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Workshop Agenda

1:00-1:15 Introductions & Overview

1:15-1:45 Intro to Electricity Forecasting

1:45-2:15 Load Forecasting

2:15-2:30 Break

2:30-3:00 Energy Efficiency and Demand Flexibility Forecasting
3:00-3:35 Building Electrification & Electric Vehicle Forecasting
3:35-3:50 Break

3:50-4:20 Distributed Solar & Battery Storage Forecasting
4:20-4:50 Cost Forecasting

4:50-5:00 Final Thoughts
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OverVIeW Of WorkShop #2 /<<\/\\\_§ MODERNIZATION INITIATIVE

» Objective: Provide an overview of and best practices associated with developing forecasts
generally and specifically for utility load, DERs, beneficial electrification, and utility costs

» Each topic will generally cover:

B Commonly Applied Methods

B Best Practices

B Popular Tools

B Potential Scenarios

B Worked Examples

» Presenters will leave roughly one-third of the allotted time on each topic for Q&A

» Feel free to use the Chat feature to submit your questions during the presentation or raise your
hand during Q&A

U.S. DEPARTMENT OF

ENERGY
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Factors That Impact Forecast Development

» Factors that utilities consider when developing a forecast:
B Spatial Aggregation
B Time Frame
W Variables
B Forecast Purpose
B Algorithm/Method

» Forecasts provided to regulators
B Annual Energy (kWh)
B Peak Demand (MW)
B Hourly Load Profiles
» Forecast Algorithms/Methods
B Time Series (Econometric)
B Multiple linear regression
B Bottom-up engineering/physics based
B Adjustments to forecast for specific end uses
B Probabilistic/Scenario-based

U.S. DEPARTMENT OF

ENERGY
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» What is the spatial aggregation?
B Balancing Authority
B Customer Class
e Residential & Commercial
® |ndustrial
e All of the above
B Feeder
B Building
» What time frame is the forecast for?
B Operational — tomorrow
B Planning — 1 to 10 years from now
» What variables should go into the forecast?

» How complex do we need to make the forecast method?
B What capacity does the utility have to build a more complex forecast?
B Does the forecast require an advanced approach, or is a traditional approach sufficient?
» What is the purpose of the forecast?
B Does the utility need to upgrade a feeder? (need to forecast peak loads below the feeder)
B Does the utility need more baseload power?
B Are customers adopting more EVs?

U.S. DEPARTMENT OF

ENERGY ¢



Forecasts Provided to Regulators Y= vovernizarion mimatve

— U.S. Department of Energy

Annual Energy, Peak Demand Hourly Customer Usage Throughout the Year
1450 400 January - December
1400 350 80
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U.S. DEPARTMENT OF National Renewable Energy Laboratory. (2014). Commercial and Residential Hourly Load Profiles for all

E N E RGY TMY3 Locations in the United States [data set]. Retrieved from https://dx.doi.org/10.25984/1788456. | 9
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High/Low Scenarios
500

400 C Probabilistic forecast

/\/\/\/ . : : High and Low Scenarios for Peak Demand Growth
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Time Frame: Short Term

On the energy trading time scale, forecasts
can incorporate greater detail about
month of year and ranges of temperature
for specific customer classes.

1200
1000

(0]
o
o

600
400
200

Energy (MWh)

(winter peaking utility)

Demand response

Residential Load

Business Needs / Applications

90
80
70
60
50
40
30
20
10 * bottom-up
0 * stochastic

123456 7 8 9101112 e physics-based
Month

Temperature (F)

U.S. DEPARTMENT OF

E N E RGY National Renewable Energy Laboratory. (2014). Commercial and Residential Hourly Load Profiles for all

TMY3 Locations in the United States [data set]. Retrieved from https://dx.doi.org/10.25984/1788456.

Hour-ahead
scheduling
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(Second)

* top-down
e overall trend
e economics-based

11
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Type of forecast: Spatial Agg Time Frame Purpose Variables Method
Balancing Authority, Transmission, Population Time Series
Peak Load Feeder 1-10vyears | jistribution upgrades Growth, GDP Regression,
Physics-based
Area reliability, Each customer class may | Multiple Linear
Energy Demand Customer Class 1-3 years Multi-Year Rate Plan | see different variables Regression
Identify customer Temperature, Engir)eering- &
Hourly Profiles Cutsto-mer Class, 1.3 adoption of distributed | Population, saturation Physics-based,
Building "3 years resources & impacts of new appliances enfj-use
adjustments
Sensitivity of
- : all of the above:
Low/High Scenarios Al Al analysis to input ~— f Al

(probabilistic)

identify possible deviations

variables

U.S. DEPARTMENT OF

ENERGY
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Forecasts Provided to Regulators
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Type of forecast: Spatial Agg Time Frame Purpose Variables Method
Balancing Authority, Transmission, Population Time Series
Peak Load Feeder 1-10vyears | jistribution upgrades Growth, GDP Regression,

Physics-based

r

\_

Longer time frames must manage less information — this results in aggregating to
larger areas and using methods that depend on fewer external variables

N

v

U.S. DEPARTMENT OF

ENERGY
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Forecasts Provided to Regulators
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Type of forecast: Spatial Agg Time Frame Purpose Variables Method
|dentify customer Temperature, Engir.1eering- &
Hourly Profiles Cu§t9mer Class, L3 adoption of distributed | Population, saturation Physics-based,
Building "3 years resources & impacts of new appliances enfj-use

U.S. DEPARTMENT OF

ENERGY

Shorter time frames can take advantage of richer datasets — this allows utilities to
build models for each customer class and even buildings at a very detailed level

14
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» Types of aggregation:
B Balancing Authority

STEP-UP TRANSFORMER
/ 12,470 V TO 245,000 V

m Distribution Feeder o

B Customer Class =
e Residential & Commercial :"‘WERFGi_E_":!FrRAT'NG e
® |[ndustrial » PRIMARY TRANSMISSION I Distribution
) A" of the above > LINES 4160V TO 34,500V

B Building / et

» Residential & Commercial: components are forecasted st QUERPLANT / TRANSMISS|ON
separately STATION
B Number of customers in each class W — \___d DISTRIBUTION LINES PN
B Usage per customer 480V DISTRIBUTION TRANSFORMER

» Industrial: specific to each customer SUBSTATION

B Need to consult each customer — usage typically follows set

schedules defined by the type of industrial user INAL STEP-DOWN
B Schedules change infrequently Aoy
B Important to forecast entry/exit of large customers (follow \%
market trends) I_- FINAL STEP-DOWN
» Disaggregated forecasts can be done separately and INDUSTRIAL T s RESIDENTIAY

then aggregated to necessary level:

B Monthly customer class forecasts aggregated to annual by
customer class

B Monthly customer class forecasts aggregated to monthly at
Balancing Authority level

U.S. DEPARTMENT OF

ENERGY 15
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Time Frame: Long Term
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On the regulatory time scale, forecasts
are largely built from load growth and

overall trend of system peak.

1450
1400

—_

U.S. DEPARTMENT OF

ENERGY

400
350

300
250 =

un = B, N
(@] o Ul o
(@) o o
Peak Demand

Business Needs / Applications

Hour-ahead Energy trading P \
scheduling Unit commitment { System planning
Day-ahead

scheduling Energy policy

Demand response

(Second)

Second Hour Day Week Monkh
* bottom-up * top-down
* stochastic e overall trend
e physics-based e economics-based

Source: T. Hong and S. Fan, “Probabilistic Electric Load Forecasting: A Tutorial Review,” International Journal of Forecasting 32 (3):
914-938, July-September 2016. | 16



Variables
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Temperature

Cyclic Factors

Demographic Factors

Economic Factors
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Heating Degree Days
Cooling Degree Days

Weekday/Weekend, Holidays
Hour of Day
Month of Year

Population Growth
Household Size

Employment
Energy Efficiency Trends
GDP
Adoption of Appliances
Price Elasticity

e Typical values range between 0 and -0.2, meaning

B00000

700000

500000

un
g
g

System Load (KW)

300000

200000

100000

customers will switch to using other types of energy if

prices increase

U.S. DEPARTMENT OF

ENERGY
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T. Hong, P. Wang and H. L. Willis, "A Naive multiple linear regression benchmark for short term load
forecasting," 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 2011, pp. 1-6, doi:
10.1109/PES.2011.6038881.
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Variables

>
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>

Temperature

Heating Degree Days
Cooling Degree Days

Cyclic Factors

Weekday/Weekend, Holidays
Hour of Day
Month of Year

Demographic Factors

Population Growth
Household Size

Economic Factors

Employment

Energy Efficiency Trends
GDP

Adoption of Appliances
Price Elasticity

e Typical values range between 0 and -0.2, meaning
customers will switch to using other types of energy if

prices increase

////\E MODERNIZATION INITIATIVE
U.S. Department of Energy

Variable

Variable count

PacifiCorp

Avista
COPSC
Idaho
LADWP
NVPower
NW

PGE

Historical sales

Cooling degree days

Heating degree days

Population growth

Electricity price/tariffs

Employment

Household size

Number of customers

Energy intensity trends

Appliance saturation

Time dummics (day,monthseason,year)

-

Housing stock

Household income

Gross product (nationalregional)

Arr conditioning usage

Model
complexity

Coding

Low complexity Residential
Medum complexity Commercial/Industrial

B iigh complexity an

Carvallo, Juan Pablo, Larsen, Peter H., Sanstad, Alan H, and Goldman, Charles A..
Load Forecasting in Electric Utility Integrated Resource Planning. United States: N. 18
p., 2017. Web. doi:10.2172/1371722.



Algorithms / Methods

» Time series regression (Econometric)

B Primarily relies on past observations — “auto regressive’,
“moving average”

B Can incorporate “exogenous” non-linear variables
influenced by the economy, such as GDP, household
income, S-curve for energy efficiency or appliance
adoption

» Multiple linear regression

B Primarily relies on cross sectional variables — number of
customers, GDP, day of week

» Bottom-up engineering/physics based
» Adjustments to forecast for specific end uses

» Ensemble / Combined Forecasts

W&

3 \\:__ IL\J’IC;DEEDFENIZATIONINITIATIVE
— S. Department of Energy
w oD 1=
o o % | = c O g o 5 3
Avista
COPSC
Idaho
LADWP
NVPower
NW
PacifiCorp
PGE
PNM
PugetSound
Seattle
SierraPacific

*AR: Auto-regressive; **MA: Moving Average
R: Residential; C: Commercial

Carvallo, Juan Pablo, Larsen, Peter H., Sanstad, Alan H, and Goldman, Charles A..
Load Forecasting in Electric Utility Integrated Resource Planning. United States: N.
p., 2017. Web. doi:10.2172/1371722.
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Who uses the methods?

Time Series/
Econometric

Multiple Linear

Who uses it, when?

All types of utilities, by
customer class

All types of utilities, 1 day to 1
year hourly

Regression

Mid to large utilities;

End-Use to model building-level equipment
(solar, EV, other DER)
Large utilities;

Ensemble - .

_ improves the resulting forecast by

(Combined) taking advantage of multiple

approaches
(1) T. Hong, P. Wang and H. L. Willis, "A Naive multiple linear regression benchmark for short term load 2)

forecasting," 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 2011, pp. 1-6, doi:

10.1109/PES.2011.6038881.

https://www.rand.org/content/dam/r
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—
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Approach

Fit an auto-regressive or moving average model to annual peak

Economic variables incorporated with S-curve:
@ (class kWh)yesr = a ® (income per capita ]Jﬂ’w .
(population )S.. ® (price)ls,

(1)E(Loaci) = ﬁg + ﬁIXTrend + ﬁszany()ur + ﬁgxMOch + Trend
ByxMonthxTMP + ﬁijom}ngMpz + ﬁgxMonthXTMP3 + Day, Month
B%Hour<xTMP + Pgx HourxTMP’ + g% Hour x TMP® Temperature

Regression for each type of customer and equipment:
units of equipment ). ( EWh )

units of equipment

(2)
(kWh); = (customers) e (
custor_ner,

. . (3)
Simple average of multiple

different forecasts

(3) Y. Wang, N. Zhang, Y. Tan, T. Hong, D. S. Kirschen and C. Kang, "Combining

Probabilistic Load Forecasts," in IEEE Transactions on Smart Grid, vol. 10, no. 4, 20

and/pubs/reports/2006/R3315.pdf pp. 3664-3674, July 2019, doi: 10.1109/TSG.2018.2833869.



Time Series /| Econometric

Time series can be decomposed into
cyclic trends and overall trends

Cycles can account for weekly, monthly,
yearly repetition

ARIMA typically used to model overall
trend

Exogenous econometric variables can
be incorporated into ARIMA model as
additional variables (ARIMAX):

B customer growth with econometric
growth model using per capita incomes

B employment levels
B electricity prices

v v v ¥

Hyndman, R.J., & Athanasopoulos, G.
(2021) Forecasting: principles and practice, 3rd
U.S. DEPARTMENT OF

edition, OTexts: Melbourne, Australia.
E N E RG I OTexts.com/fpp3. Accessed on 1/24/23
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AUtO-RegreSSIVG Integrated MOV|ng Average ///// \—" MODERNIZATION INITIATIVE
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|
“Auto-Regressive”: Use information from past observations to predict the future
“Moving Average”: The next value will be an average of the previous several values
ARIMAX: All of the above, plus additional variables
Auto Regressive Moving Average ARIMA
400 400 400
© © ©
g 300 M\/ Soce S 300 m‘\’){”"‘ s 300 M\/ 0000
£ 200 + €200 = £200
()] (] (]
~ 100 2 100 S 100
S 0 o 0 S 0
. A w® ) b o0 - N % 6 0O - U S S S
AQYT A ST OV O QY A AGLT QLY O QY A G OV O

U.S. DEPARTMENT OF

ENERGY
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Bottom-Up Engineering/Physics Based L GF

\\\\5 U.S. Department of Energy

» GridLAB-D (PNNL), OpenDSS (EPRI):

B Models physics of feeder, household, to get load shape as a function of usage patterns based on specific
appliances

B Can incorporate impacts of price-sensitive appliances on hourly energy usage
B Models system losses and electrical engineering to simulate power flow
B Can model PVs and batteries at the household level

Load Shape for Single-Family (Gas) Homes on 7-18-2006

=—f=Fived A =E=TOU_A_ Group_1

Ten Detailed Residential Customers
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o | Distribution Transformer

S Grid Equivalent

I
| I
I
) I : o f
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L) /
: | A !
I | I
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== Flxed == TOU/CPP
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01 2 3 456 7 8 9 1011121314 15 16 17 18 19 20 21 22 23 24 Reiman, Andrew P., Singhal, Ankit, and Campbell, Allison M.. American-Made Challenges Round 2 | 23
https://sourceforge.net/projects/gridlab-d/ HotrofDay Voucher: Orison Enables Solar. United States: N. p., 2020. Web. doi:10.2172/1755441.




End-Use Models

» Directly estimate energy consumption
by using extensive information on end
use and end users

» Information used: weather, appliances,
size of houses, age of equipment,
technology changes, customer
behavior, and population dynamics

» Require less historical data but more
information about customers and their
equipment

» Cons: sensitive to the amount and
quality of end-use data

A
YIS="
\\\\\.__

(

MODERNIZATION INITIATIVE
U.S. Department of Energy

Total energy
consumption

Number of x Average use of -
appliances appliances
?

: . Average
Number of Percent Intensity of Appliance theri'nil
households having appliance ~ efficiency efficiency

appliances use of homes

Mitchell, Ross, and Park. (1985) A Short Guide to Electric Utility Load Forecasting. The Rand Corporation.
https://www.rand.org/content/dam/rand/pubs/reports/2006/R3315.pdf

24




Probabilistic/Scenario Based

» Probabilistic Forecasts are created by changing the
input variable.

» Example:
Utility needs to project peak demand by customer
class, starting with Residential, which is highly
sensitive to temperature

1. Use TMY (typical meteorological year) temperatures
to project load — this is the base case

2. Use a representative “cold” weather year to project
load — this is the “low” scenario

3. Use a representative “hot” weather year to project
load — this is the “high” scenario

» The scenario outcomes provide a range of possible
futures

U.S. DEPARTMENT OF

ENERGY
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Questions regulators can ask (1) V=" ropernizanon mmanve
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» What type of model(s) is/are being used?
B How does the utility forecast DER adoption?
B Are models derived from peer-reviewed publications?
B How does the utility select their input variables?

» \What are the modeling inputs?
B What forecasts are utilities using as inputs to other forecasting models and how were those developed?
B Are potential climate change impacts to forecasts being considered and, if so, how?

B Are the assumptions reasonable?
® Are the assumptions objective (based on objective data, for example) or subjective (based on expert opinion, for
example)?
® Are assumptions valid (do parameter estimates align with those found in existing research, for example)?
B Are proper methods and data used?
® Are methods disclosed?
e Are they understandable?
® |s the data reliable and valid? What kind of data limitations exist?
® |s the data readily accessible?

U.S DEPARTMENT OF Source material from Load forecasting with climate variability for transmission and distribution system

planning, https://eta- 26
E N E RG I publications.lbl.gov/sites/default/files/combined_pnnl_and_nrel_load_and_der_forecasting_ncep_fin.pdf



. =\
Questions regulators can ask (2) W GI

» \What are the outputs?
B Are results replicable?
B How well does the model fit the data?
B How accurately does the model predict past outcomes compared to actual outcomes in historical data?
B |s the model updated based on performance? How frequently?
B How sensitive is the model to assumptions?
» What is the tradeoff between the cost to implement a more granular, accurate forecast vs. the
benefits?
B How granular are the utility’s current forecasts?
B Should consultants vs. in-house modeling be used to achieve forecasting goals?

U.S. DEPARTMENT OF

ENERGY 27
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Excel-based statistics: https://real-statistics.com/
Online textbook Forecasting Principles and Practice: https://otexts.com/fpp3/
Data for hourly load shapes used in this presentation:

B National Renewable Energy Laboratory. (2014). Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States [data set]. Retrieved
from https://dx.doi.org/10.25984/1788456.

Physics-based open-source models:
B GridLAB-D: https://sourceforge.net/projects/gridlab-d/
B OpenDSS: https://www.epri.com/pages/sa/opendss

Carvallo, Juan Pablo, Larsen, Peter H., Sanstad, Alan H, and Goldman, Charles A.. Load Forecasting in Electric Utility Integrated Resource Planning. United
States: N. p., 2017. Web. doi:10.2172/1371722.

T. Hong and S. Fan, “Probabilistic Electric Load Forecasting: A Tutorial Review,” International Journal of Forecasting 32 (3): 914-938, July—September 2016.

T. Hong, P. Wang and H. L. Willis, "A Naive multiple linear regression benchmark for short term load forecasting," 2011 IEEE Power and Energy Society
General Meeting, Detroit, MI, USA, 2011, pp. 1-6, doi: 10.1109/PES.2011.6038881.

Mitchell, Ross, and Park. (1985) A Short Guide to Electric Utility Load Forecasting. The Rand Corporation.
https://www.rand.org/content/dam/rand/pubs/reports/2006/R3315.pdf

Reiman, Andrew P., Singhal, Ankit, and Campbell, Allison M.. American-Made Challenges Round 2 Voucher: Orison Enables Solar. United States: N. p.,
2020. Web. doi:10.2172/1755441.

Y. Wang, N. Zhang, Y. Tan, T. Hong, D. S. Kirschen and C. Kang, "Combining Probabilistic Load Forecasts," in IEEE Transactions on Smart Grid, vol. 10, no. 4,
pp. 3664-3674, July 2019, doi: 10.1109/T5G.2018.2833869.

R. Yang and J. Homer, “Load forecasting with climate variability for transmission and distribution system planning,” GMLC Presentation. October 2021.
https://eta-publications.lbl.gov/sites/default/files/combined pnnl and nrel load and der forecasting ncep fin.pdf

U.S. DEPARTMENT OF

ENERGY 2
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1:00-1:15 Introductions & Overview

1:15-1:45 Intro to Electricity Forecasting

1:45-2:15 Load Forecasting

2:15-2:30 Break

2:30-3:00 Energy Efficiency and Demand Flexibility Forecasting
3:00-3:35 Building Electrification & Electric Vehicle Forecasting
3:35-3:50 Break

3:50-4:20 Distributed Solar & Battery Storage Forecasting
4:20-4:50 Cost Forecasting

4:50-5:00 Final Thoughts
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Load Forecasting

ELAINE HALE', BRITTANY TARUFELLI? AND ALLISON CAMPBELL?
CONTENT CREDIT: RUI YANG', JULIET HOMER?, PAUL DE MARTINI3, ALAN COOKE?

"National Renewable Energy Laboratory, 2Pacific Northwest National Laboratory, 3Newport Consulting Group

U.S. DEPARTMENT OF

ENERGY
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Forecasting horizons and applications V=" vovermzarion mmamve
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Most relevant for Public Utility Commissions

» Longterm
B Power system planning
B Energy policy analysis

» Medium term
B Maintenance and fuel planning

B Energy trading

» Short term
B Generation scheduling
B Economic dispatch and reliability
B Power system security

U.S. DEPARTMENT OF

ENERGY

Hour-ahead Energy trading

scheduling Unit commitment System planning
Day-ahead
Demand response | scheduling Energy policy

Business Needs / Applications

10° 10° 108 10° (Second)
Second Hour Day Week Month Year Decade

g STLF | LTLF

T < wle -

= |

=

: 1 | |

&) VSTLF ISTLF) MTLF | LTLF
< >'< ).4 >|4 >

1day 2 Weeks 3 years

Source: T. Hong and S. Fan, “Probabilistic Electric Load Forecasting: A Tutorial Review,”
International Journal of Forecasting 32 (3): 914-938, July—September 2016.



Long-term load forecasting methods V=" ropernizanon mmanve

» End-use models
B Directly estimate energy consumption by using extensive information on end use and end users

B Information used: weather, appliances, size of houses, age of equipment, technology changes, customer
behavior, and population dynamics

B Require less historical data but more information about customers and their equipment
B Cons: sensitive to the amount and quality of end-use data

» Econometric models
B Combine economic theory and statistical techniques
B Estimate the relationships between energy consumption and factors influencing consumption
B Factors considered: weather, per capita incomes, employment levels, and electricity prices

» Combination / Extensions
B Adjust econometric forecasts with technology-based projections not yet visible in historical data
B Marshal additional data streams (e.g., AMI, SCADA) to develop more information about customer classes and
end-uses
B Downscale system-level long-term forecasts to create distribution feeder long-term forecasts and vice-versa

U.S. DEPARTMENT OF

ENERGY |



Transmission system forecasting

» Transmission system forecasting includes:

>

M-

B Long-term forecasting — one to 20 years

B Medium-term forecasting — one week to one year

B Short-term forecasting — one hour to one week
Long-term example: Yearly, PJM issues 15-year
load forecasts that include peak usage, net
energy consumption, load management, and data
on distributed solar and plug-in electric vehicles.

B Forecasts are provided for individual zones, load
deliverability areas and for the RTO overall

Load (MW)
190,000 2013 PJM RTO

2014 Summer Peak
180,000 Demand Forecast

170,000

160,000

2015
2016
/ 2018 55019
e 512020
[ —02021
#——

——

150,000
2017

140,000
2014 2016 2018 2020 2022 2024 2026 2028 2030 2032 2034 2036

Source: PJM Load Forecasting website

Weather
Conditions

1;
|
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Plug-in Electric
Vehicles

Consumer Economic
Behavior Conditions

Source: PIM Load Forecasting website

Figure 1. Load Forecast Model Overview

Sector Models 1 —1 Plug-in Electric
Wehicles
Residential [
Weather j
Commercial Cool B Energy and
Peak Forecast
Maon-Weather
Industrial S—— ] ~ Sensitive Load
Jhe History and Forecast
Load BtM Solar
Man-Weather Sensitive
Load History
Weather

Source: PIM 2021 Load Forecast Supplement



https://learn.pjm.com/three-priorities/planning-for-the-future/load-forecasting.aspx
https://www.pjm.com/-/media/planning/res-adeq/load-forecast/load-forecast-supplement.ashx
https://learn.pjm.com/three-priorities/planning-for-the-future/load-forecasting.aspx

Traditional distribution load forecasting

>

>

>

Track peak loads (using SCADA
data)

Evaluate each distribution feeder for
annual growth and new loads

Feeder load forecasts aggregated to
show substation status, need for
expansion

Substations may require upgraded
transformers, new transformer
banks, transmission, distribution
equipment

Standard load growth projections are
commonly included in traditional
utility tools (e.g., CYME, Synergqi,
Milsoft)

U.S. DEPARTMENT OF
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Long-term Load Forecasting Challenges =" ropermizanon mmanve

v

Distributed energy resources (covered by other presentations)

mpact of electrification on electricity load (covered by other
presentations)

nteractions between load forecasts and dynamic policy environments
mpact of climate change on electricity load

Preparing distribution systems for demand-side change

Planning under deep uncertainty

v
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Interactions between load and dynamic policy
environments
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Integrated System Planning = OGE

— U.S. Department of Energy

e
System planning is increasingly dependent upon Integrated Resource Planning (IRP)/bulk
power use of distributed energy resources (DER) and local sustainability and resilience plans.

Hurncane

Affordability

Cyber Aftack Paalllancy : Planning Inputs

Wildfire

Other State & Planning Analysis

Federal Policies

Threat Assessment

lce Storm

Solar PV o Objectives Resilience
Storage o & Planning & Reliability
Energy DER | Criteria

Efficiency

Grid Energy
Interactive Buildings

Tab

Load & DER Expansion &

b
—
r Forecasts Modernization
Sustainability .

Climate Action Plan Asset . B i
2 Condition Asset Planning )
Economic Justice _ <

Local Planning

GFl Objectives
Source: P. De Martini
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Vermont Example (c. 2019) ’{((\Lé OGE
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State policy goals inform system planning objectives.

GHG: -50% of 1990 levels GHG: -75% of 1990 levels
X RES: 2% Tier 3 W RES: 12% Tier 3

+* Stondard Offer:

¥
RES 55% Tier 1 SRl RES: 75% Tier 1

. Total energy:
1% Tier 2 Total energy: 25% X 10% Tier 2

20170 2020020220 - 20250 - 20280 20300 20320 - - - B B 20400- - B BB B PP P 2050

< !
=TEY i
consumptic ::,l"iI by 1/3
& All new buildings net zero f

buildings

weatherized /

> . ' 1% reduction in 2015 energy use B80% renewable
% i,
Liz L 5 - renewable energy
y * 10% of fleet PEVs (55K vehicles)

U.S. DEPARTME!I

ENER Italics indicate statutory requirements/goals
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Impact of climate change on electricity load
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New Challenges for Load Forecasting — Climate =2, GRIL
Change NN U EE o STy

Load Projection in 2050 ['!

» Impact of climate change
B Temperature increase

B Precipitation, cloud, and wind
speed patterns

B River flows and hydro electric
generation

Expected increase

-4 2050 annual electricity demand
1 - - <.1.5%

[ -1.5% to -0.5%

[ 1-05%1005%

0.5% to 1.5%

[ 15%-25%

- 25%

» Load forecasting
B Demand
M Peak load

Expected increase

» 2050 summer electricity demand
' I < -0.5%

[ 1-0.5% 10 0.5%

[ 10.5%101.5%

I 1.5% to 2.5%

B 2.5% - 5.0%

B - 5.0%

» Example studies
B Demand projection []
B Peak load forecasting 2!

[1] P. Sullivan, J. Colman, and E. Kalendra, “Predicting the Response of Electricity Load to Climate Change,” NREL Technical Report, NREL/TP-6A20-64297, 2015.
Jo o boranment of D. Burilloa, M. V. Chester, S. Pincetl, E. D. Fournier, and J. Reyna, “Forecasting Peak Electricity Demand for Los Angeles Considering Higher Air Temreratures

[2]
EN ERGY Due to Climate Change,” Applied Energy 236 (15): Feb. 2019.



NW Power Plan Example — Downscaled Climate Data ///,=;;‘L’_ €
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(Rather than Historic Data) Shifts System Peak AR A

lllustration of Climate Change Shift in Monthly Peak-Hour Demand

34000 Dashed line represents
On average, demand is expected monthly average peak-
27N . .
77N to increase in summer
32000 e . hour demand based on

historic temperatures
from 1949-2018.

30000 J
U4
o U4 . .
® / Solid line represents
U4
§D 28000 ) monthly average peak-
S ,/ hour demand based on
26000 '’ forecasted climate

change temperatures
\ for 2020-29.

On average, demand
is expected to
decrease in winter

24000

1Because this chart was created in 2019,
22000 historic temperatures (and therefore

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug  Sep de”f‘lagld forecasts) for that year were not
avallaple.

=== 1949-2018 Tempertures = 2020-29 Temperatures

From=lohn Fazio, Northwest Power and Conservation Council, November 2021, Presentation to the National Council on Electricity Policy.



https://pubs.naruc.org/pub/02BD237C-1866-DAAC-99FB-ACC756CC4BF8

Best practices for incorporating climate change =

impacts and evaluating resilience to extreme events

are still evolving

» Climate Forecasts: Policymakers and
planners need to understand changes in
local weather to assess grid risks.

B Climate is a description of a long-run average

over a large area, and weather is the realization
of climate in a small geographic and time scale.

B “Downscaling” is required to transform low-
resolution environmental information into high-
resolution spatial and temporal scales to assess
grid infrastructure impacts.

» Emerging practice: Researchers are starting
to develop the data and techniques required
to understand local climate and extreme
event impacts.

B Directly downscale data from global climate
models for different climate change scenarios
(right)

B Systematically high wind and solar grid
performance during extreme events (Novacheck
et al. 2021, https://www.osti.gov/biblio/1837959)

U.S. DEPARTMENT OF

ENERGY
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Latitude
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L —
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L —
0 5 10 150 5

m/s m/s

Wind speed downscaling as described in Stengel et al. (2020)
https://www.pnas.org/doi/abs/10.1073/pnas.1918964117 |
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https://www.osti.gov/biblio/1837959
https://www.pnas.org/doi/abs/10.1073/pnas.1918964117
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Preparing distribution systems for demand-side
change
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System Level vs. Distribution Level Forecasts G

Resource planning is usually at system level

» Loads forecasted at a system level

» Generation meeting load at the system or
other high aggregation level — e.g., state level

» BTM generation included in IRPs often at an
aggregated system level

B Distribution system and BTM generation tend to
be areas of low visibility

B Load forecasting models (listed earlier) can help
with visibility

MODERNIZATION
LABORATORY
CONSORTIUM

U.S. Department of Energy

Integrated planning is at multiple levels

>

>

A significant portion of new generation is
connecting to the distribution system.

To encourage more new generation to connect
requires knowledge — where there is available
capacity and where there are bottlenecks.

Distribution-level data needed to assess:

B What is happening BTM - PV, EV, and
electrification

B What is happening BTM is uneven for many
reasons, but equity concerns are better addressed
if spatial disaggregation is improved.

Some of the load forecasting tools help provide
spatial visibility.

|deally, the granular distribution forecasts in
aggregate comport with the system-level
forecasts.

March 24, 2023 45
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Load Forecasting — Current Best Practices

» Load Forecast advanced practices are granular load forecasts

B Granular in time — Forecasts for all 365 days x 24 hours = 8,760 hours per year
® Feeds into advanced modeling of resources

B Granular in space — Forecasts at the circuit and transformer level
» Adiverse set of tools are used to create these forecasts

Econometric models
Probabilistic forecasting techniques
B End-use models

» Judgement and company projections can form basis of forecasts

B LoadSEER ng
B CYMEDIST -

B SYNERGI INTERNATIONAL T&D
B GridLab-D

|

|
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» Data
B A main limitation to forecasting granular DER adoption is the need for granular data.

B Some utilities that have not yet implemented these forecasts cite the need for enhanced capabilities to
collect and monitor granular data (such as from Advanced Metering Infrastructure, which will provide
greater temporal and geospatial granularity).

B Other utilities note that data quality for substations and circuit locations has been a barrier to more
granular load forecasting.

e Example: “Historically, data quality for substations and circuit locations has been a barrier to their use for more
granular load forecasting due to lack of metering, meter data gaps, and abnormal system operations or
configurations. This step required extensive use of data analytics to identify and remove load transfers, outages,
data gaps, and data recording errors. Load transfers were of particular importance since they can be confused
with load decreases or growth.” Central Hudson Gas & Electric Corporation’s 2020 DSIP report

» Need for enhanced probabilistic forecasting techniques

B Another often mentioned limitation to advancing forecasting practices is the need for enhanced
probabilistic forecasting techniques for variabilities in weather, economic growth, proliferation of DER,
etc.—which can all impact load.



https://documents.dps.ny.gov/public/Common/ViewDoc.aspx?DocRefId=%7b25036045-3133-4548-96CA-12AEA7734835%7d

. . . =V, C
Advanced forecasting example — National Grid ///<<<\\'== c

U.S. Department of Energy

» Since 2018, National Grid has generated and published 8,760-hour feeder level
» Forecasts are used for local area planning assessments and non-wires
alternative evaluations

Distributed System Implementation Plan Update

» A Marginal Avoided Distribution Capacity study is used to quantify the value of o k‘l'f —
DER in targeted locations e
» In-house modeling combined with GridLAB-D™, an open-source, simulation- DSIP Proccding

based modeling environment that enables detailed power flow solutions, is used
to generate 8,760 load profiles for every feeder

» High-performance cloud computing, such as Amazon Web Services, is used to
improve the overall computational process

» EV charging behaviors of both residential and non-residential customers are
simulated using the POLARIS model

» Annual peak load forecasts incorporate projected economic and demographic
impacts and anticipated technological advances and policy objectives

» Future enhancements will incorporate probabilistic forecasting techniques.

https://jointutilitiesofny.org/sites/default/files/NG 2020 DSIP.pdf



https://jointutilitiesofny.org/sites/default/files/NG_2020_DSIP.pdf
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Long-term electricity planning is highly uncertain

Keying off the table to the right:

» Most utility planning for the late 20" century
through to the last couple of decades could be
characterized as Level 1 to Level 2

» The current energy transition and climate
change uncertainties push planning farther to
the right, into Levels 2 — 4

B What will future weather be?
B What will future (electrified?) loads be?

B How much generation, balancing, and other grid
services will be provided by DERs and other
devices at the edge of the grid?

U.S. DEPARTMENT OF

ENERGY

confidence we don’t Know
intervals for the
outcomes, with a
probability attached
o each set

interval for each
oulcome

Weights | A single estimate
on of the weights
outcomes

Several se1s of
weights, with a
probability attached
to each set

A known range of
weights

Unknown weights;
know we don't
know

Fig. 1. The progressive transition of levels of uncertainty from determinism to total ignorance.

Source: Walker, Warren E., Vincent AWJ Marchau, and Darren Swanson. "Addressing
deep uncertainty using adaptive policies: Introduction to section 2." Technological |
forecasting and social change 77.6 (2010): 917-923.

///-=\‘/A G I
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Level 1 Level 2 Level3 | Teveld
Deep Uncertainty
Context | A clear cnough Allernate [ulures A multiplicity of | Unknown [ulure
funre {with probabilitics) | plavsible [utures
A *. T e
’ B - O N
IE C @— 1t
System |A single system | A single system Several system Unknown system -
E mode]l |model model with a models, with model; know we E
o probabilistic different don’t know i
E parameterization structures C
=
[=F} =
2 System | A point estimate | Several sets of A known range of | Unknown e
outcomes |and confidence point estimates and | oulcomes outcomes: know g
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https://d1wqtxts1xzle7.cloudfront.net/64269711/j.techfore.2010.04.00420200825-10926-1pejkbu-libre.pdf?1598350806=&response-content-disposition=inline%3B+filename%3DAddressing_deep_uncertainty_using_adapti.pdf&Expires=1674606848&Signature=QKiGw1YUrGDVmXWe2EIpmzI0MhHYhwJ40vDbIgFPx6i5vr8EB6vyUQupXFcLm%7EikDYf7oxFmxEUxM%7EofXHBpvuYWWcKoiQ-oSSRXDen6Qevkr5VZfgaoXXgSriI47oEc7Sop-7nk7N5V-AfdTIDwZiunTkGhJ4l4Tr1mlE%7ETXThInCPCYpsMwdVX0UzLWc8rci61DI9ZeVeuQqthovDBzfzhQrihKHZyf1LtJEqh7Jb9sRN673EBlIopkLcpM4mPJiCZcwe1%7EaHn5Be5N8GNvWdUsktOUezBN-re9rYn7oXuDnjj7dL8gnS7ruqy6DbN%7E5SdlcHALfwdFmU1SEmJnA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA

Developing and using multiple load scenarios is a GR
first step to understanding what different demand- ’//«(\:’ﬁ
side futures could mean for power systems -

IRP Futures Scenarios, adapted from Table 2-3

» Becoming commonplace for utilities to ——— :
. ) High Distributed High
create multiple load scenarios

» For example, Xcel Energy in their 2020 IRP:  Gas, Power, Coal Prices : *
New Resource Capital Costs
» Additional scenarios might help to bracket SRS LR Base +
demand-side possibilities for example' EE + Base

Component High High D-PV + Base
Load Load Change Change LELEL - "

NSP System Energy Demand, in Futures Sensitivities

Native Load Base Base (GWh)
70,000 -
EE + = Base + —
DR + - Base + 50,000 1
55,000 -
D-PV + - Base + 000 |
EV - + Base + 00 1
40,000 -
D-BESS Base Base Base + 000 . . . . .
2020 025 2030 2035 2040 2045
Overall -- ++ Base + — Base — FighDG Sale — High Elecuificaton

Source: Figure 2-12, 2020 IRP



Robust decision-making frameworks could be used to Y Vi G
plan for, traCk, and respond to demand_side change \\\\\ MODERNIZATION INITIATIVE
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» The figure to the right concisely —
describes how one might plan and act & I S
in a highly dynamic environment i e e Il B crangng Prrancs
» In the Xcel Energy documents | Siecess f
reviewed, there was more discussion
of monitoring and recourse/decision Y mmmmwime ¥
robustness related to plant retirements i
than to demand-side change . Increasing the Robusiness of e Basic Py
» As some jurisdictions pursue rapid R i
decarbonization, utilities and PUCs >| Vuinerbities and wessn ] Heaging Actons ()
will need to incorporate load, DERs ' Sewar Reassessment (RE)
and distribution assets, not just sreping Actons (51 Seizng Actons (52) / Comectys Actons (OF)
generation and transmission assets, N / / —
into these types of robust and ;/
dynamic decision-making frameworks ™| oot » T |‘é | Captalng Actns (CF)

U.S. DEPARTMENT OF

EN ERGY Source: Kwakkel, Jan H., Warren E. Walker, and V. A. W. J. Marchau. "Adaptive airport |
strategic planning." European Journal of Transport and Infrastructure Research 10.3 (2010).



https://journals.open.tudelft.nl/ejtir/article/view/2891

Social science methods could help integrate insights +—, G R

from various stakeholders into energy modeling

In the figure to the right:

» Left-side: Traditional and emerging
numerical modeling methods

» Right-side: More qualitative methods

B Some (e.qg., direct surveys, interviews,
oral histories) aimed at gathering
insights from stakeholders, who
could be quite diverse

m Others (e.g., transitions theory,
conceptual models, analogies,
roadmaps) aimed at understanding
and planning for what large
changes could look like

U.S. DEPARTMENT OF

ENERGY

Pricing strategies/

Keime oy Time-series Synthesis
analysis : of literature/

Auto-regressive Interviews sichiisl
models meta analysis
Mg‘ggg Direct

average models =

Extrapolation SUveys )
ARIMA ) methods Delphi method
Functional
Panel-based diasnelycls Scenarios
regressions

MODERNIZATION INITIATIVE
U.S. Department of Energy

Multiple Traditional p—
; £ ualitative or sectors
S pasinl regressions stat/math . d
statistical methods or mixe
methods
Heliaes Conceptual models
Least-cost (e.g. flow diagrams)
optimisation Causal/ .
econometric
methods
Analytical Key approaches
modelling used in futures g‘r’:s"i'gj‘;ps’
Artificial neural studies of

networks (ANN) demand

(medium to
long term)

Fuzzy inference

systems (FIS)

Support vector
machines (SVM)

Agent-based

modelling (ABM) Simulation/

8 . Misc.
machine-learning/

System dynamics

models (SDM) %ﬁc&r;ﬂ-mtelhgence— —
¥ End-use modelling
Computational dynamic modelling
fluid dynamics (CFD) methods

Source: Sharmina, Maria, et al. "Envisioning surprises: How social sciences could help models
represent ‘deep uncertainty” in future energy and water demand." Energy Research & Social
Science 50 (2019): 18-28.
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https://www.sciencedirect.com/science/article/pii/S2214629618312544

Stakeholder processes can help raise, clarify, and /,/7;\\4/, Gl

\\\Z‘: MODERNIZATION INITIATIVE

validate the representation of key uncertainties =" Us pepartment of Eneray

» Stakeholders generally asked for:
B Additional details and visibility into the methodologies and data sources/inputs for DER and load
forecasting. From Orange Rockland Utilities, Inc.’s 2020 DSIP report:

® “Describe the forecasts provided separately for key areas including but not limited to photovoltaics, energy
storage, electric vehicles, and energy efficiency”

e “ldentify where and how DER developers and other stakeholders can readily access, navigate, view, sort, filter,
and download up-to-date load and supply forecasts”

B Additional scenarios and sensitivity analysis. From Orange Rockland Ultilities, Inc.’s 2020 DSIP report:

® “Provide sensitivity analyses which explain how the accuracy of substation-level forecasts is affected by DG,
energy storage, EVs, beneficial electrification, and EE measures”

» Designated and proactive forecasting stakeholder working groups can help support understanding
and agreement
B Hawaii — Forecast Assumptions Working Group
B California — Distribution Forecasting Working Groups
B New York — NYISO Electric System Planning Working Group

U.S. DEPARTMENT OF

ENERGY


https://documents.dps.ny.gov/public/Common/ViewDoc.aspx?DocRefId=%7b6F7F49E7-7C16-4524-A8EF-E98E59F9EFAA%7d
https://documents.dps.ny.gov/public/Common/ViewDoc.aspx?DocRefId=%7b6F7F49E7-7C16-4524-A8EF-E98E59F9EFAA%7d
https://www.hawaiianelectric.com/clean-energy-hawaii/integrated-grid-planning/stakeholder-engagement/working-groups/forecast-assumptions-documents
https://drpwg.org/growth-scenarios/
https://www.nyiso.com/espwg
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Contact

U.S. DEPARTMENT OF

ENERGY

Elaine Hale
elaine.hale@nrel.gov

(303) 384-7812

Grid Planning and Analysis Center
National Renewable Energy Laboratory
https://www.nrel.gov/
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1:00-1:15 Introductions & Overview

1:15-1:45 Intro to Electricity Forecasting

1:45-2:15 Load Forecasting

2:15-2:30 Break

2:30-3:00 Energy Efficiency and Demand Flexibility Forecasting
3:00-3:35 Building Electrification & Electric Vehicle Forecasting
3:35-3:50 Break

3:50-4:20 Distributed Solar & Battery Storage Forecasting
4:20-4:50 Cost Forecasting

4:50-5:00 Final Thoughts
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Workshop Agenda

2:30-3:00 Energy Efficiency and Demand Flexibility Forecasting
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Forecasting Efficiency and Demand Flexibility

Natalie Mims Frick
Berkeley Lab

This presentation was funded by the U.S. Department of Energy’s
Office of Electricity and Building Technologies Office.
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» Two approaches to forecast energy efficiency (EE), demand response (DR) and demand flexibility
(DF)
B Potential studies
B Use EE and other distributed energy resources (DERSs) as selectable resources
» Interactions between potential studies and load forecasts

» Questions states can ask

U.S. DEPARTMENT OF

ENERGY



Resource potential assessments

» The objective of EE and DF potential assessments is to
provide accurate and reliable information on:

= Quantity of EE and DF available

— MODERNIZATION INITIATIVE
\\\\\— U.S. Department of Energy

= Timing of availability (e.g., new construction, stock turnover)

» EE and DF measure cost
» Load or savings shape

Mot
NIPSCO Technically
estimated four Feasible
types of Not
P Technically
potential in .
their 2021 Mot
Market Technically
Potential Study Feasible
for electric and Not

Technically
Feasible

E N E RGY Source: NIPSCO

gas efficiency.

U.S. DEPARTMENT OF

FIGURE 3-2 TYPE OF ENERGY EFFICIENCY POTENTIAL

MNot Cost
Effective

TECHNICAL POTENTIAL

ECONOMIC POTENTIAL

Market MAXIMUM ACHIEVABLE
Barriers POTENTIAL

REALISTIC
ACHIEVABLE
POTENTIAL

Market Partial
Barriers Incentives


https://www.nipsco.com/docs/librariesprovider11/rates-and-tariffs/irp/2021-nipsco-irp-appendix-b.pdf?sfvrsn=1ae0251_6

Typically, an EE or DF forecast is developed in a 6-step //,,=77:\‘Lé (Ogllo
process. -

» Step 1 — Estimate technical potential on a per application basis (i.e., savings per unit)

» Step 2 — Estimate economic potential on a per application basis (i.e., levelized cost per unit) based on
“avoided cost” of a “proxy” resource or capacity expansion model marginal resource analysis

» Step 3 — Estimate number of applicable units (account for physical limits, retirements, new
construction, etc.)

» Step 4 — Estimate economic potential for all applicable units

» Step 5 — Estimate economically achievable potential for all realistically achievable units

» Step 6 — Reduce the load forecast provided to the capacity expansion model by the amount of
economically achievable savings (determined in Step 5) before the model is used to “optimize” supply
side resources

U.S. DEPARTMENT OF

ENERGY



=
—

An alternative to forecasting EE and DF from potential 77 33 Fs | '
studies is to consider them as selectable resources '_

U.S. Department of Energy

» Integrated Resource Planning (IRP) is intended to evaluate multiple resource portfolio
options in an organized, holistic, and technology-neutral manner and normalize
solution evaluation across generation, distribution, and transmission systems and
demand-side resources.

» |n this framework, DERs are a decision variable directly comparable to amounts and
timing of generation options. This allows for consideration of relative cost and risk
across the broadest array of potential solutions.

» Modeling energy efficiency and other DERs as resource options for bulk power
systems can support many state objectives, including greater reliability and resilience,
reduced electricity costs, achieving energy efficiency and renewable energy targets,
and lower air pollutant emissions.



The process and order are different when considering EE and =), (5 |?
= /////\-=—‘ MODERNIZATION INITIATIVE
DF as selectable resources in IRPs. NN=" U< pepartment of Eneroy

» Step 1 — Estimate technical potential on a per application basis (i.e., savings per unit)

» Step 2 — Estimate number of applicable units (account for physical limits, retirements,
new construction, etc.)

» Step 3 — Estimate technical potential for all applicable units

» Step 4 — Estimate achievable potential for all realistically achievable units

» Step 5 — Estimate economic potential for all realistically achievable units by competing
EE and DR against supply side resources in capacity expansion modeling*

*Any Energy Efficiency Resource Standard (EERS) requirements are
typically modeled as “must build” resources. Only additional increments

above EERS requirements compete against generating resources in
capacity expansion modeling.

U.S. DEPARTMENT OF

ENERGY
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» EE potential is comprised of hundreds of = e
m eaS u reS . Utility M Residential M Industrial B Commercial Agriculture

» |IRP models cannot simulate individual
together.
» Supply curves for EE (and other DERs) :
are usually represented as the amount of $
resource potential available in discrete '
“bundles” or “bins.” 1000
al

efficiency measures, so they are grouped
A B B R S IO &

5000

(=]

Achievable Technical Potential (aMwW)
w
8
o

NRC Net Levelized Cost (20165/MWh)

Source: NWPC Draft 8t Plan

Methods to Incorporate Energy Efficiency
in Electricity System Planning and Markets

U.S. DEPARTMENT OF

ENERGY


https://www.nwcouncil.org/2021powerplan_conservationpotential

Example: Georgia Power EE bundling approaches

U.S. DEPARTMENT OF

Commerdal Load Shape-Based Bundles

Commercial Value Based Bundles

Commercial Cost Based Bundles

MODERNIZATION INITIATIVE
U.S. Department of Energy

Weighted
Bundie  Number of Total Potential "‘“""’“’“‘ hoks Ringeof ) Mean Range of Mean  Range of
Cost L Cost L Cost Bundle Number of Total Potential = ) Avg. ) ]
Number  Measures (Mwh) [S/MWH) (S/MWH) (S/MWh) Number Measures  (MWh) Cost Bundle  Number of Total Potential Levelized Levelized  Levelized
(5/MWh) (5/Mwh) Number  Measures (MWh) ‘ée |1e Cost Cost
05
2 2 n 0 0 %050 ($/MWh) ($/MWh)  ($/MWh)
1 2 8 0 0 $0-50 12 2 $0 $0-50
14 1 1 0 o $0.50 6 8 $0 4050
s 16 17 0543 13 56,611 s 40414 8 56,631 7 6 50513
19 32363 18 18 50549 1 $14-529 2 20 21 $14529
2 160 20 19 50543 15 $29-545 14 225 31,817 36 37 $29-$45
9 157 12452 2 3 50573 10 $46-562 ;
= = e = = hoctpicd . g 5 146 33,509 55 54 $4662
10 £ 2,700 59 3 $185128 19 4815101 6 139 14,604 70 71 $63-580
18 3 46 7 6 $0-5167 1 £103-6122 13 89 58,291 87 91 $81-$104
105 l:: 1“ “7!' 17:, :;::::2 0 $124-5146 0 110 25,676 117 118 $106-$136
1 5147-5173 g
5 S u.mm o o s ; e 10 73 16,545 153 154 $136-5173
20 1 o 195 195 $195 5195 3 $202 6222 4 128 17,543 194 194 $176-5207
15 n 76 200 $142-5361 13 $225 4250 11 93 78,377 215 220 $208-5240
s 101 43,549 205 17 $159-8240 7 $250-4277 110 11,631 263 262 $241-5283
2 o 55907 212 200 $139.521 5 et il
7 o 5139 26 2 sinsm s 46 8854 7285-5331
1 12 10863 72 2% 52434326 126 g:;:g:: 3 52 5,956 $336-$383
n 2 7342 $266-5387 5 £391-6430 12 20 5,358 $385-5422
7 42 7.781 $330 5461 R
6 a 6,234 $387-5497 5 $436-5497 ! * 2= »430 3497

Source: Georgia Power

ENERGY


https://psc.ga.gov/search/facts-document/?documentId=185485

Example: Northwest Power and Conservation Council DR ,///\\),,‘,/ GR
supply curve AT

300.00
[ Chart Area | Summer Winter Dual
o 250.00 Bin 4
Bin 3 $?9;‘kW—L
Bin 2 $37/kW-yr
! - L
$12/kW-yr

Net Levelized Cost (5/kW-yr)
wn = o =
= = = =
= = 8 g

& — = m B
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https://www.nwcouncil.org/2021powerplan_demand-response-rpm-input-parameters/

Several states and utilities considering efficiency as a
selectable resource in long-term electricity planning®

GRI
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» California >
m 2021 Enerqy Efficiency Potential and Goals Study

B Staff Proposal for Incorporating Energy Efficiency into »
the SB 350 Integrated Resource Planning Process

» Georgia >
B Georgia Power - Supply-Side Representation of

Enerqgy Efficiency Resources in the Georgia Power
IRP Model

» Hawaii
B Hawaiian Electric Company Integrated Grid Plan
» Idaho
B |daho Power — 2" Amended 2019 IRP
» Indiana
B Duke Energy — 2020 IRP
Vectren
IPL/AES — 2019 IRP
NIPSCO
&M

>

U.S. DEPARTMENT OF

ENERGY

Louisiana
B Entergy New Orleans - 2018 IRP
Missouri
B Ameren 2020 IRP
Minnesota
B Xcel Energy /Northern States Power 2020 IRP
Northwest Power and Conservation Council
B Draft 8" Power Plan
PacifiCorp (CA, OR, WA, WY, UT)
m 2021 IRP
Tennessee
B Tennessee Valley Authority - 2019 IRP
Washington
B Puget Sound Energy — 2021 IRP
B Avista — 2021 IRP

68

*These are the states/utilities that | am aware of - please let me know if you see an omission.


https://pda.energydataweb.com/#!/documents/2531/view
https://pda.energydataweb.com/#!/documents/2083/view
http://psc.ga.gov/search/facts-document/?documentId=185485
https://www.hawaiianelectric.com/clean-energy-hawaii/integrated-grid-planning
https://docs.idahopower.com/pdfs/AboutUs/PlanningForFuture/irp/2019/SecondAmended2019IRP.pdf
https://www.in.gov/iurc/files/IURC-CTIC-DEI-EE-Bundles-07152021.pdf
https://www.in.gov/iurc/files/2019-IPL-IRP-Public-Volume-1_121619.pdf
https://cdn.entergy-neworleans.com/userfiles/content/IRP/2018_Integrated_Resource_Plan_Report.pdf?_ga=2.36297632.1891874748.1633717924-953264423.1633717924
https://www.ameren.com/-/media/missouri-site/files/environment/irp/2020/ch8-demand-side-resources.pdf?la=en-us-mo&hash=672DDBD28E1AD2765175E76B280CC32F284290B0
https://www.xcelenergy.com/staticfiles/xe-responsive/Company/Rates%20&%20Regulations/The-Resource-Plan-No-Appendices.pdf
https://www.nwcouncil.org/2021-northwest-power-plan
https://www.pacificorp.com/energy/integrated-resource-plan.html
https://www.tva.com/environment/environmental-stewardship/integrated-resource-plan
https://pse-irp.participate.online/2021-IRP/Reports
https://www.myavista.com/about-us/integrated-resource-planning

Challenges With potential stUdies ////7/\\_E MODERNIZATION INITIATIVE

» Data inputs to the potential study must be robust. Common shortcomings with potential studies
include:

B Not using accurate load shapes
B Not accounting for variations in interactions between DERs

B Not accounting for variations in interactions between DERs and existing and future utility system
resources

B Not accounting for all benefits, including distribution and transmission system capacity impacts

» Using efficiency and other DERs as selectable resource overcomes some of these shortcomings.



Each measure assigned the applicable energy savings Ioao}? =V, G F

shape or end use load shape
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Example: lllinois end-use load profiles

MODERNIZATION INITIATIVE
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Average energy consumption, [Wh/15-min]
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https://resstock.nrel.gov/datasets

Treating EE and DR as selectable resources in a capacity =

expansion model permits optimization between these V=" ropernizanon mmanve

resources

10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000

Cumulative Peak Capacity Developed
(MW)

U.S. DEPARTMENT OH

Interaction of Demand Response and Energy Efficiency Development

“|== == Acquire EE <= Short Run Market Price - DR MW
—|{== @= Acquire EE up to Long Run Avoided Cost - DR MW

e Acquire EE <= Short Run Market Price - EE MW

e Acquire EE up to Long Run Avoided Cost - EE MW

2016 2019 2022 2025 2028 2031 2034

EN ERGwource: Northwest Power and Conservation Council, 71" Power Plan



https://www.nwcouncil.org/reports/seventh-power-plan

Treating EE and DR as selectable resource options in a
capacity expansion model permits optimization across

supplz side and demand side resources

8,000
7,000
6,000

5,000

3,000
2,000

1,000

Cumulative CCCT Peak Capacity Developed
(Mw)
D
©
o
o

Impact on Amount and Timing of CCCT Development of Alternative
Levels of Demand Response and Energy Efficiency Development

===Acquire EE @ <= Long Run Avoided Cost, No Demand Response

Acquire EE @ <= Short Run Market Price w/Demand Response

===Acquire EE @ <= Long Run Avoided Cost w/Demand Response

—

2016 2019 2022 2025 2028 2031

T T T
73

2034

Source: Northwest Power and Conservation Council, 7" Power Plan


https://www.nwcouncil.org/reports/seventh-power-plan

Example: Value of residential air-conditioning measure varieS//,/ /// GRI
based on avoided costs included in analysis
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B Energy


https://emp.lbl.gov/publications/time-varying-value-electric-energy

EE and DF potential interact with the load forecast 4/777:\% GI

\\\\\= U.S. Department of Energy

» EE and DF forecast interact with the load forecast in both approaches.
B The more common approach uses the EE or DF potential to reduce the load forecast.

B Considering EE or DF as a selectable resource requires planners to know the quantity of the
resource in the load forecast and the quantity the model can select.

» Internal consistency between the load forecast and EE and DF potential assessments is necessary to
avoid the potential for over or under estimating remaining EE and DF potential.

B Baseline use and efficiency assumptions should be equivalent.
B “Units” (e.g., houses, commercial floor space, appliance counts) should be identical.
» Emerging issues such as electrification impact the load forecast.

B Replacing an electric resistance heater with an air source heat pump that is more efficient will
reduce electricity consumption.

B Replacing a gas heater with an air source heat pump will increase electricity consumption.

B It is important to understand where this data is used in the analysis (e.g., load forecast, potential
study, both, neither) for consistency.

U.S. DEPARTMENT OF

ENERGY



Example: NIPSCO includes building electrification in their ,=%, G R
load forecast, but not their potential study. RE vgosmuzamonmpane

U.S. Department of Energy

» NIPSCO considers the impact of efficient HVAC in their potential study for electric and gas
customers, but there is no consideration of fuel switching.

» NIPSCO considers the impact of building electrification in their Economy Wide Decarbonization
load forecast scenario.

Figure 3-20: Total Net Energy for Load Forecast across Scenarios

CAGR
Total Net Energy for Load (MWh) 1204
16,000,000
=R eference
15,000,000 Case
—Status Quo
14,000,000 Extended
- Figure 3-19: Electrification Impact on NIPSCO Energy Sales
= 13,000,000 }
= —_Aggressive
0.18% Environmental
12,000 000 0.15% Regulation S!GDG!U‘DO C&l
Tf EconomyWide Processes
-0.28% Decarbonization 2 500 U‘D‘U‘
11,000,000 /“ ’ ' Cé&l Hot
Industrial load loss Wﬂtﬂr
O Y g3 88N s88:838388588¢8¢3 ~ 2,000,000
& 8 &R &8 R 8 &8 R 8§ R 8 8 8 R 8 88 K AN g Ca&l HVAC
= 1,500,000
Residential
1,000,000 Appliances
HResidential
500,000 Domestic
- Hot Water
U.S. DEPARTMENT OF - W Residential

E N E RGY Source: NIPSCO |IRP 2025 2030 2035 2040 HVAC


https://www.nipsco.com/docs/librariesprovider11/rates-and-tariffs/irp/2021-nipsco-integrated-resource-plan.pdf

Example: National Grid includes building electrification in //,?;

\= MODERNIZATION INITIATIVE

their EE and DR potential study NN= U< bepartment of Eneroy

Table ES- 1. SBummary Energy Efficiency BAU Achievable Potential, 2022-2024

Summer Peak
Electric Matural Gas Propane Fuel Oil
Demand

Mw

Incremental

Annual Net
BALU Scenario

Residential Sector

Therms MMBtu MMEBtu

2022 125, 601 20,73 11,793,655 260,779 19,318
2023 132,705 21.78 12,726,842 301,036 23,410
2024 139,718 2293 13,695,535 335,592 27,611 Table ES- 4. Summary Energy Optimization BAU Achievable Potential, 2022-2024
Total 398,024 65.44 38,216,032 897 408 70,339 Summer Peak
Commercial & Ingustrial Sector Incremental Electric Matural Gas Propane Fuel Oil
2022 241,758 40.84 5,784,105 433 627 Demand
2023 219,670 36.18 5,556,680 484 77 Annual Net MW Therms MMBEtu MMEBtu
2024 200,553 3222 5,261,190 508 927 BA scﬂa"u
Total 661,081 109.25 16,601,976 1,425 2,324 Residential Sectod
Portfolio Total 2022 =26,327 1.05 20,303 281,015 B3,773
2022 367,359 61.57 17,577,760 261,213 19,944 2023 -35,246 1.29 21,759 344,496 146,878
2023 352 375 5796 18,283,523 301,520 24 181 2024 -44 135 0.80 27,055 305 896 223,205
2024 340,271 55.15 18,956,725 336,100 28,538 Total -105,708 294 69,117 1,021,406 453,856
Total 1,060,005 174.68 54,818,008 898,833 72,663 Commercial & Industrial Sector
Source: Guideholse analysis 2022 -3 0.00 0 32442 20,658
2023 -3 0.00 0 34171 22,204
2024 -3 0.00 0 35,173 22,902
Total -8 0.00 0 101,785 65,764
Portfolio Total
2022 -26,329 1.05 20,303 313 457 104,43
2023 -35,249 1.29 21,759 378,667 169,082
2024 -44 138 0.60 27,055 431,068 246,108
Total -105,716 294 69,117 1,123,192 519,620

Source: Guidshouse analysis

Source: MA EEAC


https://ma-eeac.org/wp-content/uploads/Appendix-C-Potential-Studies.pdf

QueStlonS States Can aSk \\\\\; U.S. Department of Energy

» How are utilities in your state modeling EE, DR and other DERs today?

» Are the EE and other DER potential studies assumptions clearly provided? Are the load forecast
and EE and other DER forecasts aligned?

» \What state policy or regulatory changes are needed to facilitate consideration of EE, DR and other
DERSs as selectable resources in electricity planning?

EEEEEEEEEEEE



Resources for more information Y= vovernizarion mimatve

— U.S. Department of Energy

Berkeley Lab’s research on time- and locational-sensitive value of DERs

U.S. Department of Energy. 2021. A Roadmap for Grid-interactive Efficient Buildings. Prepared by Andrew Satchwell, Ryan Hledik, Mary Ann
Piette, Aditya Khandekar, Jessica Granderson, Natalie Mims Frick, Ahmad Faruqui, Long Lam, Stephanie Ross, Jesse Cohen, Kitty Wang,
Daniela Urigwe, Dan Delurey, Monica Neukomm and David Nemtzow

Natalie Mims Frick, Tom Eckman, Greg Leventis, and Alan Sanstad. Methods to Incorporate Energy Efficiency in Electricity System Planning
and Markets. January 2021

State and Local Energy Efficiency Action Network. 2020. Determining Utility System Value of Demand Flexibility from Grid-Interactive Efficient
Buildings. Prepared by: Tom Eckman, Lisa Schwartz, and Greg Leventis, Lawrence Berkeley National Laboratory.
https://emp.lbl.gov/publications/determining-utility-system-value

Natalie Mims Frick, Snuller Price, Lisa Schwartz, Nichole Hanus, and Ben Shapiro. Locational Value of Distributed Energy Resources

Natalie Mims Frick, Juan Pablo Carvallo and Lisa Schwartz. Quantifying reliability and resilience impacts of energy efficiency: Examples and
opportunities

Natalie Mims Frick, Juan Pablo Carvallo and Margaret Pigman. Time-sensitive Value of Efficiency Calculator

Fredrich Kahrl, Andrew D Mills, Luke Lavin, Nancy Ryan, Arne Olsen, and Lisa Schwartz (ed.). The Future of Electricity Resource Planning.
2016. Berkeley Lab’s Future Electric Utility Regulation report series.

Berkeley Lab and NREL’s End Use Load Profiles for the U.S. Building Stock project

U.S. DEPARTMENT OF

ENERGY


https://emp.lbl.gov/projects/time-value-efficiency
https://gebroadmap.lbl.gov/
https://emp.lbl.gov/publications/methods-incorporate-energy-efficiency
https://emp.lbl.gov/publications/determining-utility-system-value
https://emp.lbl.gov/publications/locational-value-distributed-energy
https://emp.lbl.gov/publications/quantifying-reliability-and
https://emp.lbl.gov/publications/time-sensitive-value-efficiency
https://emp.lbl.gov/projects/feur/
https://emp.lbl.gov/publications/end-use-load-profiles-us-building-0
https://www.nrel.gov/buildings/end-use-load-profiles.html

Workshop Agenda

3:00-3:35 Building Electrification & Electric Vehicle Forecasting

U.S. DEPARTMENT OF

ENERGY
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Building Electrification Forecasting:
Best Practices and Case Studies

AVEN SATRE-MELOY, PHD

Lawrence Berkeley National Laboratory
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Agenda

A\

» Current state of building electrification forecasting

» Methodological approaches for forecasting building
electrification

B Scenario analysis-based approaches
B Adoption model-based approaches
» Scenario analysis case study

B Guidehouse scenarios developed for U.S. DOE’s Energy
Emissions, and Equity (E3) Initiative

» Adoption model case study
B |[SO-NE ASHP adoption forecast
» Future research needs

Photo by Izuddin Helmi Adnan on Unsplash =



Current state of building electrification forecasting ZON=" viovermizaon mmatve

» Methods and approaches for forecasting building
electrification are less well developed than for
other DERSs (e.g., EVs, PV)

» Challenge of lack of data/evidence regarding
consumer decision-making for building
electrification

» Primary approaches include scenario-based
analyses with varying assumptions and statistical-
based analyses (diffusion models, regressions)

» Most approaches rely on expert judgment of how
broader economic/policy environment will influence
consumer choice

» In many cases, forecasts rely on published
scenarios from research for different regions/states

Photo by Shea Rouda on Unsplash



Methodological approaches: Scenario Analyses

States advancing or prohibiting

“ building gas bans and electrification codes

State legislation prohibiting local governments
from restricting natural gas utility service
Passed

Local gas bans and electrification codes in new buildings
Adopted

2021, A A
zabeth Thomas and Ciaralou Agpala Palicpic S&P Global
ba e

As of April 26,
Map credit: EL )
Source: S&P Global Market Intelligence Market Intelligence

Source: S&P Global Market Intelligence

» Granular/technology-rich estimates of baseline
stock characteristics

» Prescriptive scenarios developed based on
combination of expert judgment and current
trends (economic/regulatory)

U.S. DEPARTMENT OF

ENERGY
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Figure ES-5. Electricity share of final energy consumption

Source: NREL Electrification Futures Study (Mai et al., 2018)

» Bottom-up accounting and multi-sectoral
representation

» Geographical resolution: national/regional

////\ \—" MODERNIZATION INITIATIVE
\\\ — U.S. Department of Energy
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Percent of Cumulative ASHPs Adopted

=V, Gk

Methodological approaches: Adoption Models VIRE) ot

Q 1 ] 1 1 1 1 1 ] 1
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

Source: Final 2022 Heating Electrification Forecast (ISO-NE, 2022)

» Granular/technology-rich estimates of

baseline stock characteristics

» Statistical/modeling approach based on select
input parameters (e.g., Bass diffusion model)

U.S. DEPARTMENT OF

ENERGY

\\\\;__ U.S. Department of Energy

Figure 12. AdopDER model conceptual overview

Past program
participation

Customer details ADOPTION FORECASTS

(CC&B/Acxiom/InfoUSA)

.
DMV registrations Electric Vohicles: PVA - Flex Loads: Building Electrification:
- a i NREL dG: ricat Bass diffusion

Electrification futures

load forecast
AMI consumption
DER technology and data
program costs F v
Avoided costs
(energy, capacity}
Hourly emissions
lculation:
TECHNICAL RESOURCE POTENTIAL —a
Feeder-level
COST EFFECTIVE FORECAST f - 5748 ok il
net loads

Source: PGE 2022 Distribution System Plan

» Often rely on expert judgment to determine

modeling parameters

» Geographical resolution: utility/municipal

service territory

85



Scenarios case study: Guidehouse E3 Initiative W, GF
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Scenarios of Heat Pump Adoption = U7 5omartment of Eneroy

Midwest . . Northeast
HP Saturation 4% Favorable Neutral Unfavorable Northeast HP Saturation 4%
HPWH Saturation ~1% Midwest (9 states) HPWH Saturation ~ ~1%
. (12 states) VT .
Policy Support & Policy Support .
. . . (Electric ‘L NH o . (Fuel
Utility Rates resistance) :.; MA Utility Rates . oil/Propane)
. Z \CT RI .
Climate o N Climate o
Fuel Mix ® (2050 Fuel Mix @ (2050
Mo
West DC
West (13 states) South
HP Saturation 10% HP Saturation 24%
HPWH Saturation ~1% HPWH Saturation ~1%
Policy Support o '.’%’\ Wi Policy Support o
. Electric
Utility Rates . ® (Electric South Utility Rates ® o re(sistance)
. resistance) (17 states, including DC) . .
Climate Climate
Fuel Mix @ (2050 Fuel Mix ® O (205
Explanation of Key Metrics (see regional slides for more details)
Source: Guidehouse HP Saturation . The reg!on S ex!st!ng res!dent!al home stock (as a %) that currently uses HP for prlmary heating .
analysis based on EIA HPWH Saturation The region’s existing residential home stock (as a %) that currently uses HPWH for primary heating
RECS 2015 Policy Support The region’s policy outlook toward heating electrification
A Guidehouse Utility Rates The region’s electricity: gas price ratio + electricity: 2n4 choice energy source ratio - and how they compare to the national average
Climate The region’s climate and its compatibility with current HP solutions
U.S. DEPARTMENT OF Fuel Mix The region’s 2020 electricity generation fuel mix and its ability to provide a GHG benefit if rapid electrification takes place (see slides 34/35), as
E N E RGY well as anticipated changes in electricity fuel mix by 2050 due to state commitments (see slide 28). State population within a region is considered. 86



Scenario

(2030 Target)

Federal /
Utility
Incentives

State / Local
Restrictions*

Scenarios case study: Guidehouse E3 Initiative
Scenarios of Heat Pump Adoption

Product
Innovations

Drivers (Key Differences Highlighted in BOLD)

Moderate market transformation expansion by BTO, utility, and industry groups

Conservative| Modest Few for r:f:iwe(:awnfs Few utilities offer substantial incentives for electrification
Scenario | federal, few |NC, none for grid ’ Modest federal incentive for heat pump conversions (targets customers that already have
(45%) utilities Existing | . ¢ cractive attractive lifecycle cost savings, such as electric resistance, propane, and fuel oil)
Few state and local governments restrict natural gas for new construction
Large market transformation expansion by BTO, utility, and industry groups
Optimistic Moderate, Some for Affordabl More utilities offer substantial incentives for electrification
- ordable
Scenario |federal, more|NC, none for| “". .5 Moderate federal incentive for heat pump conversions (targets customers that already
(50%) utilities Existing have attractive lifecycle cost savings, such as electric resistance, propane, and fuel oil)
Some state and local governments restrict natural gas for new construction
Large market transformation expansion by BTO, utility, and industry groups
. More utilities offer substantial incentives for electrification
Aggressive Large More for Affordable . . . .
Scenario |federal, more|NC, some for CeHPS Large fe«_ieral mcentl_ve for heat pump conversions (targets customers with more
(60%) utilities Existing challenging conversions, as well as some environmentally focused gas customers)
More state and local governments restrict natural gas for new construction, and
some provide significant incentives and/or restrictions for existing homes
Large market transformation expansion by BTO, utility, and industry groups
Most Large Most for Most utilities offer substantial incentives for electrification
Aggressive federalgmost NC. most for| Affordable Large federal incentive for heat pump conversions (targets customers with more
Scenario utilities Existin CCHPs challenging conversions, as well as some environmentally focused gas customers)
(75%) 9

Most state and local governments restrict natural gas for new construction, and
provide significant incentives and/or restrictions for existing homes

MODERNIZATION INITIATIVE
U.S. Department of Energy

Increasing
levels of :

» Federal / utility
incentives

State / local
policy support

Marketing
support

Certification
development

Product
innovations

) Guidehouse
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Scenarios case study: Guidehouse E3 Initiative
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Scenarios of Heat Pump Adoption N=" U bepartment of Eneray
Conservative Optimistic Aggressive Most Aggressive
Scenario Scenario Scenario Scenario
2019 HP Segment Share
Representative Sales 2019 of Total 2030 Sales|2050 Sales|2030 Sales|2050 Sales|2030 Sales|2050 Sales|2030 Sales|2050 Sales
Segment Ep dioment Market | Shioments Shipments Market Market Market Market Market Market Market Market
quip P 2019 (Al Share Share Share Share Share Share Share Share
Share (US) .
Categories)
Residential Space| Central ducted 0 y 0 0 0 0 o % 0 0 0
Heating furnace+AC / HP 37% 7,500,000 47% 45% 61% 50% 76% 63% 85% 75% 90%
Residential Storage water 0 o 0 0 0 o o % 0 o o
Water Heating heater 1% 7,880,000 50% 10% 30% 20% 60% 40% 75% 50% 85%
Commercial . 0 0 0 o 0 0 0 o o o
Space Heating Rooftop unit 9% 220,000 1% 15% 27% 20% 42% 25% 66% 30% 85%
Commercial Storage water 0 0 o 0 0 0 0 0 0 0
Water Heating heater 0.10% 240,000 2% 3% 20% 5% 30% 7% 45% 10% 50%
U.S. Total Sales Shares (Weighted Average of Unit Shipments)| 27% 44% 34% 67% 50% 79% 61% 87%

‘ Guidehouse
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Quantitative case study #2: ISO-NE ASHP adoption 4/777\:% GI:

\\\\= U.S. Department of Energy

» Approach considers potential pathways to
space and water heating electrification based
on existing building stock characteristics as

“ Annual ASHP Installs (Thousands) -

. . 2022 17.7 20.6 10.1 57.0
well as state policy and economic
Considerations 2023 33 204 21.3 4.7 2.4 10.4 62.5
. . y 2024 3.8 353 21.6 5.1 2.9 10.7 79.7
» Adoption forecasts based on a Bass diffusion 202 T T T T
model with following input parameters: - : : : : - :
Return on Investment (ROI) 2026 5.0 63.4 23.3 6.2 4.2 11.3 113.4
. State-level pOIle 2027 5.8 75.0 239 6.8 5.1 11.6 128.2
a Barrier indicator 2028 6.6 87.0 24.6 7.5 6.1 11.5 143.7
— Current levels of technology saturation 2025 N I I e I I
. . . . 2030 8.8 102.4 26.1 9.1 8.7 11.4 166.5
» Uncertainty in the evolution of ROl and policy
2031 10.1 107.5 27.0 10.0 10.5 10.8 175.6

impacts over the forecast horizon is reflected

Via a Monte Car|0 SimUIation Cumulative Total 58.2 654.7 2364 66.8 52.7 100.1 1,180.5

Source: Final 2022 Heating Electrification Forecast (ISO-NE, 2022)
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Future Research Needs //////\‘g c

\\\\—- U.S. Department of Energy

» Assess what is currently understood about the
various drivers of and impact on customer adoption
of electrification technologies (heating, water heating,
cooking)

» Develop analytical frameworks to improve the
representation of adoption

B Include the identification of key drivers of adoption of
electrification technologies

B Develop quantitative assessment of these drivers’
impacts on adoption
» Assess how the key drivers of adoption of
electrification technologies affect the adoption of
other technologies (e.g., EVs, PV)

» U.S. DOE’s DECARB research project — scoping
study for building electrification adoption

Photo by Shea Rouda on Unsplash



EV Forecasting:
Best Practices and Case Studies

CHRISTINE HOLLAND

Pacific Northwest National Laboratory
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EV Load Forecasting Agenda = GRI
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» Major components of EV load
» Load shape considerations

» Major modeling approaches
» Commonly used models

» Model examples

U.S. DEPARTMENT OF
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Electric Vehicle Load Forecasting Overview VIRE) ot

\\\\= U.S. Department of Energy
Stock Forecast 2 O
Patterns

EV Charging Load
Profile

Q . Volt
t‘;‘ oD Vehicle type B A Peak Load
t% o W Tesla 8000
I ﬁ >
ouvg s L) < 6000 -

. . E \___:7‘—» — - y—ﬂy—/ ‘ g 4000 -

— 12 am noon 12 am 2000
t ] ]

0

Summer Winter

 Number of Vehicles — price,
income, access to charging,
incentives (state, federal)

« Type of Vehicles —
consumer preferences (size, 12 am noon

B Commerical Industrial m Residential ®EV

Charging type

2032 Stacked Hourly Load at the
Primary Meter (kWh)

kW
peak

12 am 2000

range), what they can afford cu E E21(3-6) EZ3 1500
- - Rate plans E23 Basic 1000
impact - differing charg|.ng g P B o ree U .
rates, energy consumption, Z M £29 £v ToU ﬂ ] |
0
ranges ; 9/27  10/27  11/27  12/27  1/27 2/27
U.S. DEPARTMENT OF x g . . .
ENERGY 12 am noon 12 am M Building load  m Uncoordinated EV Bus Charg|r|1g Prggle

Images reproduced from EPRI http://mydocs.epri.com/docs/PublicMeetingMaterials/ee/000000003002013754.pdf



» Two major approaches:

Start with a
regional EV stock
forecast
Scale- Population
down weighting
Estimate EV stock

at local or circuit
level

Use only data in
the planning
areas (i.e., circuit
level) of concern
to forecast stock

o
////\\\__ MODERNIZATION INITIATIVE
= U.S. Department of Energy

poproach o lcons

Top
Down

Bottom

eEasier because of *Often difficult to

data availability = scale-down when

*More robust average system
*Good for characteristics are
generalizations not the same as the
and overall circuit
movement of the <Difficult to evaluate
market policy impacts on
load

*Potentially more e<Data for new

accurate because technologies may not
you are basing be available

the forecast on  *Errors as micro level
actual customer are amplified at
characteristics macro level when
and preferences. scaling up
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Types of Models Used for Either Approach o (03

\\\\\_= U.S. Department of Energy

Three categories of commonly used adoption models relevant to EVs:

1. Consumer preference models - Describe behaviors regarding consumer choice based on known or discovered
consumer preferences

= Discrete choice models — predict choices between two or more discrete alternatives, i.e., deciding to purchase an EV or internal
combustion engine (Top-down approach)

= Agent bﬁ\)sed models — used to study interactions between people, things, places, and time. Data intensive (Bottom-up
approach).

2. Propensity models — a set of approaches to building predictive models based on past behavior, e.g., identify
the characteristics of customers who purchased a hybrid vehicle

= Random forest — machine learning algorithm; based on multiple decision trees built over a random extraction of observations
from the dataset

3. Diffusion models - All use the common ‘S’ shaped adoption curve based on diffusion of innovation (Rogers)
= |nclude Bass, Gompertz, Weibull, and Logistic

Practical Customer Segmentation (stock considerations)
Light Duty Vehicles

B Residential, commercial
Med- & Heavy-Duty Vehicles

B Commercial fleets, truck transportation

U.S. DEPARTMENT OF

ENERGY o
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How some major labs and utilities forecast EV stock /’////\\_
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Utility or Research Entity

EV Adoption Approach

Model Description

Uses several forecasts from University’s and other data sources, along
with market intelligence to arrive at zip code, county, state, and

EPRI Metadata approach national forecasts.
Based on the relative attractiveness of vehicles given
MREL ADOPT consumer choice model technological development scenarios
Bass model driven by actual circuit level adoption based on vehicle
Dual approach Bass aggregate with discrete choice registration data. Discrete choice model disaggregation based on
SCE model dissagregate. (External - PNNL). existing adoption, housing characteristics, and socio-economic data.
Use propensity model results to drive the market potential
PG&E Propensity model. (Internal) component of an S-curve adoption model.
Disaggregate based on their own propensity model. Score each zip
code based on historic EV purchases and demographic and socio-
EPRI zip code-level forecasts then disaggregates. economic data, education levels, and time to work. Used internal EV
SDG&E (Internal) load shapes to determine hourly forecasts.

Hawaiian Electric

Dual approach: Bass modeling for the aggregate and

agent-based modeling for geospatial customer-level.

(External - Integral Analytics, Inc.)

The EQOT Roadmap, Appendix E states: “When past participation and
locational information is available, these models can be trained to
include the socio-economic and peer-effects that contribute to
adoption, as well as but not limited to time-sensitive utility incentive,
rebates, tax credits, electric and gasoline prices etc.”
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Aggregate EV adoption illustration using diffusion W, G

models

e Start with the end-points

e Curve shape driven by the
type of model — usually Bass,
Logistic, Gompertz

Starting point
- EV vehicle
registrations

Adoption Rate

Shape
determined by
model type

Saturation points — somewhat
deterministic
- Known no. of registrants and
population growth rates
-Driven by state ZEV targets
-Income distributions
-Charging accessibility

Scenarios:
Low — Bass model solves

Car Groups (i.e., Tesla, e o]
Leaf, PEV hybnd) market activities)

Medium — ZEV goals
assuming some
competitive
technologies

High - EV targets
according to state goals

—t
»
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Customer EV distribution at the circuit-level =V, (
produced from a discrete choice model W= [PERNIZaTION INTIATIvE

Household Income ($)

Creates a household probability of adoption based on housing type or I L e
income. Uses Monte Carlo simulation to distribute EVs to remaining o Lig 3| 1. |
households I g e
Projections of EV adoption by households that can be located on the : ,| TS |, “|! .;! '

map for distribution planning

Adoption model can be calibrated to local, regional, state EV goals o
o iiw AEM o) Lie cfeay o) Lig fug,
e 5 i =1 58 S8 el
I i s 3 .{o 8 8 .l 4 3 .{o 8
el e SF i £ iy

L]
il o0 o o Iie ° " ° °® ° X '. =' * ! i ooz =
LS I o " = H '. ° ! e 8 e HE 1 ° o 8
e ° ° o °
1 f ‘% . oo — ; e oo oy
m
500 ft Leaflet | © OpenStreetMap ¢ 500 ft 500 ft Leaflet | © OpenStreetMap c
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* Indicates EV vehicle *simulation based on PNNL's work for SCE 98




Electric Vehicle Infrastructure Projection Tool:
EVI-Pro

=2, GF

\ — MODERNIZATION INITIATIVE
\\\ — U.S. Department of Energy

» The full model uses trip data and varying EV adoption levels to Sample Aggregated EVSE Load Profile

estimate charging demand, infrastructure requirements, and
the resulting impact on the grid

1201

100

Typical Weekday (uncontrolled)

o e : z
» EVI-Pro Lite is a simplified web interface that can be used to = o
get reasonable estimates of charging infrastructure needs for S
different US cities or states 8
: : B 40
B https://afdc.energy.gov/evi-pro-lite o
20
» Learn more about EVI-Pro here: .
. ; c 0 4 a 12 16 20 24
B https://www.nrel.gov/transportation/evi-pro.html Hour of Day
100%
Travel Data Simulated Charge Events L o / bublic DCFC ”°’“£A
l : | : 1 % 0% T~
7:00 AM 7:45 AM Public None None Public DCFC > /
9:30 AM  10:30 AM Public None Public L2 None - ™ ublic Lo
12:45 PM 3:00 PM Public None None None Dr|V|r.\g, 0%
4:00 PM 5:00 PM Home Home L2 Home L2 None Charging ’ ‘ ’ ” b * 24
e Simulations Hour of Day


https://afdc.energy.gov/evi-pro-lite
https://www.nrel.gov/transportation/evi-pro.html

Grid load smoothing potential with V2X

Utilities, such as PNM are starting to plan
for V2G, V2H, V2X capability in buildings,
to use batteries as a grid resource.

Utilities are performing V2G pilots:

* Snohomish PUD - testing V2G with two
Nissan Leafs SnoPUD V2G microgrid

* Duke — testing five Ford f-150 Lightning
trucks Duke eTrucks as grid resource

* ConEdison — V2G pilot with five Lion
electric school buses ConEd Bus V2G
Demonstration

V.
////\/\ — MODERNIZATION INITIATIVE

U.S. Department of Energy

A
T‘

Electric Vehicle Service Equipment
EV Battery as DER

) ———
"

~ T Yoo

Bi-directional flow of energy between EV and grid/home
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https://www.power-grid.com/renewable-energy/snopud-microgrid-is-a-glimpse-into-a-v2g-future/#gref
https://news.duke-energy.com/releases/illuminating-possibility-duke-energy-and-ford-motor-company-plan-to-use-f-150-lightning-electric-trucks-to-help-power-the-grid
https://lpdd.org/resources/coned-electric-school-bus-v2g-demonstration-project/

. . . =\
Relevant questions for EV charging load forecasting /”(((\\T—é GI:

— U.S. Department of Energy

» \What does the future of EV ownership in the region look? How might this be informed by historical
adoption or other regional trends?

» How far are EV owners driving? How much do they need to charge?

» Where and when are they charging? How powerful are the chargers (level 1, 2, or 3)?
» What is the concentration of EV ownership? How will this impact grid for those areas?
» Are workplaces providing charging?

» Are there EV fleets with high VMT that would require frequent charging?

EEEEEEEEEEEE
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AVEN SATRE-MELOY
CHRISTINE HOLLAND

asatremeloy@]Ibl.gov

christine.holland@pnnl.gov
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Additional Examples, Resources, and Links 77 GR‘
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» EVs » Building Electrification

: : B NREL Electrification Futures Study
m Electric Power Research Institute (EPRI) e Scenarios of Electric Technology Adoption and

e |dentifying Likely Electric Vehicle Adopters Power Consumption for the United States
e The Impact of Incentives on Electric Vehicle u gor’gtlandp(l.;eneral Electric (PGE) Distribution
Adoption ystem Flan
_L_ e Chapter 6. Plug and play: enabling DER adoption
® https://afdc.energy.gov/evi-pro-lite e The Building Electrification Primer for City-Ultility
Coordinati
B EV Sales data (global) from IEA m E3 B
e https://www.iea.org/reports/electric-vehicles ® Residential Building Electrification in California:
: 1F : : Consumer economics, greenhouse gases, and grid
B EV Station utilization estimates e ats
® https://www.sciencedirect.com/science/article B NPCC
/pii/S136192092200390X e https://www.nwcouncil.org/sites/default/files/7thplan

final chap07 demandforecast 1.pdf

e https://www.nwcouncil.org/sites/default/files/7thplan
final_appdixj_demrspnse_1.pdf

U.S. DEPARTMENT OF
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mailto:https://www.epri.com/research/products/000000003002017550
mailto:https://www.epri.com/research/products/000000003002014473
https://afdc.energy.gov/evi-pro-lite
https://www.iea.org/reports/electric-vehicles
https://www.sciencedirect.com/science/article/pii/S136192092200390X
mailto:https://www.nrel.gov/docs/fy18osti/71500.pdf
mailto:https://assets.ctfassets.net/416ywc1laqmd/5GhnOUe5oejThQMtdvP7nt/a01a807098da288defaa12d3af97966e/DSP_2021_Report_Chapter6.pdf
mailto:https://www.usdn.org/uploads/cms/documents/city-utility_building_electrification_primer_final_pdf.pdf
mailto:https://www.ethree.com/wp-content/uploads/2019/04/E3_Residential_Building_Electrification_in_California_April_2019.pdf
https://www.nwcouncil.org/sites/default/files/7thplanfinal_chap07_demandforecast_1.pdf
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Work8h0i Aienda ///I/I/I/i MODERNIZATION INITIATIVE

1:00-1:15 Introductions & Overview

1:15-1:45 Intro to Electricity Forecasting

1:45-2:15 Load Forecasting

2:15-2:30 Break

2:30-3:00 Energy Efficiency and Demand Flexibility Forecasting
3:00-3:35 Building Electrification & Electric Vehicle Forecasting
3:35-3:50 Break

3:50-4:20 Distributed Solar & Battery Storage Forecasting
4:20-4:50 Cost Forecasting

4:50-5:00 Final Thoughts

EEEEEEEEEEEE



Workshop Agenda

3:50-4:20 Distributed Solar & Battery Storage Forecasting
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Distributed Solar Photovoltaics and Storage
Forecasting

ASHOK SEKAR

National Renewable Energy Lab
January 30, 2023
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Change in Total Present-value System

» To inform utilities’ investments in other energy- Sost BebffveoPotfect Forecast
system infrastructure such as transmission and 8.5% == Jen
distribution infrastructure. 5% 5 N

: $5.3M

) Increase in o $4.5M

» To better understand supply requirements and thus AU ARIEETS | c3.8m
. g 5 . A ration of &

to manage associated financial risks by quantifying DFV by Vear 15, x. / 4 53.0m

the net change in electricity consumption offset by generation) - & i 52.3m

DER generation . £ s1.5m

2.5%-/@_‘;@ s 5

1.5% — $0.0M

» To optimally integrate DERSs into the grid to maintain 100% -75% 50% -25% 0% 25% 50% 75% 100%
. . . " Underforecasting Overforecastin
SyStem funCtlonallty generally and eSpeCIaIIy durlng Systematic Error in 5-year Forecagt (%)

extreme grid conditions

systematically mis-forecasting DPV adoption over multiple
successive planning cycles increases the present value of utility

> TO develop and drive pOIiCieS tO system costs by up to $7 million per terawatt-hour (TWh) of
achieve decarbonization and climate goals electricity sales, relative to utility system costs under a perfect
forecast
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What are we forecasting?

» System size / capacity

» Total number of systems

» Location of adoption (Feeder, Tract-level, County, Utility
territory, County, and etc.)

» Time horizon of the adoption
» Generation profile

» Consumption pattern and user behavior

U.S. DEPARTMENT OF

ENERGY
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Sigrin, Ben, Paritosh Das, Meghan Mooney, Ashreeta Prasanna, Dylan Harrison-
Atlas, Jane Lockshin, Katy Waechter, Brady Cowiestoll, Paul Denholm, and Sam
Koebrich. 2021. “Chapter 4: Customer-Adopted Rooftop Solar and Storage.” In
The Los Angeles 100% Renewable Energy Study, edited by Jaquelin I:ochrfogmd
Paul Denholm. Golden, CO: National Renewable Energy Laboratory.' NREL/TP
6A20-79444-4. https://www.nrel.gov/docs/fy21osti/79444-4.pdf.



Different approaches to understand a model V=" ropernizanon mmanve

» There are numerous methods to forecast adoption in the
academic literature and in use

» These methods can be studied using three different
lenses.

B The approach used for building the model, i.e., a top-down
approach or a bottom-up approach.

B The model specification: the relationship between the
indicators and the outcome. Theory driven vs. Data Driven

B Assessing the capability of the model. E.g., adaptability of
the model. Can the model for PG&E customers be adapted

for Xcel customers?

U.S. DEPARTMENT OF
109

ENERGY



Modeling Approach: Top-down Models

» Uses macro-level indicators to model market
forecasts

» Aggregated- historical data is sufficient to develop
these models.

» Two classes of top-down models are popularly used
to forecast DER deployment—time series, and Bass
diffusion.

B Time-series models extrapolate from historical data to
infer future outcomes. They are the simplest
specification to use because they only require past
observations, though typically are only useful in near-
term forecasting.

B Bass models are among the most widely used
specifications because they are simple to
parameterize and are intended to simulate diffusion of
new technologies. (Dong et al., 2017)

U.S. DEPARTMENT OF
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Early Majority

Late Majority

. Q
34% 16%

INNOVATION ADOPTION LIFECYCLE

Image credit: https://www.gad.com/blog/2022/08/diffusion-of-
innovation-how-adoption-of-new-ideas-spreads

Early Adopters

Innovators ‘
2.5%

13.5% 34%

) Source: TELLO,

A, LEE,W.G, &

* CARLINO, R. Dr

ivers of Innovation.

» —https://emp.lbl.gov/sites/default/files/i

nnovativeness

across technologies an

) d _domains.pdf

——Smartphone ——Tablet
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——Social Media Netflix ——Amazon Prime —HDTV ——DVD Player ——Computer ——E-Book —Digital Camera



https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib11
https://www.qad.com/blog/2022/08/diffusion-of-innovation-how-adoption-of-new-ideas-spreads
https://emp.lbl.gov/sites/default/files/innovativeness_across_technologies_and_domains.pdf

Modeling Approach: Bottom-up Models

» Bottom-up approach uses micro-level
indicators to model individual forecasts,
which are then aggregated into a market
forecast.

» Micro-level indicators represent the traits of
a fairly granular unit—typically an individual
or a household, but it can also be a small
spatial area such as a block—uwithin the
marke

» Common bottom-up approaches include:

B Econometric models (Bernards et al.,
2018; Davidson et al., 2014; Dharshing,
2017)

B Agent-based models (Rai and Henry,
2016;)Rai and Robinson, 2015; Sigrin et al.,
2016;

B Machine learning models (Zhang et al.,
2016)

U.S. DEPARTMENT OF
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R. Bernards, J. Morren and H. Slootweg, "Development and Implementation
of Statistical Models for Estimating Diversified Adoption of Energy Transition
Technologies," in IEEE Transactions on Sustainable Energy, vol. 9, no. 4,
pp. 1540-1554, Oct. 2018, doi: 10.1109/TSTE.2018.2794579.
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https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib7
https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib8
https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib9
https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib31
https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib34
https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib35
https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib48
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» Bottom-up approach uses micro-level Agent-Based Model, including
indicators to model individual forecasts, Harinartce
which are then aggregated into a market e ———
forecast.

» Micro-level indicators represent the traits of
a fairly granular unit—typically an individual
or a household, but it can also be a small
spatial area such as a block—uwithin the

ma rke Representation of the
physical space

Agents with attributes
and decision rules

» Common bottom-up approaches include: e
B Econometric models (Bernards et al., N < surveys
2018; Davidson et al., 2014; Dharshing, Technologies and
201 7) pivai bt Other relevant agents

A, A N r

B Agent-based models (Rai and Henry,
2016: Rai and Robinson, 2015; Sigrin et al., , , _
201 6) Moglia, M., Cook, S., & McGregor, J. (2017). A review of Agent-Based Modelling of technology
—_— diffusion with special reference to residential energy efficiency. Sustainable Cities and Society,

B Machine learning models (Zhang et al., 31,173-182.
2016)
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Relationship between indicators and outcomes ZN=" rovermizarion mmanve

Theory-driven Models

» Theory-driven models impose a relationship
between the indicators and the outcome based
on a theory of individual or market behavior.

» Theory-driven models are diagnostic in nature
and can help decision makers understand the
drivers and barriers of DER adoption/non-
adoption while also serving as a tool for
evaluating the impact of different policy
interventions.

» The drawback wit theory driven model include
the need to establish the theoretical linkage and
collecting necessary data concerning the
indicators variables

Data-driven Models

» Data-driven models, on the other hand, are

agnostic and ideally expose hidden
relationships in the data that explain
outcomes better than theory.

This is the foundation of machine learning,
which has demonstrated superior predictive
accuracy compared with theory-driven
approaches

Data-driven models have several drawbacks
including: requiring large amounts of data,
susceptibility to overfitting, and decreased
interpretability.
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Capability of the model

» It is also important that models are adaptable, scalable,

and have sufficient spatial resolution, all while
remaining sensitive to changing policy contexts,
incentives, and techno-economic conditions.

Rai and Robinson (2015) present a highly granular
agent-based model of residential solar PV adoption at
the scale of a utility service territory (Austin, Texas).
Their model incorporates not only economic but also
physical and social household-level determinants of
residential PV adoption. While the model is calibrated
and validated across multiple outcomes, computational
cost and data requirements make this model difficult to
scale and adapt to different geographies.

Williams et al. (2020) models annual PV installations as
a function of net present value for five different
international regions (three U.S. states and two
countries). Given regional economics, the model is
adaptable and highly scalable; however, spatial
resolution of the model is quite coarse.

o

households

Annual Installation (MW/Million Households)

Simple Error
e 250

o

_QD

Rai and Robinson (2015)

A Germany

o Japan

m California
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'

o
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(2020)
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https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib34
https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib43
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https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib43
https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib43
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m Bottom-up vs. Top-Down | Theory-Driven vs. Data-Driven | Model scalability and Robustness

Bass Model
Econometric Model

Agent Based Model

Top-down Theory-driven
Bottom-up / Top-down Theory Driven/ Data-Driven Depends — data requirement
Bottom-up Theory Driven No — data and computational

requirement

m Data Requirement Policy Analysis

Bass Model

Econometric Model

Agent Based Model

U.S. DEPARTMENT OF

ENERGY

Low: Historic adoption

Moderate: Historic adoption +
Independent variables

High: Historic adoption +
Independent variables (open
sourced and surveys)

Minimal

Moderate — can test the effect of the
independent variables on adoption (e.g.,
price of solar panels)

Maximum — not only test independent
variable effect but also understand
impact of attitudes, behavior and
informational aspects e.g., peer effects.
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Other salient aspects to consider 7~ GI

» The motivations for commercial or industrial consumers to adopt solar and storage are very
different from residential consumers. Particularly, the attitudinal, emotional, and social and
person norms-based motivations are prevalent among residential consumers.

» Models that forecasts solar-only adoption will be different to solar and storage co-adoption. The
motivations for co-adoptions are currently being explored.

» Researchers use hybrid methods to solve the shortcomings from each modeling type described
in the presentation.

U.S. DEPARTMENT OF

ENERGY "



Other salient aspects to consider

» Knowing the difference between technical
potential, economic potential and market
potential.

» Understanding the difference helps constrain

the model and perform sanity checks.

» For rooftop residential solar

B Technical potential — calculated as the total
suitable roof available via Lidar

B Economic potential — of the technical potential

what percentage of the population has a
positive NPV

B Market potential — include policy impacts e.g.,

tax credits when calculating NPV

B Adoption — consider what % of the population

with market potential that would adopt.

U.S. DEPARTMENT OF

ENERGY

Potential

Key Assumptions

System size consiraints
System performance
constraints

Projected technology cost
Financing parameters
Value streams

Economic

Policy impacts
Investor response
Market penetration

Technology diffusion patterns e
Technology diffusion rates Ado pho n
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Relevant questions for Solar and Storage adoption /,/7=/\:£ G
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» These three questions help deduce the capability of the model using the summary table presented
in the slide above.

B What is the modeling approach top-down or bottom-up?
B [s the model theory-driven or data-driven
B |s the model scalable/adaptable to other regions?
» Other detailed questions include:
B What is the geographic resolution of the model?
B What is the temporal resolution of the model?
B Has the model been validated using historic data? How was the validation performed?
B What policy intervention can one test with the model? (e.g., effect of tariff design, incentives)

m If the model developed is using a bottom-up approach, identify the capability of the model
e Can the model use complex utility rate design
® How is solar system size calculated for each household? Is it constrained based on roof availability
e Has current and expected future incentives and rebates captured?
e \What scenarios for storage dispatch assumptions?

U.S. DEPARTMENT OF

ENERGY e
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The Distributed Generation Market Demand
(dGen™) model simulates customer adoption of
9 distributed energy resources for residential,

P4 commercial, and industrial entities in the United
States or other countries through 2050.

* Consumer decision-making based on cost-
effectiveness of technology

 |dentification of drivers of adoption by analysis of
multiple scenarios

* Hybrid model that combines agent-based
methodological framework and bass model.




Methodology Steps

Data Preparation

1. Develop a database of potential solar adopters

(“agents”)

2. Estimate Technical Potential: Assess rooftop solar
feasibility for each agent using LiDAR data.

Adoption Modeling
For each agent, year, and scenario:

3. Estimate Economic Potential: Determine solar
capacity that maximizes agent net present value using
5.3% weighted average cost of capital. Scenarios varied
PV cost projections and tariff structures.

4. Estimate Adoption Probability: Assess adoption
probability using a Bass Diffusion model and household
propensity modeling.

U.S. DEPARTMENT OF

ENERGY

Rooftop Technical
Potential

Rooftop Economic
Potential

Rooftop Adoption
Estimate

GR
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e .
Geospatial Analysis National Data Trends

A Blectriciy cﬂwm 120,000

0
—_— B

Household or Parcel-level agents
can also be developed
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Clockwise:
(1) Raw LiDAR imagery
of buildings

a%! Shading (2) Developable area

estimated for each
building in dataset,
then aggregated at
regional level

LIDAR & Building Footprint Data

Tilt

(3) Suitability based

;% P on. roof F)Iane

orientations, tilt,
size, and shading

Rooftop Suitability Results

NREL | | 125




Solar Technical Potential

> 1,500
500-1,500
250 - 500

100 - 250
<100

County-level technical potential for low and moderate
income households
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REPLICA data set provides
tract-level estimates of
residential rooftop solar
potential by income, tenure,
and building type

Annual U.S. residential solar
potential is 1000 TWh (roughly
75% of residential electricity
consumption) (794 GW)

LMI opportunity is 416 TWh,
nearly half (42%) of total
annual residential solar
potential

Average household potential is
8,553 kWh nationally
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Foundational Dataset of ~1 Million End-Use Load Profiles for
the U.S. Residential and Commercial Building Stock

@ comStock @) ResStock

Building stock models calibrated through 70+ model updates, supported by data:

e Electric load data from 11 utilities and 2.3 million meters Example: Texas Residential Load (modeled end-uses)

e 15 end-use metering datasets

.....

Summer Winter

40 4.0
'g 3.0- 3.0-
= Meter
=
= Modeled 3 04 A0
%- 2.0 | EndUses ., .
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v
@
w
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Retail Tariff

1) Utility rate database (or)
2) Custom rates

Example rate from URDB

Energy Charge components are shown in table below, the
schedule is shown in the figure (right).

Period | Tier | Max Usage ? | Max Usage Units ? | Rate $/kWh ?

1 1 13.5 kWh daily 0.39848
2 kWh daily 0.48902
2 1 13.5 kWh daily 0.33504
2 kWh daily 0.42558
3 1 11 kWh daily 0.30139
2 kWh daily 0.39193
4 1 11 kWh daily 0.28406
2 kWh daily 0.3746

https://apps.openei.org/IURDB/rate/view/62d06f573f6b437e6929e75a#2___Demand

Weekday Schedule
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Size = 100%; Tariff-constrained
1) “l want more PV”

Optimal Sizing

Ratio Size = 0%; Tariff-constrained
2) “PV is uneconomic for me”

Size = 0%; Roof-constrained
0% " 3) “My roof is unsuitable”
Calculated using 100%
NREL’s System Size = 0-100%; Roof-constrained
Advisor Modg] Sizing Ratio (%) 4) “I want a bigger roof”

Net Present Value ()

Size = 0-100%; Tariff-constrained

Annual system generation(kWh) 5) “I'm getting the best | can”
Annual end-user consumption (kWh) NREL | | 129
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Market Potential

100% -
90% - : _
== Non-Residential
o 80%- == Residential
©
ﬁ 70%- These values used to
@ 60% - estimate market adoption
~ (deployment) from
= 50%- economic potential
g 40% -
E
x 30%-
@
= 20%-
10%-
0% -

0 5 10 15 20 25 30
Payback Period

Using consumer surveys, relate the system payback
to the fraction of consumers that would adopt
solar®?,

1 Dong & Sigrin 2019; 2 Paidipati et al. 2008

25%

20%

15%

10%

Market Penetration

5%

0%

C

V/—V/.
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Payback decreases to 12 years (20% pen.)

No change in payback

_ Payback of 15
years

Payback increases to 20 years (5% pen.)

0 5 10 15

20 25 30
Years Tech in Market

Maximum market share is paired with a Bass
Diffusion model to simulate aggregate adoption
over time. The aggregate adoption is then
disaggregated to individual agents based on their
predicted probability

NREL | | 130
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Potential

Key Assumptions

System size consiraints 116 1163
System performance
constraints

Projected technology cost 114 1104
Financing parameters
Value streams

Policy impacts 262
Investor response
Market penetration
Technology diffusion patterns e 8 152
Technology diffusion rates Adophon PV  mEm Battery
0 200 400 600 800 1000 1200

PV and battery potential (GW)
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Economic

Economic Potential Battery Storage ¥,

Potential and BEk
otential an =
©) Base Case
Adopti
p 50
Economic potential is the total 0
capacity in a given year that could 2015 2020 2025 2030 2035 2040 2045 2050
return a positive NPV. A discounted 17.5 _ _ )
cash flow analysis determines the 50 Cumulative Adoption of Battery Storage
NPV. '
12.5
DER value is created through the 10.0
sum of three value streams: % i Base Case
Value created by reducing
electricity bills 20
Value of backup power 2.5
Revenue from selling excess PV 0.0

generation.

2015 2020 2025 2030 2035 2040 2045 2050
Year

NREL | 132
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1:00-1:15 Introductions & Overview

1:15-1:45 Intro to Electricity Forecasting

1:45-2:15 Load Forecasting

2:15-2:30 Break

2:30-3:00 Energy Efficiency and Demand Flexibility Forecasting
3:00-3:35 Building Electrification & Electric Vehicle Forecasting
3:35-3:50 Break

3:50-4:20 Distributed Solar & Battery Storage Forecasting
4:20-4:50 Cost Forecasting

4:50-5:00 Final Thoughts
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Cost Forecasting Methodologies and Best
Practices

BRITTANY TARUFELLI

Pacific Northwest National Laboratory
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» Scope of cost forecasting in this workshop
B Approaches applicable to O&M and capital investments for distribution systems

» Methods for cost forecasting
B Range of approaches
B Top-down approaches
B Bottom-up approaches

» Best practices in cost forecasting
B Best practices for I-X approaches
B Challenges and best practices for bottom-up approaches

e O&M
e Capital Additions

B Examples from New York Reforming Our Energy Vision
» Worked example: Benefit Cost Analysis of a Non-Wires Alternative

U.S. DEPARTMENT OF

ENERGY 135
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Billing Determinants
[ Customers } [ Sales } { Demand }
B VN W |
v ¥
T [Hevenue Fnrecast] HBI':'I?rIEbEI!:IIE'I ;;nr
A
Y 4 N
Operating Expenses Rate Base,
. . (1 - Dep.)x(Rate Base, ) + CapEx
il =—— Operations and + ( : 'I- x Rate of Return
Requirement, Maintenance ‘ Capital/investment Expenditures
Expense _
A 4 \ J
"‘ \
LW { Cost Forecast or Revenue/Rate Escalator (I-X)

U.S. DEPARTMENT OF
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» There are a range of approaches to estimate distribution system costs
B Methods vary in the granularity of the approach

Per customer

Location-specific
costs (revenue

modeling of the

distribution deECX(;lri]pll'Qg)
system EXAmEE
Bottomup O O (o) O Top down
Marginal cost Indexing methods

analysis for

distribution
system
Example

U.S. DEPARTMENT OF

ENERGY 7


https://www.puc.nh.gov/regulatory/Docketbk/2019/19-057/INITIAL%20FILING%20-%20PETITION/19-057_2019-05-28_EVERSOURCE_ATT_DTESTIMONY_NIETO_MCOSS.PDF
https://www.raponline.org/wp-content/uploads/2016/11/rap-revenue-regulation-decoupling-guide-second-printing-2016-november.pdf

Top-Down Approaches: I-X

» Rates or revenues are escalated between rate
cases with an index based on utility cost trends

» Growth in Revenue = Inflation — X
B Inflation is usually a macroeconomic indicator: GDPPI
B X Factor is a productivity offset, reflecting average
historical productivity trends for a peer group of
utilities
B Assessed with total factor productivity studies
» Utilities are compensated for important cost
drivers such as inflation and customer growth

» Best practices include that methodologies and
assumptions should be transparent enough that
the study could be reproduced, and sensitivity
analysis of key assumptions can be undertaken
to show the sensitivity of TFP to changing those
key assumptions

» See Lowry et al. (2017) for further reading

U.S. DEPARTMENT OF

ENERGY
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TFP is simply the
difference in growth rates
between a company’s
physical outputs and
physical inputs

The X Factor specifies the
rate at which inflation-
adjusted revenues or
prices must decline

The X-factor sums the difference in TFP
growth rates in the electric industry and
the rest of the economy (TFP
differential) and the difference in input
price growth rates between the rest of
the economy and the electric industry

(input price differential)

X Factor Explanation

138
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Biling Determinants * Detailed forecasting
{ Customers } [ Sales J { Demand } approach which
builds up from

S G G | 1 customers/meters/

¥
_________________ Revenue Forecast Rate Design for mOdellng Of the
i MYP Fiiings distribution system
* 1 * Used to inform

Operating Expensesy Rate Base, necessa ry
(1 - Dep.}x(Rate Base, ,) + CapEx 1
o Revenue t — e + t t x Aate of Return investments and
equirement Maintenance Electric Plant in Service ope rations and
Expense
A * maintenance

expenditures

Detailed Bottom-up Cost Forecast
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Utilities can provide:

Description of current O&M budgeting process

Five-year historical and budgeted O&M spending amounts

Forecasts for O&M budgets for the multiyear rate plan or forecast
period

Identification and documentation of driving factors when there are
large changes between historic, current, and future spending amounts

140
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Sample Questions W= Horgmzanon mpaTve

‘ Do forecasts reflect historical costs?
‘ Are deviations explained?
‘ Are test year costs unusually high?
‘ How are sporadic costs represented?
‘ For Covid-19 costs, are costs or efficiencies one-time or recurring?

‘ Are increases in cost adequately explained?

U.S. DEPARTMENT OF

ENERGY 1
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S175B
$154.78B

$150B

$12088 $1228B $127.18

51258

S100B

5758

S50B

5258

2016P 2017p

2018P 2019P 2020P

Projected Functional CapEx

EEEE gas)

2021P

2022P

Source: Edison Electric Institute (2022), reproduced

U.S. DEPARTMENT OF
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from Shenot et al. (2022)

N Generation

W Distribution

>

1 Transmission >

¥ Gas-Related

" Regulatory
Compliance

 Other

>

Distribution system spending (as a
share of total utility capital
investment) is increasing

Rapid growth in DER investment

New investments are needed to
modernize the grid

B Need for smart investment in
expensive, new technologies

Best practices to evaluate
distribution system investments are
still emerging
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Challenges in Evaluating Bottom-up Cost Forecasts

Current Distribution Planning Process

Prior Year Data .
1 Incorporated in IGP Process
l \ [ A ]
Corporate Demand
Forecast (Sales, Location-Specific Load Forecast
0 . DER, EE, EV)
» Typically, trying to :
ypl ty’ 3|/ t_g DER Hosting

evq uate SoO U Ion Substation and Capacity Review

options (capital Circuit Data (hourly) SYNERGI |

C (Distribution Power Traditional Solution

investments) from a Flow)

1 1 H Service Requests Grid Needs
larger distribution . o LoadSEER . i 1 pssecsiment
planning process L _ _
EPRI Hourly Dlscﬁij![Lon Ezpacg: oads Non-Wires
* Ircult an Anstormer overioa i i
Marketing/ Media Methodology (as * Further analysis can determine N-1 Alternative Solution
(hourly) Location-Specific needed) overloads (ie. circuit or transformer failu
DER Forecast Hosting Capacity Analysis:
* Voltage issues, DER HC issues
» Estimate of secondary upgrades,
Econhomic. Weather incorporating advanced inverter functions
Spatial Forecasts 43

U.S. DEPARTMENT OF

EN ERGY Hawaii Integrated Grid Planning (IGP) Technical Conference June 2021



https://www.hawaiianelectric.com/documents/clean_energy_hawaii/integrated_grid_planning/20210604_tech_conf_igp.pdf

=
—

Best Practices for Bottom-up Approaches: Capital Y

—
//\g MODERNIZATION INITIATIVE

Ad d iti o n S \\ U.S. Department of Energy

» While best practices, or a single best approach for bottom-up cost forecasts are still emerging,
there are two common approaches for regulators evaluating future year utility investments (Woolf
et al., 2021; Shenot et al., 2022)

Least Cost/Best Fit Benefit Cost Analysis

e Compare total costs of investment e Compare the benefits and costs of investment
alternatives, including capital costs and O&M alternatives
costs, over a defined period of time e Used to select the option that maximizes net
e |dentify options that minimize the net present benefits (benefits minus costs)
value of the revenue requirement e Considers benefits beyond reducing the
e Often used to select the least cost alternative, revenue requirement
but best fit may be selected e Often used to determine if investment will be
e Used for investments deemed necessary cost-effective
e Does not require the benefits associated with e Often used to evaluate investments in new
each investment alternative to be quantified technologies

» Requires utilities to provide enough data to perform this type of analysis
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» Some states are starting to implement useful frameworks to guide cost forecasting approaches

B New York Reforming Our Energy Vision
B Intended to provide greater transparency and visibility of electric system planning and operations

® Benefit/Cost Analysis Framework
® Distributed System Implementation Plan Framework

Identification of current reliability planning criteria
Description of current capital budgeting process

Five-year historical spending amounts for transmission, substation, and
distribution infrastructure, as well as information technologies,
communications, and shared services

Investment Plans

Five-year forecast capital budgets for the same categories above, as well as
details on upgrades required ... and projects where DER has the potential to
impact project needs

Identification of the driving factors and mitigating technologies considered,
or rejected (and an explanation of why such techniques were rejected) for
areas where there are large changes between the historic, current, and
future spending amounts

Delivery Infrastructure Capita?
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» Enables comparison of the value of benefits obtained against the costs incurred for a potential
project, quantifying the net present value of the project

Foundational Principles

~

Based on
transparent
assumptions

and
methods;
list all
benefits and
costs

.

Avoid
combining
or conflating
different
benefits and
costs

Y )

Assess
portfolios
rather than
individual
measures or
investments

Address the
full lifetime
of the
investment
while
reflecting
sensitivities
on key
assumptions

I\

J

~
Compare
benefits and
costs to
traditional
alternatives
instead of
valuing
them in
isolation

J

\_

J

Source: NY REV Benefit/Cost Analysis Framework

Methodological Approaches

» Societal Cost Test (SCT)

» Utility Cost Test (UCT)

» Rate Impact Measure (RIM)

See the California Standard Practice Manual for detail
on how to perform these tests and the National
Standard Practice Manual for Benefit-Cost Analysis of
Distributed Energy Resources for additional information
on implementing BCA for different resource types.
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Non-Wires Solution Case Study Assumptions

In this example, an electric utility is facing the need to upgrade its system infrastructure due to distribution
capacity constraints identified in a densely populated geographic area within its service territory. The utility
proposes to integrate DERs to serve as a non-wires solution in place of an infrastructure upgrade.

The NWS plan includes the following BTM DERs in residential and commercial buildings:

Energy efficiency measures (e.g., lighting and controls)
Demand response (e.g., Wi-Fi-enabled thermostats)
Distributed photovoltaics

Distributed storage systems

Jurisdiction-Specific Test: The hypothetical jurisdiction’s primary BCA test accounts for utility system, host
customer, and GHG emission impacts.

Key assumptions:

e Non-Coincident Peak: The distribution need is non-coincident with the overall system peak (e.g., the
constrained distribution feeder peaks from 1:00-5:00pm, while system peaks from 5:00—-9:00pm).

e GHG Emissions Reduction: The system-peak hours entail higher marginal emissions rates than the
NWS, which allows the NWS to deliver GHG benefits.

e  DER Operating Profiles: The NWS DERs operate in the following ways:

o All DERs are operated to reduce the distribution peak, and some can reduce the system peak as well. Source:

National Standard Practice
Manual for Benefit-Cost Analysis
of Distributed Energy Resources

o Storage charges during the distribution off-peak hours and discharges during the distribution peak hours.

o DR reduces demand during distribution peak periods and/or shifts load from distribution peak periods to
distribution off-peak periods.

o Distributed PV resources generate during a portion of distribution peak period.

o EE helps to reduce demand during distribution peak periods. | 147


https://www.nationalenergyscreeningproject.org/national-standard-practice-manual/

Worked Example: Evaluating a non-wires alternative +—~, GRI

N—
//// — MODERNIZATION INITIATIVE

i nvestme nt \\\\— U.S. Department of Energy

» Example benefits and costs:

Benefits Costs
A A
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Energy & Trans-  Distribution Host GHG Utility Host Net
Capacity mission Customers System  Customers Benefits

Source:
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Conclusion

» There are a range of approaches to estimate distribution system costs which inform
cost forecasts
B Top-down: I-X
B Bottom-up: Granular distribution system modeling resulting in detailed capital and O&M
forecasts
» Although best practices exist for evaluating top-down methods, best practices for
evaluating bottom-up methods are still emerging
B Two dominant approaches exist for evaluating current or future year investments

® Least cost/best fit
® Benefit cost analysis

B Further, states are implementing frameworks to guide the cost forecasting process and provide
more rigorous requirements for data that must be provided with proposed investments
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Contact

Brittany Tarufelli
Brittany.Tarufelli@pnnl.gov

Energy and Environment Directorate
Economics, Policy & Institutional Support
https://www.pnnl.gov/sustainable-energy

C
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Appendix: Best Practices for Top-Down (I-X) =, G
Approaches to MYP NN= 5375C0artment of Eneroy

» Total factor productivity, and the X-factor, is typically measured using index number methods

» Index number methods combine changes in diverse outputs and inputs into measures of change in
total outputs and total inputs

L L K K
Qi Sit T Sit—1 L Sit T Sit—1 Kt
InA;; —Ind;;_, = an — > lnL — > an
Growth in TFP \__}t_—_l/ - ] =1\ ] =1
Growth in Output Labor Share Capital Share

L - —

Growth in Input

» Key challenges in TFP measurement include the measurement of output, the measurement of
input—especially the concept of capital—missing or inappropriate data, and the weights used for
Indexes

» Best practices include that methodologies and assumptions should be transparent enough that the
study could be reproduced, and sensitivity analysis of key assumptions can be undertaken to show
the sensitivity of TFP to changing those key assumptions

U.S. DEPARTMENT OF

ENERGY 168



iy,

AppendiX: Benefit COSt AnalySiS \/<<\\_§ E%Dgggfﬂ'gﬂﬂgigg
» Key Steps (Shenot et al., 2022) Test Key Question Benefits/Costs
B Select the cost effectiveness test Answered Considered
e See the California Standard Societal Cost Test Will total costs to Benefits and costs
gtrgﬁggfj 'Q,Araar;ﬁgle ﬁ/lnadnthael f’\é—?t'onal society be reduced? experienced by
Benefit-Cost Analysis of Distributed society
Enerqy Resources
W Identify incremental impacts ija Utility Cost Test Will utility system Benefits and costs
proposed expenditure compared to y LOSt1es y sy _
a reference scenario without the costs be reduced? experienced by the
expenditure utility system
B Examine costs or avoided costs of
mcrge_mental Impacts. Con_S|der Ratepayer Impact Are rates likely to Benefits and costs
additional benefits or avoided costs _ .
as recommended by the cost- Measure increase or decrease  that affect utility
effectiveness test due to the rates

B [f benefits > costs, the investment is investment?
cost effective

Cost-Effectiveness Tests
Source: Adapted from NSPM (2022) 154
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1:00-1:15 Introductions & Overview

1:15-1:45 Intro to Electricity Forecasting

1:45-2:15 Load Forecasting

2:15-2:30 Break

2:30-3:00 Energy Efficiency and Demand Flexibility Forecasting
3:00-3:35 Building Electrification & Electric Vehicle Forecasting
3:35-3:50 Break

3:50-4:20 Distributed Solar & Battery Storage Forecasting
4:20-4:50 Cost Forecasting

4:50-5:00 Final Thoughts
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