Are coupled renewable-battery power plants more valuable than independently sited installations?

May 2021

Will Gorman, Cristina Crespo Montañés, Andrew Mills, James Hyungkwan Kim, Dev Millstein, Ryan Wiser

This work was funded by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy, under Contract No. DE-AC02-05CH11231.
Disclaimer
This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer.

Copyright Notice
This manuscript has been authored by an author at Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231 with the U.S. Department of Energy. The U.S. Government retains, and the publisher, by accepting the article for publication, acknowledges, that the U.S. Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes.
Table of Contents

- Introduction and motivation
- Valuation methods
- Results
- Conclusions and next steps
Integrating growing levels of variable renewable energy (wind and solar) may require strategies that enhance grid-system flexibility.

- **Storage** technologies can be used for enhanced flexibility.
- Due to **declining costs**, batteries have become a popular choice.

Developers have increasing interest in co-locating generation with batteries at the point of interconnection, rather than siting separately.

- **Siting choice** depends on multiple considerations...
- …which can also impact effective renewable integration.
Interconnection queues indicate that commercial interest in hybridization has grown.

Source: Berkeley Lab review of 37 ISO and utility interconnection queues

Note: Not all of this capacity will be built.
CAISO and the non-ISO west have dominate fraction of all proposed solar plants in hybrid configuration

- **Solar** hybridization relative to total amount of solar in each queue is highest in CAISO (89%) and non-ISO West (69%)

- **Wind** hybridization relative to total amount of wind in each queue is highest in CAISO (37%), and significantly less in all other regions

- **Battery** development is dominated by hybrids only in CAISO (where data is available)

Table: Percentage of Proposed Capacity Hybridizing in Each Region

<table>
<thead>
<tr>
<th>Region</th>
<th>Wind</th>
<th>Solar</th>
<th>Nat. Gas</th>
<th>Battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAISO</td>
<td>37%</td>
<td>89%</td>
<td>0%</td>
<td>64%</td>
</tr>
<tr>
<td>ERCOT</td>
<td>6%</td>
<td>21%</td>
<td>34%</td>
<td>37%</td>
</tr>
<tr>
<td>SPP</td>
<td>4%</td>
<td>22%</td>
<td>33%</td>
<td>38%</td>
</tr>
<tr>
<td>MISO</td>
<td>5%</td>
<td>18%</td>
<td>0%</td>
<td>n/a</td>
</tr>
<tr>
<td>PJM</td>
<td>1%</td>
<td>19%</td>
<td>1%</td>
<td>n/a</td>
</tr>
<tr>
<td>NYISO</td>
<td>0%</td>
<td>5%</td>
<td>6%</td>
<td>2%</td>
</tr>
<tr>
<td>ISO-NE</td>
<td>0%</td>
<td>12%</td>
<td>0%</td>
<td>n/a</td>
</tr>
<tr>
<td>West (non-ISO)</td>
<td>14%</td>
<td>69%</td>
<td>6%</td>
<td>n/a</td>
</tr>
<tr>
<td>Southeast (non-ISO)</td>
<td>0%</td>
<td>13%</td>
<td>1%</td>
<td>n/a</td>
</tr>
<tr>
<td>TOTAL</td>
<td>6%</td>
<td>34%</td>
<td>6%</td>
<td>n/a</td>
</tr>
</tbody>
</table>

As of end of 2020
Prior paper outlined the pros and cons of hybridization

- Economic arguments for hybridization (vs. standalone plants) focus on opportunities to reduce project costs and enhance market value.

- Not all of these drivers reflect true system-level economic advantages, e.g., the federal ITC and some market design rules that may inefficiently favor hybridization over standalone plants.

- Possible disadvantages of hybridization include operational and siting constraints.

- If reduced operational flexibility is, in part, impacted by suboptimal market design then this too does not reflect true system-level economic outcomes.

Read more:
Motivations and options for deploying hybrid generator-plus-battery projects within the bulk power system.
Is the paradigm shifting on how to site power plants?

- Historically, the electricity paradigm involved Balancing Authorities using transmission network to *optimize geographically disperse* technologies.

- Co-locating suggests *conventional wisdom might be changing*:
 - Transmission constraints?
 - Operational/cost synergies?
 - Federal incentives?
We only consider renewable-plus-battery hybrids due to current commercial interest in these applications.

Out of scope examples:

1. Multiple generation types (e.g. PV + wind)
2. Alternative storage types (e.g. wind + pumped storage, concentrating solar power)
3. Virtual hybrids with distributed technologies
4. Full hybrids with operational synergies
Table of Contents

- Introduction and motivation
- Valuation methods
- Results
- Conclusions and next steps
Our analysis focuses on the 7 nodal markets in the United States

- The seven markets are diverse in their resource mixes and market characteristics
- All operate day-ahead and real-time energy markets
- Use nodal LMPs reflecting transmission congestion, unique compared to European counterparts
Calculation of value: market optimization

- **Optimization**
 - Price taker analysis means resources *do not* impact marginal price
 - **Optimistic**: maximizes real-time energy market revenue with perfect foresight
 - **Pessimistic**: develop optimal schedule with day-ahead prices → realized revenue calculated from real-time energy market

- **Key Inputs**
 - **LMP prices** at nodes with utility-scale solar, wind, and high volatility
 - Average annual capacity price allocated to production in **top 100 net load hours**
 - Regulation prices at ISO zonal level *used only as a sensitivity analysis*
 - PV profiles modeled from **weather data**, standard design assumptions
 - Wind profiles modeled from **ERA5** weather data, standard wind power curve

- **Key Outputs**
 - Energy, capacity, regulation revenues *(levelized using generation from VRE)*
Storage value adder metric used to understand value boost from adding battery to VRE

- Tracks both coupled project value and standalone VRE investment value at the same geographic location

- Particularly helpful in understanding the potential for coupled projects to mitigate the value deflation that occurs for a VRE generator in regions with high VRE penetrations

\[
\text{Storage value adder} = (E_{CP} + C_{CP}) - (E_{VRE} + C_{VRE})
\]

Coupled value - Standalone VRE value
Coupling penalty metric evaluates constraints involved with co-locating batteries at the same VRE location

- Subtract the market value of a co-located generator from the market value of a standalone VRE generator and storage plant sited at different locations.

- Considers up to 3 constraints:
 1. Reduced geographic options for battery siting
 2. Increased operational constraints due to infrastructure sharing (i.e. inverter / POI)
 3. Restrictions on grid charging

\[
\text{Coupling penalty} = ([E_{VRE} + C_{VRE}] + [E_S + C_S]) - (E_{CP} + C_{CP})
\]

Conceptual figure to frame coupling penalty
Design decisions and parameters modeled

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Effect on coupled value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geospatial</td>
<td>1,763 pricing nodes</td>
<td>Price nodes with higher volatility will be more valuable for storage</td>
</tr>
<tr>
<td>Year</td>
<td>2012, 2014, 2015, 2017, 2019</td>
<td>Years with more renewable penetration become more valuable for storage</td>
</tr>
<tr>
<td>Dispatch algorithm</td>
<td>Perfect foresight; Day-ahead schedule</td>
<td>Perfect foresight leads to higher revenues through omniscient operation</td>
</tr>
</tbody>
</table>
| Point of Interconnection (MW) | VRE capacity; VRE + battery capacity | • More interconnection capacity \rightarrow more revenue
• Potentially limited impact of constraint due to storage discharging at different times than renewable profile |
| Grid charging | Disallow grid charging; Allow grid charging | • Allowing grid charging increases arbitrage opportunities
• Value depends on relationship of prices and renewable profile |
| Degradation penalty | $5/MWh; $25/MWh | Increasing penalty reduces lower value margin cycles, decreasing revenue but limiting degradation |
| Storage Size (%) | 50% of generator capacity | More capacity \rightarrow more revenue (though potentially diminishing returns) |
| Storage Duration (hrs) | 4 hrs | More duration \rightarrow more revenue (though potentially diminishing returns) |
We consider a number of sensitivities to evaluate the robustness of our results

Default scenario:
- No ancillary services
- 1.3 ILR AC-coupled solar
- Perfect foresight algorithm
- Disallow grid charging for the coupled system
- VRE capacity for coupled POI limit
- $5/MWh degradation penalty
- 4 hr duration battery
- 50% battery to generation ratio

<table>
<thead>
<tr>
<th>Six main sensitivities:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Regulation reserves included in value</td>
</tr>
<tr>
<td>(2) 1.7 ILR DC-coupled solar</td>
</tr>
<tr>
<td>(3) Day-ahead schedule</td>
</tr>
<tr>
<td>(4) Allow grid charging</td>
</tr>
<tr>
<td>(5) VRE+storage capacity for coupled POI limit</td>
</tr>
<tr>
<td>(6) $25/MWh degradation penalty</td>
</tr>
</tbody>
</table>

N/A
N/A
Table of Contents

- Introduction and motivation
- Valuation methods

- Results
 - Storage value adder
 - Coupling penalty

- Conclusions
Motivating Research Questions

1. Can *market revenues* explain higher commercial activity in the *Western U.S.*?

2. Can they explain why commercial activity is *higher for solar than wind*?

3. Does the traditional concept of *independently siting* resources not apply to VRE and storage technologies?
Storage value adder higher in ERCOT and CAISO in 2019

- High value in **CAISO began to diverge** from other markets in 2015

- Prior to 2019, ERCOT had a storage value adder that was the **lowest of all ISOs**

- **No significant change** in the value adder between solar and wind couples, besides in CAISO
CAISO coupled projects help offset value deflation over the period between 2012 and 2019

- Value of standalone solar decreases significantly between 2012 and 2019 as solar penetration increases from 2% to 19% of generation.
- Coupled batteries almost offset this value decline
- ERCOT sees increase in both solar value and coupled value

Note: Value adder metric indicated by black number.
Results at individual nodes tend to follow the aggregated average in each ISO

- Suggests that results not driven by significant variation at the **nodal level** within a market

- ERCOT is a notable exception, where a few nodes in the west see substantially higher value

Geospatial differentiation of storage value adder across nodes
The value of standalone VRE and storage exceeds the value of coupled projects in our default case

- These results suggest **significant penalties** associated with co-locating VRE and battery technologies.

- We did not find serious divergences between ISOs overtime.

- NYISO is a **notable exception** where the penalty was higher than in other ISOs between 2012 and 2015.

Aggregated coupling penalty across markets

![Graph showing aggregated coupling penalty across markets](image-url)
Our high volatility node selection resulted in additional storage value compared to solar and wind nodes

- **Strong correlation** between annual standard deviation and corresponding standalone storage value (top graph)

- Median storage value at high volatility nodes is higher than the corresponding value at wind and solar nodes but there is *significant overlap* (bottom graph)
Sensitivity cases significantly reduce coupling penalty

- While average coupling penalty is $12/MWh in default case, it is reduced to $1/MWh when using a relaxed POI/grid charging constraint, a less volatile node, and the day ahead scheduling algorithm.

- Need to compare these penalties to potential cost savings of coupling including the investment tax credit and construction cost synergies.
Conclusions

- Commercial interest in coupled projects differs from *convention of independently siting* and operation of electricity facilities through cost-optimized dispatch via balancing authorities.

- We find that coupled projects can significantly boost standalone VRE value across all markets in the U.S.
 - Value boost ranges from $5-$16/MWh, depending on sensitivity case.
 - Biggest boost in CAISO, where coupled projects can offset value deflation.

- Still, there is a penalty to restricting the location to a wind or solar node.
 - Coupling penalty ranges from $1-$12/MWh, depending on sensitivity case.
 - Future siting decisions will need to consider nodal volatility more deeply.
 - Value of both the ITC (~$10/MWh) and project development cost reduction (~$5/MWh) could offset this penalty.
Questions?

- Contact information
 - Will Gorman (wgorman@lbl.gov)

- Additional project team at Lawrence Berkeley National Laboratory:
 - Cristina Crespo Montañés
 - Andrew Mills
 - James Hyungkwan Kim
 - Dev Millstein
 - Ryan Wiser

Download all of our work at:
http://emp.lbl.gov/reports/re

Follow the Electricity Markets & Policy Group on Twitter:
@BerkeleyLabEMP

This work is funded by the Office and Electricity and the Office of Energy Efficiency and Renewable Energy of the U.S. Department of Energy