Hybrid Power Plants: Status of Installed and Proposed Projects

Ryan Wiser, Mark Bolinger, Will Gorman, Joe Rand, Seongeun Jeong, Joachim Seel, Cody Warner, Ben Paulos

Lawrence Berkeley National Laboratory

July 2020

This work was funded by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.
Scope includes **co-located** plants that pair two or more generators and/or that pair generation with storage at a single point of interconnection, and also **full hybrids** that feature co-location and co-control; ‘**virtual’ hybrids** are excluded, as are **smaller** (often behind-the-meter) projects not otherwise visible in data sources used here.
Existing Hybrid Projects: Installed by end of 2019
Methods and Data Source

- Form **EIA-860 2019 early release**
 - Generator specific information for power plants with **>1 MW combined** capacity
 - Very limited amount of spot checking for corrections to EIA data
- Hybrids identified by having the **same EIA ID**
 - **Suggests co-location of generators** at one plant / point of interconnection, but not necessarily co-controlled generators
 - Virtual hybrids cannot be identified; smaller plants excluded
- Challenges and Limitations:
 - Difficult to separate behind-the-meter/micro-grid resources from front of the meter resources
 - **EIA ID does not identify all hybrids or co-located plants** as some co-located plants could have different IDs
Hybrid / co-located projects of various configurations exist as of the end of 2019, but market remains limited in overall size.

125 projects, 13.4 GW of generating capacity, 0.9 GW storage capacity

<table>
<thead>
<tr>
<th>Installed at end of 2019</th>
<th># projects</th>
<th>Gen 1 (MW)</th>
<th>Gen 2 (MW)</th>
<th>Gen 3 (MW)</th>
<th>Total Gen (MW)</th>
<th>Storage capacity (MW)</th>
<th>Storage energy (MWh)</th>
<th>Storage: generator ratio</th>
<th>Duration (hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind+Storage</td>
<td>13</td>
<td>1,290</td>
<td>0</td>
<td>0</td>
<td>1,290</td>
<td>184</td>
<td>109</td>
<td>14%</td>
<td>0.6</td>
</tr>
<tr>
<td>Wind+PV+Storage</td>
<td>2</td>
<td>216</td>
<td>21</td>
<td>0</td>
<td>237</td>
<td>34</td>
<td>15</td>
<td>15%</td>
<td>0.4</td>
</tr>
<tr>
<td>Wind+Fossil+Storage</td>
<td>1</td>
<td>5</td>
<td>12</td>
<td>0</td>
<td>17</td>
<td>1</td>
<td>1</td>
<td>7%</td>
<td>0.8</td>
</tr>
<tr>
<td>Wind+PV+Fossil+Storage</td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>25%</td>
<td>1.7</td>
</tr>
<tr>
<td>Wind+PV</td>
<td>6</td>
<td>535</td>
<td>212</td>
<td>0</td>
<td>747</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>n/a</td>
</tr>
<tr>
<td>Wind+PV+Fossil</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>98</td>
<td>106</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>n/a</td>
</tr>
<tr>
<td>Wind+Fossil</td>
<td>8</td>
<td>27</td>
<td>79</td>
<td>0</td>
<td>106</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>n/a</td>
</tr>
<tr>
<td>PV+Storage</td>
<td>40</td>
<td>882</td>
<td>0</td>
<td>0</td>
<td>882</td>
<td>169</td>
<td>446</td>
<td>19%</td>
<td>2.6</td>
</tr>
<tr>
<td>PV+Fossil</td>
<td>26</td>
<td>77</td>
<td>6,876</td>
<td>0</td>
<td>6,953</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>n/a</td>
</tr>
<tr>
<td>PV+Fossil+Storage</td>
<td>3</td>
<td>9</td>
<td>10</td>
<td>0</td>
<td>20</td>
<td>5</td>
<td>9</td>
<td>24%</td>
<td>1.9</td>
</tr>
<tr>
<td>PV+Biomass</td>
<td>3</td>
<td>4</td>
<td>15</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>n/a</td>
</tr>
<tr>
<td>PV+Geothermal</td>
<td>2</td>
<td>18</td>
<td>85</td>
<td>0</td>
<td>103</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>n/a</td>
</tr>
<tr>
<td>PV+Geothermal+CSP</td>
<td>1</td>
<td>22</td>
<td>47</td>
<td>2</td>
<td>71</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>n/a</td>
</tr>
<tr>
<td>CSP+Storage</td>
<td>2</td>
<td>390</td>
<td>0</td>
<td>0</td>
<td>390</td>
<td>390</td>
<td>2,780</td>
<td>100%</td>
<td>7.1</td>
</tr>
<tr>
<td>Fossil+Storage</td>
<td>10</td>
<td>2,414</td>
<td>0</td>
<td>0</td>
<td>2,414</td>
<td>91</td>
<td>84</td>
<td>4%</td>
<td>0.9</td>
</tr>
<tr>
<td>Hydro+Storage</td>
<td>4</td>
<td>71</td>
<td>0</td>
<td>0</td>
<td>71</td>
<td>12</td>
<td>11</td>
<td>17%</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Sources: EIA 860 2019 Early Release, Berkeley Lab

Note: **Pumped hydro** is not considered a hybrid resource for the purpose of this compilation. The hydro+storage plants noted in the table pair hydropower with batteries.
Hybrid / co-located projects of various configurations exist as of the end of 2019, but market remains limited in overall size (2)

Wind Hybrids / Co-located Projects
- Wind+Storage dominates configurations: 13 projects, 1,290 MW wind, 184 MW storage
 - Small storage:generator ratios (14%) and storage durations (0.6 hrs) on average, built for AS markets
- Wind+PV (535 MW wind) and Wind+PV+Storage (216 MW wind) also present
- Configurations that include fossil involve minor amounts of wind

PV Hybrids / Co-located Projects
- PV+Storage dominates configurations: 40 projects, 882 MW solar, 169 MW storage
 - Small storage:generator ratios (19%), but longer storage durations (2.6 hrs) on average
- PV+Fossil is common (26 projects) but involves minor amount of PV (77 MW) added to fossil units (6,876 MW, including 3 coal plants totaling 5 GW) at point of interconnection
- Other configurations w/ wind, fossil, biomass, geothermal, CSP involve small amount of PV

Fossil Hybrids / Co-located Projects
- Fossil+PV is most common: small amount of PV added to larger fossil units (6,876 MW)
- Fossil+Storage also relatively common (10 projects, 2,414 MW fossil, 91 MW storage)
 - Small storage:generator ratios (4%) and storage durations (0.9 hrs) on average, built for AS markets

CSP, Geothermal, Hydropower, Biomass Hybrids / Co-located Projects
- Multiple configurations, with CSP+Storage involving the most capacity
Comparing the frequency and design of a subset of the various hybrid / co-located project configurations: end of 2019

<table>
<thead>
<tr>
<th># projects</th>
<th>Total capacity (MW)</th>
<th>Storage ratio</th>
<th>Duration (hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>PV+Storage</td>
<td>40</td>
<td>881.6</td>
<td>169.1</td>
</tr>
<tr>
<td>Wind+Storage</td>
<td>13</td>
<td>1,289.9</td>
<td>183.6</td>
</tr>
<tr>
<td>Wind+PV+Storage</td>
<td>2</td>
<td>215.8</td>
<td>20.7</td>
</tr>
<tr>
<td>Fossil+Storage</td>
<td>10</td>
<td>2,413.6</td>
<td>91.0</td>
</tr>
<tr>
<td>Wind+PV</td>
<td>6</td>
<td>535.3</td>
<td>211.5</td>
</tr>
</tbody>
</table>

Notes: Not included in the figure are 54 other hybrid / co-located projects with other configurations; details on those projects are provided in the table on the previous slide. **Storage ratio** defined as total storage capacity divided by total generation capacity within a type. **Duration** defined as total MWh of storage divided by total MW of storage within a type.

Sources: EIA 860 2019 Early Release, Berkeley Lab
PV hybrid / co-located projects of various configurations as of the end of 2019, and over time

Online PV Hybrid / Co-located Projects

Growth in PV Hybrid / Co-located Projects over Time

depicts amount of PV and other types of generation and storage being paired with PV, over time

Note: PV+fossil plants involve minor amount of PV added to larger fossil units at the point of interconnection: thus, the fossil category dominates this figure

Note: The larger PV+storage projects in California are in LADWP’s service territory, not CAISO

Sources: EIA 860 2019 Early Release, Berkeley Lab
Wind hybrid / co-located projects of various configurations as of the end of 2019, and over time

Online Wind Hybrid / Co-located Projects

Growth in Wind Hybrid / Co-located Projects over Time

depicts amount of wind and other types of generation and storage being paired with wind, over time

Sources: EIA 860 2019 Early Release, Berkeley Lab
Generator + storage hybrid / co-located projects at end of 2019, compared to subset of standalone storage technologies

- Wind+storage plants located primarily in ERCOT and PJM so far
- PV+storage plants located primarily in non-ISO West, ERCOT, and Southeast
- Fossil+storage plants located primarily in MISO and ISO-NE
- Standalone storage (ex. pumped hydro) largely in PJM, CAISO, Southeast

Sources: EIA 860 2019 Early Release, Berkeley Lab
Standalone storage (even excluding pumped hydro) capacity exceeds the storage capacity included in existing hybrids

- Standalone storage capacity (battery, flywheel and CAES, excluding pumped hydro) is greatest in PJM, CAISO, Southeast
- Standalone storage capacity exceeds storage capacity included in wind+storage, PV+storage, and fossil+storage hybrids
- Storage capacity included in hybrids is located roughly in proportion to where the hybrid plants are located

Sources: EIA 860 2019 Early Release, Berkeley Lab
Longer-term Pipeline:
Interconnection Queues at end of 2019
Methods and Data Sources

- Data from **generator interconnection queues** for 7 ISOs and 30 utilities, representing ~80% of all U.S. electricity load
 - Projects that connect to the bulk power system: not behind-the-meter or virtual
 - Includes all projects in queues through the end of 2019
 - Filtered to include only “active” projects: removed “online,” “withdrawn,” “suspended”

- Hybrid / co-located projects identified via either of these two methods:
 - “Generator Type” field includes **multiple types for a single queue entry** (row)
 - Two or more queue entries (of different gen. types) that share the **same point of interconnection** and sponsor, queue date, ID number, and/or COD
 - Emphasis was placed on identification of wind+storage and solar+storage
 - Other hybrid configurations are likely undercounted

- Storage capacity for hybrids (i.e., broken out from generator capacity) was **only available for 4 of 7 ISOs**, and not collected for the utilities
 - Available for: CAISO, ERCOT, SPP, and NYISO

- Note that being in an interconnection queue does not guarantee ultimate construction: majority of plants are not subsequently built
Interconnection queues indicate that commercial interest in solar, wind and storage has grown, including via hybridization.

Source: Berkeley Lab review of 37 ISO and utility interconnection queues

Note: Not all of this capacity will be built.
Interest in hybrid plants has increased: 28% of solar proposed as hybrids (102 GW), 5% of wind proposed as hybrids (11 GW)

Notes: (1) Not all of this capacity will be built; (2) Hybrid plants involving multiple generator types (e.g., wind+PV+storage, wind+PV) show up in all generator categories, presuming the capacity is known for each type.

Source: Berkeley Lab review of interconnection queues

Solar+Storage and Wind+Storage configurations are more common than other hybrid types¹

¹ Emphasis was placed on identification of wind+storage and solar+storage: other hybrid configurations are likely undercounted.
Hybrids comprise a sizable fraction of all proposed solar plants in multiple regions; proposed wind hybrids dominated by CAISO

<table>
<thead>
<tr>
<th>Region</th>
<th>Wind</th>
<th>Solar</th>
<th>Nat. Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAISO</td>
<td>50%</td>
<td>67%</td>
<td>0%</td>
</tr>
<tr>
<td>ERCOT</td>
<td>3%</td>
<td>13%</td>
<td>0%</td>
</tr>
<tr>
<td>SPP</td>
<td>1%</td>
<td>22%</td>
<td>0%</td>
</tr>
<tr>
<td>MISO</td>
<td>2%</td>
<td>17%</td>
<td>0%</td>
</tr>
<tr>
<td>PJM</td>
<td>0%</td>
<td>17%</td>
<td>1%</td>
</tr>
<tr>
<td>NYISO</td>
<td>1%</td>
<td>5%</td>
<td>4%</td>
</tr>
<tr>
<td>ISO-NE</td>
<td>6%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>West (non-ISO)</td>
<td>6%</td>
<td>50%</td>
<td>0%</td>
</tr>
<tr>
<td>Southeast (non-ISO)</td>
<td>0%</td>
<td>6%</td>
<td>0%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>4.8%</td>
<td>27.7%</td>
<td>0.6%</td>
</tr>
</tbody>
</table>

Source: Berkeley Lab review of interconnection queues

Note: Not all of this capacity will be built

- **Solar** hybridization relative to total amount of solar in each queue is highest in CAISO (67%) and non-ISO West (50%), and is above 10% in PJM, MISO, ERCOT

- **Wind** hybridization relative to total amount of wind in each queue is highest in CAISO (50%), and is less than 7% in all other regions
Solar+storage is dominant hybrid type in queues, wind+storage is much less common; CAISO & West of greatest interest so far

Average storage:generation capacity ratio for solar+storage (66%) is higher than for wind+storage (27%), in subset of ISO queues; these are both much higher than for existing hybrid plants shown earlier

<table>
<thead>
<tr>
<th>Region</th>
<th>Wind+Storage</th>
<th>Solar+Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAISO</td>
<td>25%</td>
<td>78%</td>
</tr>
<tr>
<td>ERCOT</td>
<td>54%</td>
<td>38%</td>
</tr>
<tr>
<td>SPP</td>
<td>23%</td>
<td>38%</td>
</tr>
<tr>
<td>NYISO</td>
<td>7%</td>
<td>49%</td>
</tr>
<tr>
<td>Combined</td>
<td>27%</td>
<td>66%</td>
</tr>
</tbody>
</table>

Source: Berkeley Lab review of interconnection queues

Note: Not all of this capacity will be built
Wind+storage, PV+storage, and fossil+storage plants all exist in limited quantities as of end of 2019.

Many other configurations are present, but in most cases (except fossil+PV) these are less common.

Storage:generation ratios and storage durations tend to be higher for installed PV+storage plants.

Standalone storage capacity (even excluding pumped hydro) exceeds storage in existing hybrids.

Forward-looking interest is dominated by solar+storage plants: ~10x more than wind+storage.

CAISO and non-ISO west are the two regions of greatest apparent commercial interest so far.

Data availability for hybrid /co-located plants is limited, especially given the wide variety of plant configurations. Even standardized definitions for what constitutes a hybrid is lacking. Market tracking challenges follow. Nonetheless, some basic conclusions from this synthesis include:
Disclaimer
This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer.

Copyright Notice
This manuscript has been authored by an author at Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231 with the U.S. Department of Energy. The U.S. Government retains, and the publisher, by accepting the article for publication, acknowledges, that the U.S. Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes.