitored over 
time (Fernandez 2017, Liu  2003, Brambley 2009). Among the technologies to save building 
energy and utility costs, analytics software or Energy Management and Information Systems 
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(EMIS) hold promise to advance building operations and are increasingly used by energy 
managers, building owners, and operators. 
  
EMIS are a family of analytics technologies including energy information system (EIS), fault 
detection and diagnostics (FDD), and automated system optimization (ASO) tools. Energy 
information systems analyze and display whole-building, system-level, or equipment-level 
energy use. Fault detection and diagnosis systems use building operational data from the 
control system to identify the presence of faults and isolate their possible root causes. 
Automated system optimization tools are newer to the market than EIS and FDD. They use data 
from the control system to predict optimal setpoints to minimize system energy consumption or 
costs.  
 
EMIS enable cost-effectively savings on the order of ten to twenty percent (Granderson 2016; 
Henderson 2013; Kramer 2017). For example, three office buildings in Washington DC, U.S., 
implemented an EIS and achieved a 13% reduction in electricity use (Henderson 2013). 
Microsoft, which maintains the largest contiguous corporate campus in the US, has deployed an 
FDD system for building-level HVAC operations, and have saved over 18% in electricity 
consumption at their Puget Sound campus with rapid payback (Fernandes 2018, Smith 2011). 
The United States General Services Administration (GSA) proving ground program has 
demonstrated a chiller plant ASO technology in 2016. This technology determines optimized 
chilled water loop pressure setpoint for improving plant efficiency, and achieved 35% savings of 
the projected baseline at the demonstration site (Hail 2016). Since then, GSA has deployed the 
technology in another eight government buildings (U.S. GSA 2017).    
  
Most of EMIS analytic technologies on the market use rule-based or data-driven approaches to 
provide insights to building operators (Granderson 2017). In contrast, physics-based modeling 
uses first-principles and engineering models (e.g., efficiency curves) to characterize system and 
building behaviors. Integration of physics-based models to complement data-driven approaches 
has the potential for advancement. First, physics-based models effectively address the physical 
principles governing the building system behaviors and provide an accurate estimation of 
outputs when they are well formulated. Second, they allow the use of models from the design 
stage to predict the expected performance during commissioning and operation. Historically, 
these physics-based approaches (e.g. EnergyPlus, TRNSYS), have been used in the design 
phase of the building life cycle or in retrofit analyses, and not in the operational phase. Whereas 
empirical data-driven analytics permit assessment of operations based on actual prior system 
performance, physics-based approaches also enable assessment relative to design intent, and 
underlying physical principles. Physics-based models can be used to automate the detection of 
system or component faults, and to identify optimal control strategies to minimize system energy 
use.  
  
The use of hybrid data-driven and model-based approaches for operational tools that conduct 
continuous fault detection and energy use optimization is largely still the domain of exploratory 
research. Pang (2012) developed EnergyPlus physics-based models to identify whole-building 
level operational energy waste. Lee (2007) and Lin (2015) examined the use of the ASHRAE 
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Simplified Energy Analysis Procedure for fault detection at the whole-building level. 
Greensfelder (2011) used TRNSYS building models to study optimal zone setpoint 
temperatures in the presence of real-time electricity pricing to minimize energy cost.  May-
Ostendorp (2011) used EnergyPlus building models to study optimal window operation in 
mixed-mode buildings to minimize cooling energy consumption. Corbin (2013) proposes a real-
time optimization environment utilizing an EnergyPlus building model.  Coffey (2010) developed 
a framework for MPC using GenOpt (Wetter 2001) and demonstrated it in simulation using a 
TRNSYS model for optimizing zone temperature setpoint setbacks for demand response.    
 
Considering that there are relatively few studies related to on-line chiller plant control to optimize 
efficiency using physics-based approaches, this work aimed to develop and test a hybrid data-
driven and physics model-based operational tool for energy efficiency in central cooling plants. 
The tool offers FDD functionality, setpoint optimization, and visualization of key performance 
parameters for a campus chilled water plant. This paper presents the development of the tool, 
called PlantInsight, assessment of its performance, and feedback from operators.  
 
2. Technology Development and Implementation 
PlantInsight is an open source tool that is made up of three primary components: a web-based 
user interface, an analytics backend, and database.  The architecture of these components is 
described in more detail in Section 2.3.  The analytics backend provides algorithms for FDD and 
ASO. FDD is provided for  three types of faults: fan cycling, chiller cycling, and poor chiller 
efficiency. ASO provides analysis of optimal condenser water setpoint temperatures to minimize 
plant energy consumption. A calibrated simulation model is used in the algorithms to identify 
poor chiller efficiency, and optimal condenser water temperature, while the cycling faults are 
identified using purely data-driven models. In addition, the tool offers visualization for operators 
to track key parameters such as cooling plant load and chilled water loop temperature.  
 
2.1 Model Construction and Calibration 
The physics-based modeling approaches that underlie PlantInsight’s optimization and efficiency 
diagnostics are built using the Modelica language specification (Wetter 2014) and Functional 
Mockup Interface (FMI) standard (Blochwitz 2011), each of which are open standards. Modelica 
is an equation-based, object-oriented programming language for the modeling and simulation of 
physical systems, for which there is a component library for simulating building systems, called 
the Modelica Buildings Library (Wetter 2014). FMI is a standard way of packaging and 
interfacing physical models to enable exchange and co-simulation among different tools.  
 
The Modelica models that simulate the operation of the central cooling plant were developed 
using information from design specifications, nameplate data, drawings, and trend-log data. 
Component models for chillers, pumps, and cooling towers were taken from the Modelica 
Buildings Library and parameterized using specification and nameplate data. These component 
models were combined to form plant-level models of the two central plants at the 
implementation site. Finally, control sequence models were embedded into each plant model. 
Figure 1 illustrates a plant model, where solid blue lines represent the water pipes and the 
dashed lines are the paths for control signals and other inputs for the model, such as weather 
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data and plant cooling load. Once constructed, the chiller and cooling tower models were 
calibrated to operational data.  
 

 

 
Figure 1. Diagram of the system-level Modelica model for a cooling plant 

 
 
2.2 Optimization and FDD Algorithms 
The optimization algorithm determines the most effective cooling tower condenser water 
temperature setpoint for the next day at which the total energy consumption of the chillers and 
the cooling towers is minimized. The plant system model was run to predict energy consumption 
under different condenser water setpoints for the predicted cooling load. Optimization 
constraints, such as high and low condenser water setpoint limits, were also incorporated into 
the model. As with the calibration activity, GenOpt was used as the optimization engine. In the 
configuration of the PlantInsight tool, the optimization period was defined as one day, as 
recommended by plant staff. The full steps of the optimization routine are (1) predict plant 
cooling load and (2) find the optimal condenser water temperature setpoint. 
  
(1) Predict Plant Cooling Load 
To predict plant cooling load, we used a regression model that uses a linear combination of a 
bias, minute, hour, outside air temperature, and day of week. The coefficients of the linear 
combination are trained by linear least squares on the previous year’s data. Different 
coefficients are trained for each month. To predict the load for a given time, we obtained the 
forecasted outside air temperature from Weather Underground (www.wunderground.com) and 
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used that, along with the prediction time and coefficients from the appropriate month, to 
compute the plant load. The total predicted load was then split into loads for the main and 
secondary plants (described in Section 2.5), using a piecewise linear approximation based on 
historic data from the plant indicating the ratio of primary plant load to total campus load.    
 
(2) Optimize Condenser Water Temperature Setpoint  
The optimal condenser water setpoint was determined by solving the optimization problem 
defined in Equation 1 below (Huang 2014). It was assumed that all of the cooling towers for a 
given plant are controlled by the same condenser water setpoint. Since the change of the 
condenser water setpoint does not impact pump operation, the optimization equation does not 
include the pump energy consumption.   
 
 

min �𝐸𝐸 �
𝑡𝑡0 + ∆𝑡𝑡
𝑡𝑡0         

� = 𝑚𝑚𝑚𝑚𝑚𝑚 �� (𝑃𝑃𝑐𝑐ℎ(𝑡𝑡) + 𝑃𝑃𝑡𝑡𝑡𝑡(𝑡𝑡)𝑑𝑑𝑡𝑡)
𝑡𝑡0+∆𝑡𝑡

𝑡𝑡0
�  for 𝑡𝑡 ∈ [𝑡𝑡0, 𝑡𝑡0 + ∆𝑡𝑡) 

 
with 𝑃𝑃𝑐𝑐ℎ(𝑡𝑡) = 𝑓𝑓(𝑇𝑇𝑐𝑐ℎ,𝑒𝑒𝑛𝑛𝑡𝑡(𝑡𝑡),𝑄𝑄𝑃𝑃(𝑡𝑡), 𝑆𝑆𝑐𝑐ℎ������⃗ (𝑡𝑡)) 

 
and 𝑃𝑃𝑡𝑡𝑡𝑡(𝑡𝑡) = 𝑓𝑓(𝑇𝑇𝑡𝑡𝑤𝑤𝑃𝑃 (𝑡𝑡),𝑇𝑇𝑐𝑐𝑡𝑡,𝑠𝑠𝑒𝑒𝑡𝑡(𝑡𝑡0),𝑇𝑇𝑐𝑐𝑡𝑡,𝑙𝑙𝑒𝑒𝑙𝑙(𝑡𝑡), 𝑆𝑆𝑡𝑡𝑡𝑡(𝑡𝑡)) 

 
such that 𝑇𝑇𝑐𝑐𝑡𝑡,𝑠𝑠𝑒𝑒𝑡𝑡,𝐿𝐿 ≤ 𝑇𝑇𝑐𝑐𝑡𝑡,𝑠𝑠𝑒𝑒𝑡𝑡(𝑡𝑡0) ≤ 𝑇𝑇𝑐𝑐𝑡𝑡,𝑠𝑠𝑒𝑒𝑡𝑡,𝐻𝐻                                                                 (1) 

   

In these equations, 𝐸𝐸|𝑡𝑡0
𝑡𝑡0+𝛥𝛥𝑡𝑡 is the total energy consumption of the chillers and cooling towers 

during the optimization period [𝑡𝑡0, 𝑡𝑡0 + ∆𝑡𝑡),  𝑃𝑃𝑐𝑐ℎ is the power of chillers, while  𝑃𝑃𝑡𝑡𝑡𝑡 is the power of 
the cooling towers, 𝑇𝑇𝑐𝑐ℎ,𝑒𝑒𝑛𝑛𝑡𝑡 is the entering chilled water temperature (returning from the campus), 
 𝑇𝑇𝑐𝑐𝑡𝑡,𝑠𝑠𝑒𝑒𝑡𝑡 is the condenser water setpoint, 𝑇𝑇𝑐𝑐𝑡𝑡,𝑙𝑙𝑒𝑒𝑙𝑙 is the leaving condenser water temperature of 
the cooling towers, QP is the predicted cooling load, 𝑇𝑇𝑡𝑡𝑤𝑤𝑃𝑃  is the predicted wet bulb temperature 
from a weather forecast, 𝑆𝑆 is the state vector of the system (e.g., equipment operating status 
and temperature of water leaving the chiller condenser and evaporator), and 𝑇𝑇𝑐𝑐𝑡𝑡,𝑠𝑠𝑒𝑒𝑡𝑡,𝐿𝐿 and 
𝑇𝑇𝑐𝑐𝑡𝑡,𝑠𝑠𝑒𝑒𝑡𝑡,𝐻𝐻  are the low and high limits of the condenser water setpoint during [𝑡𝑡0, 𝑡𝑡0 + ∆𝑡𝑡).  
 
The Modelica plant system models are used to calculate 𝐸𝐸|𝑡𝑡0

𝑡𝑡0+𝛥𝛥𝑡𝑡, with forecasted plant loads, 
outside air dry bulb temperature, outside air relative humidity, outside barometric pressure, and 
condenser water setpoint as inputs for each time interval over the time horizon of interest. 
GenOpt is used to solve the optimization problem by varying the condenser setpoint 
temperature for each time interval specified to find the minimum energy consumption over the 
time horizon. Specifically, the Hooke-Jeeves Pattern Search algorithm is used (Polak 1997). 
The minimum condenser water setpoint is either 16°C, as specified by the plant operators, or 
4°C higher than the minimum outside wet bulb temperature forecasted over the time horizon. 
This 4°C temperature difference limit is to ensure that the condenser setpoint temperature is 
achievable with a reasonable tower approach. The maximum condenser water setpoint is 28°C 
as determined by the plant operators.  
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Two types of FDD algorithms are implemented in the tool. The first is the detection of cycling 
faults in the cooling tower fans and chiller compressors.  This algorithm uses fan and 
compressor power data to count the number of on/off cycles within a specified period of time.  A 
fault is flagged if this number is greater than a threshold defined by plant operators. The second 
is identifying efficiency faults in the chiller. Poor chiller efficiency is determined by comparing 
model-predicted COP with that estimated from measured data. Described in detail in Bonvini 
(2014), the FDD algorithm is based on an advanced Bayesian nonlinear state estimation 
technique called Unscented Kalman Filtering (UKF) that estimates system states and 
parameters based on measured data and a model of the system (Julier 1996). Detecting poor 
chiller efficiency for a given time period occurs by first identifying steady-state operating periods, 
then estimating a COP based on the measured data using the UKF, comparing the estimated 
value with the expected value from the model and flagging if faulty, and aggregating faulty 
intervals into faulty periods.  

2.3 Architecture Definition 
PlantInsight is written in Python 2.7, and consists of three main components: the Django web 
framework, the model simulation and optimization EstimationPy Python packages, and a 
PostgreSQL relational database. The Django web framework serves the web pages and API 
calls, runs the data update routines to calculate derived data points, runs the models, and runs 
the FDD/optimization algorithms. Within these algorithms, model simulations are run by Dymola 
dymosim files, optimizations are run by GenOpt, and fault detection and diagnostics use 
EstimationPy. Dymola is a Modelica development, compiling, and simulation program; GenOpt, 
is an optimization tool for building energy simulation programs; and EstimationPy is a Python 
package used for state and parameter estimation of dynamic systems that conform to the 
Functional Mockup Interface (FMI) standard.  

The PlantInsight data originates from a BAS historian database running Microsoft SQL Server 
located at the cooling plant site. A program was written in Java 8 to copy the data from the 
USNA SQL Server database to the remote PlantInsight PostgreSQL database. The program 
was installed on an operator kiosk at USNA and scheduled to run multiple times a day. 
Automated routines on the PlantInsight system read in the new data, update its derived data 
points, run the models, run the FDD/optimization algorithms, and update the results on the GUI. 
The user accesses the tool through a browser-based JavaScript graphical front-end application 
that interacts with the back-end via a representational state transfer (REST) API.  

2.4 Graphical User Interface (GUI) Development 
To ensure that the tool would be of maximum utility to plant operators, design feedback was 
obtained iteratively, throughout development. Figure 2 shows the landing page of the tool. In the 
plot, the total load on both plants (tons) is overlaid with the load from each plant individually. 
The landing page plots can be toggled to plant efficiency (kilowatts [kW]/ton) as well as the load 
and weather forecast for the next 24 hours. Above the plot, the total cost of operations, total 
consumption, maximum load, and number of current faults are summarized in key performance 
indicator (KPI) tiles. The landing page also shows runtime summaries and fault summaries.  
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Figure 2. Screenshot of the landing page of the PlantInsight tool 
 
Figure 3 shows the condenser water temperature setpoint optimization features in the tool. In 
the upper plot, the model-determined optimal setpoint for the upcoming day is shown along with 
the (constant) conventional actual setpoint. The forecasted wet bulb temperature is also plotted. 
In the lower plot, the actual measured power (orange) and the predicted power that would have 
been consumed under the model-determined optimal condenser water temperature setpoint 
(green) is shown for a historical date.  
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Figure 3. Screenshots of the condenser water temperature setpoint optimization features in 
PlantInsight: (Top) Optimal and conventional condenser water setpoints with predicted wet bulb 

temperature. (Bottom) Measured and predicted optimal power with total plant cooling load. 
 
2.5 Implementation 
PlantInsight was demonstrated at a large university campus in the mid atlantic region of the US 
in the mixed-humid ASHRAE Climate Zone 4A. The technology was implemented across the 
two central plants that serve the campus-wide chilled water (CHW) loop. As reported by the site, 
these plants serve approximately 1.8M sf of floor area across the buildings that host the majority 
of campus academic functions. The main plant, which is used for the majority of the year, 
contains two 1,250-ton chillers, one 2500-ton chiller, and four two-cell cooling towers. The 
secondary plant contains three 2,500-ton chillers, and three two-cell cooling towers.   
 
The central chilled water loop is operated in a primary/secondary pumping arrangement with 
each plant. Variable frequency drives are outfitted on each cooling tower fan and secondary 
chilled water loop pump. The primary loop pumps are operated as follows. Each pump is 
associated to a specific chiller and operates at nominal speed if the chiller is designated to turn 
on. One backup pump is available for chiller during operation. The pumps are staged based on 
minimum runtime. The secondary loop pumps each have variable frequency drives and are 
controlled to maintain the prescribed differential pressure setpoint across the campus loop. The 
condenser pumps are operated similarly to the primary pumps.  
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The cooling plant is operated to provide campus loop chilled water at 5.6°C +/- 1.1°C. Each 
plant is operated in a seasonal configuration. Cooling towers are staged on/off according to 
minimum runtime and to maintain a nominal condenser water temperature of 22.2°C +/- 1.1°C 
(adjustable). Cooling tower fan speeds are modulated to maintain fine control of the setpoint. 
Note that this condenser water setpoint is the optimization variable of interest, as described in 
Section 2.2.  
 
3. Assessment Methodology 
Three primary objectives were established and used to assess the performance of the 
PlantInsight technology. These objectives and their associated metrics, data requirements, and 
performance targets are summarized in Table 1.  
 

Table 1. PlantInsight performance objectives 
 

Performance 
Objective 

Metric Data Requirements Performance Target 

Reduced Central 
Plant Electricity Use  

Annual energy 
use, normalized 
for weather 
(kWh/year)  

Plant energy data, and 
independent variables such as 
outside air temperature and 
relative humidity  

At least 10% reduction 
compared to baseline 
cooling plant energy use  

Central Plant Model 
Calibration 

Difference 
between model 
prediction and 
measurement  

Plant operational parameters, 
e.g., compressor status, flow 
rates, temperatures, weather, 
fan speed, etc.  

Difference between 
model-predicted and 
measured parameters 
less than 10% for 90% of 
data points  

System Economics Simply payback for 
technology use 

Costs: sensor hardware; 
hardware and software 
installation; model creating 
calibration; model and software 
maintenance; operator training 
and time to use tool. 

Simple payback in less 
than 5 years 

 
3.1 Electricity Savings Estimation 
To assess the energy savings objective, a simulation analysis was conducted. For each plant, 
measured cooling load data and observed weather conditions were used by the optimization 
algorithm to determine the optimal condenser water setpoint for a given day. Once this setpoint 
was determined, the operation of each plant for the given day was simulated using the 
developed models twice—once with the optimized setpoint and once with the conventional 
setpoint. The conventional setpoint represents the baseline operation (Section 2.5), while the 
optimized setpoint represents operation with the tool in use. This procedure was repeated every 
day for one year. The savings were taken as the difference between the total annual energy 
consumption simulated with baseline operation and that with optimized operation.  
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In addition to assessment of yearly energy savings with a simulation, energy savings were 
analyzed using measured data from the site over a brief 4-day period during which plant 
operators implemented setpoints suggested by the PlantInsight tool. In accordance with the 
International Performance Measurement and Verification Protocol (IPMVP) Option B (EVO 
2012) the energy savings was estimated as defined in Equation 2. In this equation, kWh_Baseline 
represents the measured energy consumption at a given cooling load with the baseline 22.2°C 
static setpoint. kWh_Post_Imlementation represents the measured energy consumption at a given 
cooling load with the optimized tower setpoint from PlantInsight. 
  

kWh Savings = kWh_Baseline - kWh _Post_Implementation                           (2) 
  
A linear regression baseline model was created with the data from the two months prior to 
optimized setpoint implementation. The total electricity use of the chiller and tower that were 
operational during this time period was regressed against the chiller’s cooling load. The 
resulting baseline model shows good fitness, with an R2 of 0.8, normalized mean bias error of 
0.04%, and CVRMSE of 6%. The fit between model and baseline data is shown in Figure 4. The 
equation for the baseline model is provided in Equation 3.: 
  

kWh_Baseline = (0.53*cooling_load (ton) + 102.87) * hours               (3) 
 

 
 

Figure 4. Baseline energy use, modeled (red) and metered (blue) electricity consumption  
 
3.2 Evaluation of Model Calibration and System Economics 
Calibration of the central plant models was evaluated to ensure that simulations were indeed 
representative of the plant’s actual performance, and therefore provide confidence in the 
robustness of the recommended optimized setpoints. Measured data from the central plant over 
a 16-month period prior to technology implementation were compared to model estimates. The 
data was filtered to isolate that associated with steady-state operations, and the GenOpt 
optimization engine was used to find model parameters that minimized the difference between 
the model outputs and the associated measured data. The goal of chiller calibration was to 
minimize the difference between the measured and simulated chiller Coefficient of Performance 
(COP) by tuning the coefficients of the equations that are used with the Chiller.ElectricEIR 
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model (Wetter 2014) to determine chiller power. The goal of tower fan calibration was to 
minimize the difference between the measured and the simulated fan power by tuning the 
coefficients of the fan curves used with the CoolingTower.YorkCalc model (Wetter 2014). The 
goal of tower leaving temperature calibration was to minimize the differences between the 
measured and the simulated tower leaving temperature by tuning the nominal wet bulb 
temperature and the nominal approach temperature used with the CoolingTower.YorkCalc 
model (Wetter 2014). 
 
Assessment of system economics based on standard capital budgeting metrics provides a 
gauge for determining financial feasibility of the demonstration technology. A cost model was 
established reflecting estimated cost that would be required to implement the technology anew 
at a real site. The most significant cost drivers are hardware capital and installation costs, 
engineering costs to create and calibrate models, and operators’ time to use the tool. All 
estimates are based on observations of team and partner experiences throughout the course of 
the demonstration. Simple payback was calculated based on the estimated cost and simulated 
annual energy cost reduction.   
 
4. Results 
Simulated and field-validated energy savings are presented, followed by assessment of model 
calibration with the PlantInsight tool.  
 
4.1 Central Plant Electricity Savings 
The annual simulation analysis was performed for the period of 9/7/2014 to 9/7/2015 and 
indicated that daily energy savings of greater than 10% can be obtained for approximately six 
months of the year, mainly during the winter season. However, on an annual basis, across all 12 
months of the year, obtainable annual energy savings were 1.38% (434,785 kWh, $30,435).  
 
Figure 5 shows the monthly energy consumption of the two plants as a total (5a), monthly 
absolute savings (5b), and monthly savings as a percent of monthly baseline consumption (5c).  
While monthly relative savings during the winter can be higher than 25% (5c), the total power 
consumption is low during this time (5a), and therefore the contribution to annual savings is too 
low to meet the annual 10% target.  The results showed that the main plant achieves greater 
than 10% energy savings 48% of the days of the year, while the secondary plant, which 
operates only during the summer, does not achieve greater than 10% energy savings for any 
portion of the year.  
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(a)                                                                                                    (b) 

 

 
               (c) 

 
Figure 5. Simulated monthly energy analysis for the simulation period 9/7/2014 to 9/7/2015: (a) 
absolute energy consumption, (b) absolute energy savings , and (c) relative energy savings.  

Demonstrated savings for a four day period in April extrapolated for the month is shown in red. 
 
Further analysis shows that savings potential is driven by outside wet bulb temperature in 
addition to the trade-off between cooling tower and chiller power consumption. Figure 6 shows 
the dry bulb and wet bulb temperatures for the period of the simulation. The optimization 
algorithm determines the most effective cooling tower condenser water temperature setpoint. 
The chillers’ efficiency increases when the temperature of condenser water entering the chillers 
(same as the temperature of condenser water leaving the cooling towers) decreases. On the 
other hand, reducing that temperature will increase the energy consumption of cooling towers. 
Therefore, there is an optimum condenser water temperature setpoint for cooling towers that the 
total energy consumption of the chillers and the cooling towers is minimized. For the main plant, 
during the winter when savings potential is high, the optimal condenser water setpoint 
temperature is low due to low wet bulb temperatures, indicating that working the fans harder to 
achieve a lower condenser water temperature is worth the increase in chiller efficiency and 
lower chiller energy consumption. Figure 6 shows that these savings occur when the maximum 
daily wet bulb temperature is below approximately 15 ºC.  Meanwhile, in the summer, high wet 
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bulb temperatures limit the ability for the cooling towers to lower the condensing temperature 
and provide any energy savings. For the secondary plant, on days that provide a higher savings 
potential, the optimal condenser water setpoint temperature is high, indicating that working the 
fans less on those days is worth a slight loss in chiller efficiency. However, the savings in tower 
fan energy is relatively small compared to chiller power, and so the savings on the system is 
small.  
 

 
Figure 6. Ambient dry bulb and wet bulb temperatures in ºC for the simulation period of 9/7/2014 

to 9/7/2015. 
 
In addition to simulation, energy savings were evaluated using field testing data from the 
implementation of optimal setpoints over a four-day period in spring. During this time period, the 
site operational staff adjusted the cooling tower setpoint to the optimized setpoint suggested by 
the PlantInsight tool. After this time period, further implementation of the recommended optimal 
setpoints was precluded by chiller downtime and repairs, transitions to summer and term-time 
conditions, and time-sensitive resource-intensive projects that limited staff ability to conduct 
experimental operational changes. Figure 7 shows the savings results from projecting the 
baseline model (Section 3.1) to estimate the energy use that would have occurred during the 
test period had the optimized setpoints not been implemented. 17% savings were achieved over 
this four-day period, for a total of 5,436 kWh.  This amount of savings extrapolated for the entire 
month (scaled by 30/4 for the number of four day periods in April) agrees with the expected 
monthly savings in April determined by the annual simulation, as shown in Figure 5b-c by the 
red markers.   
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Figure 7. Actual vs. baseline-predicted energy use over a four-day period in April during which 
17% energy savings were quantified 

 
Although these results correspond to a short-term period of implementation, they serve to 
validate the simulation findings, which indicate comparable savings potential. Taken together, 
these analyses provide confidence in the assessment of demonstration performance objectives.  
 
4.2 Central Plant Model Calibration 
The performance objective associated with plant model calibration stipulated that the difference 
between model-predicted and measured parameters be less than 10% for 90% of data points. 
This objective was satisfied for three of six chillers, and for each of the ten cooling towers for 
which there was sufficient data.  
 
For the three chillers that could not be calibrated to the performance objective, it is suspected 
that the causes were either a limited volume of data representing full-capacity operation, 
erroneous data, or faulted operations underlying the data. In the case of the cooling towers, four 
cells could not be calibrated because the necessary calibration parameters were not available 
or were erroneous from the measured data history at the site. Since the model structure for 
each of the cooling towers were equivalent, the calibration parameters for towers that were well-
calibrated were applied to those for which calibration data were not available.  
 
Figures 8 and 9 contain selected examples of the calibration results for the chiller and cooling 
tower models. Figure 8 shows model-simulated versus measured COP for a case in which the 
performance objective was met, and for a case in which it was not met. Figure 9 shows model-
simulated versus measured cooling tower fan power and cooling tower leaving temperature, for 
one of the ten towers for which the performance objective was met.  
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Figure 8. Comparison of simulated and measured chiller coefficient of performance (COP) for one 

chiller for which the calibration performance objective was met (left), and for another chiller for 
which is was not met (right). 

 

 
 

Figure 9. Simulated and measured cooling tower fan power (left) and cooling tower leaving 
temperature (right) for Tower 3A. In both cases the calibration performance objective was met. 

 
Given that the majority of the models used in PlantInsight were able to be closely calibrated to 
the measured data from the site, the demonstration team was comfortable to incorporate the 
models into the PlantInsight tool. The assessment of the energy-savings performance objective 
confirmed that for key seasonal conditions (low wet bulb temperature), the model-derived 
optimized setpoints were indeed more efficient than the heuristic static setpoint typically used to 
operate the plant. 
 
 
4.3 System Economics 
To model and run the cost analysis, we assume implementation of the technology in a large 
facility approximately equivalent to that of the demonstration site. Hardware costs assume that, 
on average, six chiller flow meters may need to be added to provide the required data for the 
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tool, and that those meters would need periodic calibration. Similarly, models may require 
periodic updating by an engineer. Installation costs include the labor and material required to 
install the PlantInsight tool on a server and implement data export from the plant BAS to the 
PlantInsight database. The analysis showed that initial investment costs are $34,600. The 
simple payback can be met in 1.4 years, well within the 5-year target that was established. 
 
5. Discussion and Conclusions 
The results of this work showed that the model-based optimization technology was capable of 
delivering daily energy savings greater than 10% for approximately six months of the year, 
mainly during the winter season. However, for the year as a whole, energy savings of 
approximately 1.5% were obtainable. Since savings were driven by wet bulb temperature 
(lower), which occur in winter, when total plant consumption is lowest, larger annual savings are 
possible in drier climates.  
 
Future development efforts will benefit from several insights gained throughout the course of 
this work. First, operators place strong value on access to tools that provide visibility into how 
controls impact energy use and cost. This is not as a rule available in today’s commercial 
analytics technologies that span building automation systems, meter analytics tools, or 
equipment-specific fault detection and diagnostics tools. As such, HVAC optimization 
technologies represent advances in the state of today’s available technology, and this is even 
more true of optimization tools that incorporate physics-based modeling approaches. Future 
development, implementations, and field tests will continue to contribute to the state of 
knowledge of their development and application.  
 
Model-predictive optimization, combined with fault detection and diagnostics, is recognized as a 
critical aspect of realizing the dynamic low-energy buildings of tomorrow, and today’s 
applications can deliver even more impact from expanding the set of parameters that are 
included in the optimization, as well as the number of end uses that are considered. Although 
these technologies represent advanced forward-looking applications, the external infrastructure 
to support their delivery at scale is mature; cloud hosting and computational scalability are well 
supported through modern IT solutions. In contrast, the most significant practical 
implementation barriers are the brittle building data acquisition and communication systems that 
present chronic challenges to analytics applications that need to interface with controls data.  
 
Finally, we note that the creation and calibration of physics-based models that are intended to 
be used in the operational phase of the building life-cycle is highly dependent upon the specific 
algorithms with which they will be paired. The open, reference implementations that are 
delivered with PlantInsight are important contributions to industry’s continued success in 
leveraging these promising approaches for next-generation building energy efficiency.  
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