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Load Forecasting — What Is the Status Quo?

Electricity end use in the United States from 1975 to 2022

* Demand has been flat for the
past 20 years

e Utilities had time to “react” to
local load growth from new
customers and businesses

* Past consumption was a good
representation of future
consumption f
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https://www.statista.com/statistics/201794/us-electricity-consumption-since-1975/

Load Forecasting — What Has Changed?

Econometric modeling using historical
data (typically load, weather) is not
sufficient to forecast future load

Customers are adopting new
technologies behind-the-meter
* Need to understand gross load versus
net load

e Need to understand where and when
technologies are being adopted today
and in the future

* Rapid DER adoption trends are very
different than a new development or
business customer

Past weather is not representative of
future weather

Megoeatts

Gross load versus net load example
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https://www.caiso.com/Documents/gross-and-net-load-peaks-fact-sheet.pdf

DER adoption is heavily influenced by
federal/state/local/utility policies and goals
* Harder to quantify implications and what is

possible
* Initiatives and programs have to be converted

into quantifiable input assumptions on
technology adoption, utilization, operation

Top 10 Themes from New US City Climate Action Plans
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Policy Is Greatly Influencing Load Forecasting

Visualizing
The U.S. has set a target of reducing its GHG
‘ I ea n E n e rgy a n d emissions by 50-52% below 2005 levels by 2030.
Here is how each state is contributing to that
reduction through their own clean energy and
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https://www.nlc.org/article/2022/04/22/the-top-5-ways-cities-are-addressing-climate-change/
https://decarbonization.visualcapitalist.com/clean-energy-and-emissions-goals-by-state/

Policy Is Greatly Influencing Load Forecasting

Need to plan for longer time horizons

e Distribution planning has typically looked 3-5 years ahead

Long lead time on grid assets and transmission constraints are
increasing the pressure on distribution planning

Need to consider multiple scenarios
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Past - Current - Future in Load Forecasting for Distribution Planning

Past

5 year time horizon
Econometrics trends
DER adjustments
System level

‘ Deterministic

Source: Eversource




Who Performs Load Forecasting?

Forecasters

Research organizations
State energy offices
Independent system operators

Utilities — load forecasting departments
(typically, the rates department)

Utilities — distribution planning department

............................ » National and state studies

»
----

.;;.:;.::‘.'.'.'.'.‘.'.-.'.‘.‘.-.‘_.; - Integrated resource planning, renewable
"_' "';;;;-:”....’-’--‘-‘-',{-3"" portfolio standard plan
i, Resource adequacy
vi),i;:;::{{:-.......::.....'.'.'.'.:.:3.’-3:». Transmission planning
", Rate design
""" » Corporate forecast & revenue projections

“a Procurement

Distribution planning

Distribution planning has traditionally not used the
forecast from the load forecasting department.

Use Cases




Peak versus Energy Load Forecasting

 Load forecasting departments at utilities typically forecast energy and demand
separately

* Distribution Planning has traditionally only been concerned about substation/
feeder peak load to determine how big the infrastructure needs to be

men Electric demand
throughout the day (kW)

Quantity of energy consumed
(kWh)

(kW)

I
Midnight 6 am. MNoon 6 p.m. Midnight
Source: We Energies



https://www.we-energies.com/payment-bill/demand-charges

Peak Load Forecast Modeling in Distribution Planning
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https://www.nrel.gov/docs/fy17osti/68681.pdf
https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M508/K423/508423247.PDF

Load Forecast Modeling in Distribution Planning

Weekly Demand Distribution @ Annual S0th percentile peak
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* Distribution Planning typically uses annual peak 1-in-10-year load forecasting at the
substation and/or feeder levels and might or not disaggregate top-down forecasts
for load or DERs

* New local large customer interconnection requests are added to the historical peak



https://www.iso-ne.com/static-assets/documents/2019/09/p1_load_forecast_methodology.pdf

Distribution Planning Load Forecasting

Planning Department Workflow Solutions
Asset Management | | Run to Failure |
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i Department, Utility
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https://www.nrel.gov/docs/fy23osti/83892.pdf

Use-Case: Capacity Planning

“Long-Term” Capacity Planning (5-10 I’
years): thermal evaluation at the @
. \ Y
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Load Forecast - Key Input to Capacity Planning

e Spreadsheet exercise to predict peak
load at every substation and/or feeder ety Dy o Y g Fody ey ey

e Single deterministic forecast
e Overload criteria typically 100%

O When equipment is overloaded, it may fail
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https://www.pge.com/en/business-resources.html

New Business Customers Driving Investments Is Reactive
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https://uploads-ssl.webflow.com/62a236e9692c48e1d16898b3/63729a90e35f9cb53c617a14_DIDF+Evaluation+and+Recommendations_Kevala_11.14.22.pdf?R6wF9AvbqY=%7B%7BProspectTrackingParameter%7D%7D
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https://uploads-ssl.webflow.com/62a236e9692c48e1d16898b3/63729a90e35f9cb53c617a14_DIDF+Evaluation+and+Recommendations_Kevala_11.14.22.pdf?R6wF9AvbqY=%7B%7BProspectTrackingParameter%7D%7D

“Allocation” or “Disaggregation” Using Load Shapes

e Increasing need to understand full load-shape profile to model
future peak load quantity and time of year and day
o Overall load can be taken apart (disaggregated) to identify trends
in individual end uses
o Customer segment at the substation/feeder level by customer
class is used for DER adoption and forecasts
m Customer research department, advanced metering
infrastructure (AMI) data
e Full bottom-up models leveraging AMI and SCADA are starting to

be used
o Kevala - CPUC Electrification Impacts Study - Part 1

See NREL/Berkeley Lab data, modeling tools, and reports on End-Use Load Profiles

16



https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M508/K423/508423247.PDF
https://www.nrel.gov/buildings/end-use-load-profiles.html

“Allocation” or “Disaggregation” of Load and DER

e Load and DER forecasts
are often performed at
the zip code level

e Disaggregation step
from zip code to grid
infrastructure (e.g.,
feeder) induces errors

‘4! Substation: Lat/Long

2

/ﬁ Transformer Bank: ILat/Long, GNAloading, GNArating, SCADA MW

KF Feeder: Lat/Long, GNAloading, GNA rating, SCADA MW

A% Service Transformer: Lat/Long, KVArating

[

A Parcel: Census, zip code, size

s

LJ)J///

ﬁ Premise: Lat/Long, kWh, rate, DER

Source: Kevala
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Challenge to “Allocate” DERs - “Peanut Butter Spread”
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Source: PG&E

18



https://www.pge.com/en/business-resources.html

DERs Are Challenging the Peak Load Forecast Model

* Load forecast is now driven by customer adoption of DERs
* To understand the impact of DERs we need timeseries modeling
* Need to align top-down targets with distribution needs

* Load forecast is now driven by extreme weather events

Base Case - Total Load - 3 IOU Peak Day - 2035 High Electrification - Total Load - 3 IOU Peak Day - 2035
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https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M508/K423/508423247.PDF

CPUC Electrification Impacts Study - Part 1 - Impact of EV Charging

Adding between 3.2M and 10.0M light-duty (LD) ZEVs by 2035 across the three I0Us has roughly the
same energy impacts as adding 2.9M to 8.7M residential customers’ worth of new energy demands.

Base Case

ZEV adoption sources:
— LD: CEC 2021 IEPR Base Case
— Medium duty/heavy duty (MD/HD): CEC
2021 IEPR Base Case

2035 ZEV-equivalent energy:
— 3.2M LDs: 2.9M residential customers
— 227k MD/HDs: 173k commercial customers

Three IOUs’ Total EV Energy (GWh)

Base Case
60,000
50,000
40,000
30,000
20,000 17,160
10,500 11,000
10,000 4,680 4,
970 390
0
LD MD / HD LD MD / HD LD MD /HD

2025 2030 2035

High Electrification

ZEV adoption sources:
— LD: CARB ACCII
— MD/HD: CARB 2020 SSS (ACT & ACF)

2035 ZEV-equivalent energy:

— 10.0M LDs: 8.7M residential customers

— 219k MD/HDs: 198k commercial
customers

Three IOUs’ Total EV Energy (GWh)
High Electrification

51,780

19,160

12,590
I 4,810
—

2,630 500
LD MD / HD LD MD / HD LD MD / HD
2025 2030 2035

Accelerated High Electrification

ZEV adoption sources:

— LD: CEC 2021 IEPR Bookend Case
— MD/HD: CEC 2021 IEPR High Case

2035 ZEV-equivalent energy:

— 9.5M LDs: 8.2M residential customers
— 231k MD/HDs: 164k commercial customers

Three IOUs’ Total EV Energy (GWh)
Accelerated High Electrification

49,070

27,190

10,310 10,460
. 1,070 4,450

LD MD / HD LD MD / HD LD MD / HD
2025 2030 2035

Source: Kevala 4w
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Example Electrification Scenarios — Base Case versus High

Base Case - EVSE Load - 3 IO0U Peak Day - 2035 High Electrification - EVSE Load - 3 IOU Peak Day - 2035
25,000,000 25,000,000
20,000,000 20,000,000
15,000,000 15,000,000
E 10,000,000 § 10,000,000
5,000,000 5,000,000
0 — e 0
=:::::333333:33355::222¢¢2 TIIIIIIIIIIIEIEEEEEEEEEE
S BESEEEES88888888585¢.8¢888¢8§5 88888888888 888888888¢8¢§8
T B = = R = R B B X T - = =
LDV SUD-TOU M MDY/HDV Public B MOV/HDV Corridor M LDV/ MDY [ HDV Fleet LOVSUD-TOU B MDV/HDVPublic B MDV/HDY Corridor B LDV/MDV/HDV Fleet
M LDV Corridor [ LDV Workplace LDV Public [ LDVMUD [ LDV SUD - Non-TOU W LDV Corridor M LDV Workplace LDV Public W@ LDVMUD [ LDV SUD- Non-TOU
Overloaded Feeders
o e e o 20 Total Capacity Upgrades Costs - PG&E, SCE and SDG&E
a SCE, (2) High Electrification
i s SCE, (4) Accelerated High Electrification
P4 = = PGAE, (1) Base Case IEPR 2021 60
P '/ ¥ = PG&E, (2) High Electrification
40% B .o = = PG&E, (4) Accelerated High Electrification

= SDG&E, (1) Base Case IEPR 2021
= SDGSE, (2) High Electrification
= SDGA&E, (4) Accelerated High Electrification

2
30% 2 40
5
£
-
7]
S
20% © ©
T 20 ©
5 >
o )}
= 4
10% )
o
-t 0 >
..... T : 2025 2030 2035 3
003025 2030 2035 B (1) Base Case IEPR 2021 W (2) High Electrification + Existing BTM Tariffs 8 (3) High Electrification + Modified BTM Tariffs

B (4) Accelerated High Electrification + Existing BTM Tariffs M (5) Accelerated High Electrification + Modified BTM Tariffs
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DERs — Demand-Side Modifiers

 How to predict where (which substation and feeder) and
when will each technology be adopted?

£ o N s

Behind -the - M Behind -the - - o Electric Vehicles (EV) and
pﬁ |tn -|tt e Pe\;er Meter Battery Energy Building Electrification (BE) Electric Vehicle Service Equipment
otovoltaics (PV) Storage System (BESS) (EVSE)
Q) » (@
Energy Efficiency (EE) Demand Response (DR) Pricing & Programs Smart Controls
(P&P)

Source: Kevala
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DER Modeling Basis

23

Each DER requires an adoption propensity model

e Outputis an estimate
of the capacity of the
DER, such as the
appropriate capacity or
nameplate rating of the
DER for a given
premise, or percent
change in premise load

e Determined based on
characteristic of a
premises, such as
baseline load (e.g., to
get to ‘net zero' for PV),
historical DER sizing
(e.g., historical percent
savings from EE) or
technology adoption
(e.g., Level 1 vs Level 2
charger)

A

Behavior

Outputis the hourly
resolution (8760 profile)
behavior of the DER
over the course of a
year

Determined based on
either engineering
algorithms (e.g., PV
based), statistical
relationships (e.g. EE) or
a combination of
premise characteristics
and customer behaviors
(e.g., EV)

@

Adoption

Output is an estimate of
the likelihood that a
premise will adopt the
DER (specifically an
adoption propensity score
between 0 (definite
non-adoption) and 1
(definite adoption)

Determined using
statistical modeling
techniques that examine
the relationships among
certain premise (or
customer) attributes and
historical adoptions

©

Target

Input is an estimate of
the level of adoption of a
DER in terms of capacity
(e.g., kW of PV installed) or
number DERs adopted
(e.g., numbers of EVs)

Determined using policy

targets at federal, state
and local

Source: Kevala




Challenges with EE & BE Adoption and Behavior in Distribution Planning

e EE methods in distribution planning often rely on ratio of savings rather than
specific measure adoption
o In contrast, for other DERs, the specific technology adopted is estimated along with
load implications (size and behavior) of that technology
o The type of load conversion could dramatically impact the behavior and level of BE
adoption.
e Assumes uniform savings across baseline loads, potentially attributing savings
in hours when savings may not occur
o For example, savings of 2% could be due primarily to lighting, yet lighting savings are
limited during the day or early mornings
o Could miss compounding benefits from temperature-sensitive measures
o Converting heating loads from natural gas to electricity (for both commercial and
residential sectors) could transition a customer with low energy use to a much higher
electric bill in exchange for a much lower (or nonexistent) gas bill
e Methods typically model savings proportional to size of customer’s load
o While intuitive (customers with high energy usage potentially have more opportunities
for greater savings), this results in very large customers capturing the ‘target’ savings
first, potentially missing smaller premises that also could adopt
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Challenges with EE & BE in Adoption and New Load Growth

Need to consider recent state and federal level legislation:

e IRA appliance rebates
o CA example

o SB 1477 (2018) calls on the CPUC to develop two programs (BUILD and TECH) aimed at
reducing greenhouse gas emissions associated with buildings.

o AB 3232 (2018) directs the California Energy Commission (CEC) to “assess the potential ... to
reduce the emissions of greenhouse gases in ... residential and commercial building stock by at
least 40 percent below 1990 levels by January 1, 2030.”

o SB 68 (2021) directed the CEC to develop guidance and best practices to overcome barriers to
building electrification and electric vehicle charging equipment.

o CEC 2022 building code - Encourages electric heat pump technology and electric-ready
requirements for other technologies for new construction
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Deterministic Scenarios vs. Probabilistic Load Forecast

e Deterministic Scenarios
o Change assumptions for final target and speed of DER adoption
o Results in a range but does not quantify uncertainty
e Probabilistic Load Forecasting
o Determines a range and probability distribution for each of the driving

variables of the forecast
o Individual components of the load and DER forecast are turned into
probabilistic forecasts with calculated uncertainty
Challenge: How to combine uncertainty from every load and DER
model into one capacity planning model that can be used to make

investment decisions
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Deterministic Scenario Matrix Design

IEPR Calibrated Case
A ol -

mibd el
4= IEPR IEPR IEPR IEPR

n The fourth step is to identify the impact of
‘diversification’ by running each case
individually and then in total aids (sum of

E Second step is to calibrate
Bottom-up Baseline Case to
IEPR and identify differences

due to granularity of analysis

-~
it

each individual case less total case)

a4

-~
il

Low Case

3=

First step in process is to

B
B B

of load at a circuit level

v @ad@ ‘ﬁﬁ‘

W B w@m B

develop a ”"Baseline Case” that
represents a bottom-up forecast
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1+ e
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Load Electric . Energy
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I (EV) e (PV) (EE)

. |

—— ’y\
“ 2020 2025 2030 2035 Q
@ - = Slow m— Paced =eues Fast
« 'yﬁ\ H Third step is to run Baseline, High and Low o
> cases with three acceleration scenarios (fast,
0 om pacefi anfl slt?w) to all_ov!f for |c!ent|ﬁcat|on of > —-—
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-
—
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Ele::riﬁ::finn o smt::: i Di\mr:::icaﬁo" “ Base Case ' High Case ‘ Low Case
(BE) (Bs) - (ov)

Source: Kevala
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Probabilistic Load Forecasting

e Quantifies uncertainty for each scenario
o Probabilistic component forecasts
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Key Gaps and Needs in Distribution Planning Load Forecasting

Statistical load
forecasting based on
historical load and
weather events will
miss extreme
weather events
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Figurel: (left) Temperature anomalies during the 2021 Pacific Northwest heatwave (NASA 2021) and (right) area-

average temperatures in 2021 (red) compared to the period 1950-2020 (grey dots) in ERAS5 reanalysis (plot by Erich

Fischer).




Key Gaps and Needs in Distribution Planning Load Forecasting

e Statistical load forecasting based on historical load and weather
events will miss extreme weather events

* Hourly climate model projections are currently being developed

Adlania, G Model SEP128 2050 Adlania, GO Modeld S5P128 2050
i i i
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ONGOING PLANNING STREAMS

System-level / Corporate Forecast

Econometric Models Alatacasaca..,.

* Load Growth
* DER Growth

Single figure Load and DER

disaggregated to circuits

Disaggregated Growth

DER Allocation

Capacity Planning 2-10 yrs

Existing Peak Load

/
A‘/// Disaggregated Growth +

L_—: Feeder/Substation Projected
Peak Load by Year

Distribution Planning 1-2 yrs

Existing Peak Load

Feeder / Substation Peak Load
+ New Service Requests

<

]

G
KEY CHARACTERISTICS

Data / Past Performance

+ Historical Load & DER Trends  + Single / Limited

Drive Future Forecasts

+ Deterministic Model
Process

+ Manual Spreadsheet

Scenarios

Deterministic approach

SOLUTIONS &
STRATEGIES ASSESSMENT

Topology Changes

* Load Transfers - Switching

Evaluate Cost
Outlay Solutions

Infrastructure
%W A ;
Exclusion Criteria
* Timing
* Technical
* Cost

v

Evaluate Non-wires
Cost Outlay

Budget Requests

Non-wires
FIXED BUDGET * Storage
ALLOCATION iz
PROCESS . DERs
+ Distribution Grid H
Budget Decisions - BTM Efficiency
* All Infrastructure @
Budget Decisions
OBJECTIVES & METRICS

+ N-1 Reliability
+ Capital Expense

v Budget Constraints

Existing Load Forecasting for
Capacity Planning

e Capacity planning mismatch with

long-term changing policy goals

e Historical trends (load, weather, etc.)

are used to predict the future

e Allocation/forecasts not alighed with

electrical infrastructure and meters

Source: NREL/Kevala .
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ONGOING PLANNING STREAMS COORDINATED SOLUTIONS &

Future Load Forecasting for Capacity Planning STRATEGIES & aUDGeTs

Long-Term Planning to Meet Policy Goals

Shared view of capacity needs

Shared decision making
1 p  Long-Term Load and

e High spatial and temporal resolution for — e
load and DER forecasting =1 ==
e Longer term forecast —~y

Emidssions ete

e Scenario and probabilistic methods e i B =

+ Fasi Behavieur + BTM Effsziency
FIXED BUDGET

e Include climate change models and extreme - EEE
weather events — =y

» Digiribution Gid

Bottom up Adaption & Scenarios Budge Declilons

Propensity Models Introduce: . + A Infrastructure
Scenarios Budget Decisions
+ Opportunity to madel Introduce:
m miiltiple acenarios
* Qpportunity to
 Geospatial context ||n.‘!_'|[r- s,nllull |::;-rw
Future Scenarios at '|'¢=|5|'|'f'“;r,J * Circuit DER Adlocation + Experiment with nflusncing behavier
Region, Distribution Levels
Forecasts for Future Trends and Change Additional

Weather Variation  Boltom-up Adoption & Explore influencing behavior at address-level:
Propensity Models: « Rates Programs

Py - EE * Ot Programs
Policy Change = Storage =EV -thpr?:l]fem.\.es

« DRt adoption - other

Socio Economics  EV charging behaviour
Docatsen, s of day, Hps)

KEY BEMEFITS OBJECTIVES & METRICS
+ Probahilistic f Scenario Captures Uncertainty ¢ Alignmant with Long-Tenm « M1 Reliability - Equity
Flanning & Stakcholder Policy Gouls « Capital Expense « Energy Efficiency
SOU rce. N RE L KeVa Ia * Cost-Allocation / Cost- Engagement « fvolded Costs « Carbaon Emtssions
Causation
Rosilence
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Questions to Ask

34

Does distribution planning coordinate with or take inputs from
the load forecasting department?

Do you forecast peak load or some form of timeseries?

What DERs are explicitly forecasted and modeled in your
distribution planning forecast?

What weather data is used in your distribution planning load
forecast? Does it include the effects of climate change?

Do you perform a single point load forecast, or do you consider a
range of scenarios and probabilistic methods to determine
infrastructure needs?
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