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Overview of Workshop #2

► Objective: Provide an overview of and best practices associated with developing forecasts 
generally and specifically for utility load, DERs, beneficial electrification, and utility costs

► Each topic will generally cover:
◼ Commonly Applied Methods
◼ Best Practices
◼ Popular Tools
◼ Potential Scenarios
◼ Worked Examples

► Presenters will leave roughly one-third of the allotted time on each topic for Q&A
► Feel free to use the Chat feature to submit your questions during the presentation or raise your 

hand during Q&A
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► Factors that utilities consider when developing a forecast:
◼ Spatial Aggregation
◼ Time Frame
◼ Variables
◼ Forecast Purpose
◼ Algorithm/Method

► Forecasts provided to regulators
◼ Annual Energy (kWh)
◼ Peak Demand (MW)
◼ Hourly Load Profiles

► Forecast Algorithms/Methods
◼ Time Series (Econometric)
◼ Multiple linear regression
◼ Bottom-up engineering/physics based
◼ Adjustments to forecast for specific end uses
◼ Probabilistic/Scenario-based

Factors That Impact Forecast Development
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► What is the spatial aggregation?
◼ Balancing Authority
◼ Customer Class

● Residential & Commercial
● Industrial
● All of the above

◼ Feeder
◼ Building

► What time frame is the forecast for?
◼ Operational – tomorrow
◼ Planning – 1 to 10 years from now

► What variables should go into the forecast?
► How complex do we need to make the forecast method?

◼ What capacity does the utility have to build a more complex forecast?
◼ Does the forecast require an advanced approach, or is a traditional approach sufficient?

► What is the purpose of the forecast?
◼ Does the utility need to upgrade a feeder? (need to forecast peak loads below the feeder)
◼ Does the utility need more baseload power?
◼ Are customers adopting more EVs?

Factors That Impact Forecast Development
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Forecasts Provided to Regulators
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National Renewable Energy Laboratory. (2014). Commercial and Residential Hourly Load Profiles for all 
TMY3 Locations in the United States [data set]. Retrieved from https://dx.doi.org/10.25984/1788456.
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Forecasts Provided to Regulators

Probabilistic forecast
High and Low Scenarios for Peak Demand Growth
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Time Frame: Short Term

• bottom-up
• stochastic
• physics-based

• top-down
• overall trend
• economics-based

On the energy trading time scale, forecasts 
can incorporate greater detail about 
month of year and ranges of temperature 
for specific customer classes.

0
10
20
30
40
50
60
70
80
90

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12

Te
m

pe
ra

tu
re

 (F
)

En
er

gy
 (M

W
h)

Month

Residential Load

(winter peaking utility)

National Renewable Energy Laboratory. (2014). Commercial and Residential Hourly Load Profiles for all 
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Forecasts Provided to Regulators

Type of forecast:

Transmission, 
distribution upgrades

Energy Demand

Balancing Authority,
Feeder

Spatial Agg Time Frame

1-10 years

Purpose

Peak Load

Identify customer 
adoption of distributed 
resources & impacts

Hourly Profiles

MethodVariables

Low/High Scenarios
(probabilistic)

Customer Class

Customer Class, 
Building

Temperature,
Population, saturation 
of new appliances

Time Series 
Regression, 
Physics-based

1-3 years

1-3 years

Sensitivity of 
analysis to input 
variables

Population 
Growth, GDP

Area reliability, 
Multi-Year Rate Plan

Each customer class may 
see different variables

Multiple Linear 
Regression

Engineering- & 
Physics-based, 
end-use 
adjustments

all of the above:
identify possible deviations allall all
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Longer time frames must manage less information – this results in aggregating to 
larger areas and using methods that depend on fewer external variables
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Forecasts Provided to Regulators
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Shorter time frames can take advantage of richer datasets – this allows utilities to 
build models for each customer class and even buildings at a very detailed level
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► Types of aggregation:
◼ Balancing Authority
◼ Distribution Feeder
◼ Customer Class

● Residential & Commercial
● Industrial
● All of the above

◼ Building
► Residential & Commercial: components are forecasted 

separately
◼ Number of customers in each class
◼ Usage per customer

► Industrial: specific to each customer
◼ Need to consult each customer – usage typically follows set 

schedules defined by the type of industrial user
◼ Schedules change infrequently
◼ Important to forecast entry/exit of large customers (follow 

market trends)
► Disaggregated forecasts can be done separately and 

then aggregated to necessary level:
◼ Monthly customer class forecasts aggregated to annual by 

customer class
◼ Monthly customer class forecasts aggregated to monthly at 

Balancing Authority level

Spatial Aggregation

https://electricala2z.com/electrical-power/electrical-power-transmission-distribution-distribution-substation-components/
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Time Frame: Long Term

• bottom-up
• stochastic
• physics-based

• top-down
• overall trend
• economics-based

On the regulatory time scale, forecasts 
are largely built from load growth and 
overall trend of system peak.
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914–938, July–September 2016.
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► Temperature
◼ Heating Degree Days
◼ Cooling Degree Days

► Cyclic Factors
◼ Weekday/Weekend, Holidays
◼ Hour of Day
◼ Month of Year

► Demographic Factors
◼ Population Growth
◼ Household Size

► Economic Factors
◼ Employment
◼ Energy Efficiency Trends
◼ GDP
◼ Adoption of Appliances
◼ Price Elasticity

● Typical values range between 0 and -0.2, meaning 
customers will switch to using other types of energy if 
prices increase

Variables

T. Hong, P. Wang and H. L. Willis, "A Naïve multiple linear regression benchmark for short term load 
forecasting," 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 2011, pp. 1-6, doi: 
10.1109/PES.2011.6038881.
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► Temperature
◼ Heating Degree Days
◼ Cooling Degree Days

► Cyclic Factors
◼ Weekday/Weekend, Holidays
◼ Hour of Day
◼ Month of Year

► Demographic Factors
◼ Population Growth
◼ Household Size

► Economic Factors
◼ Employment
◼ Energy Efficiency Trends
◼ GDP
◼ Adoption of Appliances
◼ Price Elasticity

● Typical values range between 0 and -0.2, meaning 
customers will switch to using other types of energy if 
prices increase

Variables

Carvallo, Juan Pablo, Larsen, Peter H., Sanstad, Alan H, and Goldman, Charles A.. 
Load Forecasting in Electric Utility Integrated Resource Planning. United States: N. 
p., 2017. Web. doi:10.2172/1371722. 
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► Time series regression (Econometric)
◼ Primarily relies on past observations – “auto regressive”, 

“moving average”
◼ Can incorporate “exogenous” non-linear variables 

influenced by the economy, such as GDP, household 
income, S-curve for energy efficiency or appliance 
adoption

► Multiple linear regression
◼ Primarily relies on cross sectional variables – number of 

customers, GDP, day of week

► Bottom-up engineering/physics based

► Adjustments to forecast for specific end uses

► Ensemble / Combined Forecasts

Algorithms / Methods

Carvallo, Juan Pablo, Larsen, Peter H., Sanstad, Alan H, and Goldman, Charles A.. 
Load Forecasting in Electric Utility Integrated Resource Planning. United States: N. 
p., 2017. Web. doi:10.2172/1371722. 
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Who uses the methods?

Time Series/ 
Econometric

End-Use

Ensemble 
(Combined)

Who uses it, when? Approach

Fit an auto-regressive or moving average model to annual peak

Mid to large utilities;
to model building-level equipment 
(solar, EV, other DER)

All types of utilities, by 
customer class

(2) 
https://www.rand.org/content/dam/r
and/pubs/reports/2006/R3315.pdf

Economic variables incorporated with S-curve:

Simple average of multiple 
different forecasts

Regression for each type of customer and equipment:

Large utilities;
improves the resulting forecast by 
taking advantage of multiple 
approaches

Multiple Linear 
Regression

All types of utilities, 1 day to 1 
year hourly

Trend
Day, Month
Temperature

(1) T. Hong, P. Wang and H. L. Willis, "A Naïve multiple linear regression benchmark for short term load 
forecasting," 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 2011, pp. 1-6, doi: 
10.1109/PES.2011.6038881.

(1)

(2)

(2)

(3) Y. Wang, N. Zhang, Y. Tan, T. Hong, D. S. Kirschen and C. Kang, "Combining 
Probabilistic Load Forecasts," in IEEE Transactions on Smart Grid, vol. 10, no. 4, 
pp. 3664-3674, July 2019, doi: 10.1109/TSG.2018.2833869.

(3)



Time Series / Econometric

► Time series can be decomposed into 
cyclic trends and overall trends

► Cycles can account for weekly, monthly, 
yearly repetition

► ARIMA typically used to model overall 
trend

► Exogenous econometric variables can 
be incorporated into ARIMA model as 
additional variables (ARIMAX):
◼ customer growth with econometric 

growth model using per capita incomes
◼ employment levels
◼ electricity prices

21

Hyndman, R.J., & Athanasopoulos, G. 
(2021) Forecasting: principles and practice, 3rd 
edition, OTexts: Melbourne, Australia. 
OTexts.com/fpp3. Accessed on 1/24/23



Auto-Regressive Integrated Moving Average
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“Moving Average”: The next value will be an average of the previous several values
ARIMAX: All of the above, plus additional variables



Bottom-Up Engineering/Physics Based

► GridLAB-D (PNNL), OpenDSS (EPRI):
◼ Models physics of feeder, household, to get load shape as a function of usage patterns based on specific 

appliances
◼ Can incorporate impacts of price-sensitive appliances on hourly energy usage
◼ Models system losses and electrical engineering to simulate power flow
◼ Can model PVs and batteries at the household level

23Reiman, Andrew P., Singhal, Ankit, and Campbell, Allison M.. American-Made Challenges Round 2 
Voucher: Orison Enables Solar. United States: N. p., 2020. Web. doi:10.2172/1755441.https://sourceforge.net/projects/gridlab-d/



End-Use Models

► Directly estimate energy consumption 
by using extensive information on end 
use and end users

► Information used: weather, appliances, 
size of houses, age of equipment, 
technology changes, customer 
behavior, and population dynamics

► Require less historical data but more 
information about customers and their 
equipment

► Cons: sensitive to the amount and 
quality of end-use data

Mitchell, Ross, and Park. (1985) A Short Guide to Electric Utility Load Forecasting. The Rand Corporation. 
https://www.rand.org/content/dam/rand/pubs/reports/2006/R3315.pdf 24



Probabilistic/Scenario Based

► Probabilistic Forecasts are created by changing the 
input variable.

► Example: 
Utility needs to project peak demand by customer 
class, starting with Residential, which is highly 
sensitive to temperature
1. Use TMY (typical meteorological year) temperatures 

to project load – this is the base case
2. Use a representative “cold” weather year to project 

load – this is the “low” scenario
3. Use a representative “hot” weather year to project 

load – this is the “high” scenario
► The scenario outcomes provide a range of possible 

futures

25
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Questions regulators can ask (1)

► What type of model(s) is/are being used? 
◼ How does the utility forecast DER adoption?
◼ Are models derived from peer-reviewed publications?
◼ How does the utility select their input variables?

► What are the modeling inputs?
◼ What forecasts are utilities using as inputs to other forecasting models and how were those developed?
◼ Are potential climate change impacts to forecasts being considered and, if so, how?
◼ Are the assumptions reasonable?

● Are the assumptions objective (based on objective data, for example) or subjective (based on expert opinion, for 
example)?

● Are assumptions valid (do parameter estimates align with those found in existing research, for example)?
◼ Are proper methods and data used?

● Are methods disclosed? 
● Are they understandable?
● Is the data reliable and valid? What kind of data limitations exist?
● Is the data readily accessible?

26

Source material from Load forecasting with climate variability for transmission and distribution system 
planning, https://eta-
publications.lbl.gov/sites/default/files/combined_pnnl_and_nrel_load_and_der_forecasting_ncep_fin.pdf



Questions regulators can ask (2)

► What are the outputs?
◼ Are results replicable?
◼ How well does the model fit the data?
◼ How accurately does the model predict past outcomes compared to actual outcomes in historical data?
◼ Is the model updated based on performance? How frequently?
◼ How sensitive is the model to assumptions?

► What is the tradeoff between the cost to implement a more granular, accurate forecast vs. the 
benefits?
◼ How granular are the utility’s current forecasts?
◼ Should consultants vs. in-house modeling be used to achieve forecasting goals?

27



28

► Excel-based statistics: https://real-statistics.com/
► Online textbook Forecasting Principles and Practice: https://otexts.com/fpp3/
► Data for hourly load shapes used in this presentation:

◼ National Renewable Energy Laboratory. (2014). Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States [data set]. Retrieved 
from https://dx.doi.org/10.25984/1788456.

► Physics-based open-source models:
◼ GridLAB-D: https://sourceforge.net/projects/gridlab-d/
◼ OpenDSS: https://www.epri.com/pages/sa/opendss

► Carvallo, Juan Pablo, Larsen, Peter H., Sanstad, Alan H, and Goldman, Charles A.. Load Forecasting in Electric Utility Integrated Resource Planning. United 
States: N. p., 2017. Web. doi:10.2172/1371722. 

► T. Hong and S. Fan, “Probabilistic Electric Load Forecasting: A Tutorial Review,” International Journal of Forecasting 32 (3): 914–938, July–September 2016.
► T. Hong, P. Wang and H. L. Willis, "A Naïve multiple linear regression benchmark for short term load forecasting," 2011 IEEE Power and Energy Society 

General Meeting, Detroit, MI, USA, 2011, pp. 1-6, doi: 10.1109/PES.2011.6038881.
► Mitchell, Ross, and Park. (1985) A Short Guide to Electric Utility Load Forecasting. The Rand Corporation. 

https://www.rand.org/content/dam/rand/pubs/reports/2006/R3315.pdf
► Reiman, Andrew P., Singhal, Ankit, and Campbell, Allison M.. American-Made Challenges Round 2 Voucher: Orison Enables Solar. United States: N. p., 

2020. Web. doi:10.2172/1755441.
► Y. Wang, N. Zhang, Y. Tan, T. Hong, D. S. Kirschen and C. Kang, "Combining Probabilistic Load Forecasts," in IEEE Transactions on Smart Grid, vol. 10, no. 4, 

pp. 3664-3674, July 2019, doi: 10.1109/TSG.2018.2833869.
► R. Yang and J. Homer, “Load forecasting with climate variability for transmission and distribution system planning,” GMLC Presentation. October 2021. 

https://eta-publications.lbl.gov/sites/default/files/combined_pnnl_and_nrel_load_and_der_forecasting_ncep_fin.pdf

Resources

https://dx.doi.org/10.25984/1788456
https://sourceforge.net/projects/gridlab-d/
https://www.epri.com/pages/sa/opendss
https://www.rand.org/content/dam/rand/pubs/reports/2006/R3315.pdf
https://eta-publications.lbl.gov/sites/default/files/combined_pnnl_and_nrel_load_and_der_forecasting_ncep_fin.pdf
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Contact

Allison Campbell
allison.m.campbell@pnnl.gov
(971) 940-7109

mailto:allison.m.campbell@pnnl.gov
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Load Forecasting



Forecasting horizons and applications

► Long term
◼ Power system planning
◼ Energy policy analysis

► Medium term
◼ Maintenance and fuel planning
◼ Energy trading

► Short term
◼ Generation scheduling
◼ Economic dispatch and reliability
◼ Power system security

Source: T. Hong and S. Fan, “Probabilistic Electric Load Forecasting: A Tutorial Review,” 
International Journal of Forecasting 32 (3): 914–938, July–September 2016.

Most relevant for Public Utility Commissions



Long-term load forecasting methods

► End-use models
◼ Directly estimate energy consumption by using extensive information on end use and end users
◼ Information used: weather, appliances, size of houses, age of equipment, technology changes, customer 

behavior, and population dynamics
◼ Require less historical data but more information about customers and their equipment
◼ Cons: sensitive to the amount and quality of end-use data

► Econometric models
◼ Combine economic theory and statistical techniques
◼ Estimate the relationships between energy consumption and factors influencing consumption
◼ Factors considered: weather, per capita incomes, employment levels, and electricity prices

► Combination / Extensions
◼ Adjust econometric forecasts with technology-based projections not yet visible in historical data
◼ Marshal additional data streams (e.g., AMI, SCADA) to develop more information about customer classes and 

end-uses
◼ Downscale system-level long-term forecasts to create distribution feeder long-term forecasts and vice-versa



Transmission system forecasting

► Transmission system forecasting includes: 
◼ Long-term forecasting – one to 20 years
◼ Medium-term forecasting – one week to one year
◼ Short-term forecasting – one hour to one week

► Long-term example: Yearly, PJM issues 15-year 
load forecasts that include peak usage, net 
energy consumption, load management, and data 
on distributed solar and plug-in electric vehicles.
◼ Forecasts are provided for individual zones, load 

deliverability areas and for the RTO overall

Source: PJM Load Forecasting website

Source:  PJM 2021 Load Forecast Supplement

Source: PJM Load Forecasting website

https://learn.pjm.com/three-priorities/planning-for-the-future/load-forecasting.aspx
https://www.pjm.com/-/media/planning/res-adeq/load-forecast/load-forecast-supplement.ashx
https://learn.pjm.com/three-priorities/planning-for-the-future/load-forecasting.aspx


Traditional distribution load forecasting

► Track peak loads (using SCADA 
data)

► Evaluate each distribution feeder for 
annual growth and new loads

► Feeder load forecasts aggregated to                                        
show substation status, need for                                      
expansion

► Substations may require upgraded                               
transformers, new transformer                                                    
banks, transmission, distribution                                   
equipment

► Standard load growth projections are 
commonly included in traditional 
utility tools (e.g., CYME, Synergi, 
Milsoft)



Long-term Load Forecasting Challenges

►Distributed energy resources (covered by other presentations)
►Impact of electrification on electricity load (covered by other 

presentations)
►Interactions between load forecasts and dynamic policy environments
►Impact of climate change on electricity load
►Preparing distribution systems for demand-side change
►Planning under deep uncertainty



Interactions between load and dynamic policy 
environments



Integrated System Planning

System planning is increasingly dependent upon Integrated Resource Planning (IRP)/bulk 
power use of distributed energy resources (DER) and local sustainability and resilience plans.



Vermont Example (c. 2019)

State policy goals inform system planning objectives.



Impact of climate change on electricity load 



New Challenges for Load Forecasting – Climate 
Change

► Impact of climate change
◼ Temperature increase
◼ Precipitation, cloud, and wind 

speed patterns
◼ River flows and hydro electric 

generation

► Load forecasting
◼ Demand
◼ Peak load

► Example studies
◼ Demand projection [1]

◼ Peak load forecasting [2]

[1] P. Sullivan, J. Colman, and E. Kalendra, “Predicting the Response of Electricity Load to Climate Change,” NREL Technical Report, NREL/TP-6A20-64297, 2015.
[2] D. Burilloa, M. V. Chester, S. Pincetl, E. D. Fournier, and J. Reyna, “Forecasting Peak Electricity Demand for Los Angeles Considering Higher Air Temperatures 
Due to Climate Change,” Applied Energy 236 (15): Feb. 2019.

Load Projection in 2050 [1]



NW Power Plan Example – Downscaled Climate Data 
(Rather than Historic Data) Shifts System Peak 
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Illustration of Climate Change Shift in Monthly Peak-Hour Demand
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On average, demand 
is expected to 
decrease in winter

On average, demand is expected 
to increase in summer

1 Because this chart was created in 2019, 
historic temperatures (and therefore 
demand forecasts) for that year were not 
available.        

Dashed line represents 
monthly average peak-
hour demand based on 
historic temperatures 
from 1949-2018.

Solid line represents 
monthly average peak-
hour demand based on 
forecasted climate 
change temperatures 
for 2020-29.

From John Fazio, Northwest Power and Conservation Council, November 2021, Presentation to the National Council on Electricity Policy.

https://pubs.naruc.org/pub/02BD237C-1866-DAAC-99FB-ACC756CC4BF8
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► Climate Forecasts: Policymakers and 
planners need to understand changes in 
local weather to assess grid risks.
◼ Climate is a description of a long-run average 

over a large area, and weather is the realization 
of climate in a small geographic and time scale. 

◼ “Downscaling” is required to transform low-
resolution environmental information into high-
resolution spatial and temporal scales to assess 
grid infrastructure impacts. 

► Emerging practice: Researchers are starting 
to develop the data and techniques required 
to understand local climate and extreme 
event impacts.
◼ Directly downscale data from global climate 

models for different climate change scenarios 
(right)

◼ Systematically high wind and solar grid 
performance during extreme events (Novacheck 
et al. 2021, https://www.osti.gov/biblio/1837959)

Best practices for incorporating climate change 
impacts and evaluating resilience to extreme events 
are still evolving

Wind speed downscaling as described in Stengel et al. (2020)
https://www.pnas.org/doi/abs/10.1073/pnas.1918964117

https://www.osti.gov/biblio/1837959
https://www.pnas.org/doi/abs/10.1073/pnas.1918964117


Preparing distribution systems for demand-side 
change
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Resource planning is usually at system level

System Level vs. Distribution Level Forecasts

► Loads forecasted at a system level
► Generation meeting load at the system or 

other high aggregation level — e.g., state level
► BTM generation included in IRPs often at an 

aggregated system level
◼ Distribution system and BTM generation tend to 

be areas of low visibility
◼ Load forecasting models (listed earlier) can help 

with visibility

► A significant portion of new generation is 
connecting to the distribution system.

► To encourage more new generation to connect 
requires knowledge – where there is available 
capacity and where there are bottlenecks.

► Distribution-level data needed to assess:
◼ What is happening BTM – PV, EV, and 

electrification 
◼ What is happening BTM is uneven for many 

reasons, but equity concerns are better addressed 
if spatial disaggregation is improved.

► Some of the load forecasting tools help provide 
spatial visibility.

► Ideally, the granular distribution forecasts in 
aggregate comport with the system-level 
forecasts.

Integrated planning is at multiple levels



Load Forecasting – Current Best Practices

► Load Forecast advanced practices are granular load forecasts
◼ Granular in time – Forecasts for all 365 days x 24 hours = 8,760 hours per year

● Feeds into advanced modeling of resources
◼ Granular in space – Forecasts at the circuit and transformer level

► A diverse set of tools are used to create these forecasts 
◼ LoadSEER
◼ CYMEDIST
◼ SYNERGI
◼ GridLab-D 
◼ Econometric models 
◼ Probabilistic forecasting techniques
◼ End-use models

► Judgement and company projections can form basis of forecasts



Limitations

► Data
◼ A main limitation to forecasting granular DER adoption is the need for granular data. 
◼ Some utilities that have not yet implemented these forecasts cite the need for enhanced capabilities to 

collect and monitor granular data (such as from Advanced Metering Infrastructure, which will provide 
greater temporal and geospatial granularity).

◼ Other utilities note that data quality for substations and circuit locations has been a barrier to more 
granular load forecasting.
● Example: “Historically, data quality for substations and circuit locations has been a barrier to their use for more 

granular load forecasting due to lack of metering, meter data gaps, and abnormal system operations or 
configurations. This step required extensive use of data analytics to identify and remove load transfers, outages, 
data gaps, and data recording errors. Load transfers were of particular importance since they can be confused 
with load decreases or growth.” Central Hudson Gas & Electric Corporation’s 2020 DSIP report

► Need for enhanced probabilistic forecasting techniques
◼ Another often mentioned limitation to advancing forecasting practices is the need for enhanced 

probabilistic forecasting techniques for variabilities in weather, economic growth, proliferation of DER, 
etc.—which can all impact load.

https://documents.dps.ny.gov/public/Common/ViewDoc.aspx?DocRefId=%7b25036045-3133-4548-96CA-12AEA7734835%7d


Advanced forecasting example – National Grid

► Since 2018, National Grid has generated and published 8,760-hour feeder level 
forecasts 

► Forecasts are used for local area planning assessments and non-wires 
alternative evaluations

► A Marginal Avoided Distribution Capacity study is used to quantify the value of 
DER in targeted locations

► In-house modeling combined with GridLAB-DTM, an open-source, simulation-
based modeling environment that enables detailed power flow solutions, is used 
to generate 8,760 load profiles for every feeder

► High-performance cloud computing, such as Amazon Web Services, is used to 
improve the overall computational process

► EV charging behaviors of both residential and non-residential customers are 
simulated using the POLARIS model 

► Annual peak load forecasts incorporate projected economic and demographic 
impacts and anticipated technological advances and policy objectives 

► Future enhancements will incorporate probabilistic forecasting techniques.
https://jointutilitiesofny.org/sites/default/files/NG_2020_DSIP.pdf

https://jointutilitiesofny.org/sites/default/files/NG_2020_DSIP.pdf


Planning under deep uncertainty
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Keying off the table to the right:
► Most utility planning for the late 20th century 

through to the last couple of decades could be 
characterized as Level 1 to Level 2

► The current energy transition and climate 
change uncertainties push planning farther to 
the right, into Levels 2 – 4
◼ What will future weather be?
◼ What will future (electrified?) loads be?
◼ How much generation, balancing, and other grid 

services will be provided by DERs and other 
devices at the edge of the grid?

Long-term electricity planning is highly uncertain

Source: Walker, Warren E., Vincent AWJ Marchau, and Darren Swanson. "Addressing 
deep uncertainty using adaptive policies: Introduction to section 2." Technological 
forecasting and social change 77.6 (2010): 917-923.

https://d1wqtxts1xzle7.cloudfront.net/64269711/j.techfore.2010.04.00420200825-10926-1pejkbu-libre.pdf?1598350806=&response-content-disposition=inline%3B+filename%3DAddressing_deep_uncertainty_using_adapti.pdf&Expires=1674606848&Signature=QKiGw1YUrGDVmXWe2EIpmzI0MhHYhwJ40vDbIgFPx6i5vr8EB6vyUQupXFcLm%7EikDYf7oxFmxEUxM%7EofXHBpvuYWWcKoiQ-oSSRXDen6Qevkr5VZfgaoXXgSriI47oEc7Sop-7nk7N5V-AfdTIDwZiunTkGhJ4l4Tr1mlE%7ETXThInCPCYpsMwdVX0UzLWc8rci61DI9ZeVeuQqthovDBzfzhQrihKHZyf1LtJEqh7Jb9sRN673EBlIopkLcpM4mPJiCZcwe1%7EaHn5Be5N8GNvWdUsktOUezBN-re9rYn7oXuDnjj7dL8gnS7ruqy6DbN%7E5SdlcHALfwdFmU1SEmJnA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA


► Becoming commonplace for utilities to 
create multiple load scenarios

► For example, Xcel Energy in their 2020 IRP:

Developing and using multiple load scenarios is a 
first step to understanding what different demand-
side futures could mean for power systems

Component
High Distributed 

Solar
High 

Electrification

Gas, Power, Coal Prices - +

New Resource Capital Costs - -

Native Load Base +

EE + Base

D-PV + Base

Overall - +

IRP Futures Scenarios, adapted from Table 2-3

Source: Figure 2-12, 2020 IRP

► Additional scenarios might help to bracket 
demand-side possibilities, for example:

Component Low 
Load

High 
Load

Low 
Change

High 
Change

Native Load Base + Base +

EE + - Base +

DR + - Base +

D-PV + - Base +

EV - + Base +

D-BESS Base Base Base +

Overall -- ++ Base +
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► The figure to the right concisely 
describes how one might plan and act 
in a highly dynamic environment

► In the Xcel Energy documents I 
reviewed, there was more discussion 
of monitoring and recourse/decision 
robustness related to plant retirements 
than to demand-side change

► As some jurisdictions pursue rapid 
decarbonization, utilities and PUCs 
will need to incorporate load, DERs 
and distribution assets, not just 
generation and transmission assets, 
into these types of robust and 
dynamic decision-making frameworks

Robust decision-making frameworks could be used to 
plan for, track, and respond to demand-side change

Source: Kwakkel, Jan H., Warren E. Walker, and V. A. W. J. Marchau. "Adaptive airport 
strategic planning." European Journal of Transport and Infrastructure Research 10.3 (2010).

https://journals.open.tudelft.nl/ejtir/article/view/2891
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In the figure to the right:
► Left-side: Traditional and emerging 

numerical modeling methods
► Right-side: More qualitative methods

◼ Some (e.g., direct surveys, interviews, 
oral histories) aimed at gathering 
insights from stakeholders, who 
could be quite diverse

◼ Others (e.g., transitions theory, 
conceptual models, analogies, 
roadmaps) aimed at understanding 
and planning for what large 
changes could look like

Social science methods could help integrate insights 
from various stakeholders into energy modeling

Source: Sharmina, Maria, et al. "Envisioning surprises: How social sciences could help models 
represent ‘deep uncertainty’ in future energy and water demand." Energy Research & Social 
Science 50 (2019): 18-28.

https://www.sciencedirect.com/science/article/pii/S2214629618312544


Stakeholder processes can help raise, clarify, and 
validate the representation of key uncertainties

► Stakeholders generally asked for:
◼ Additional details and visibility into the methodologies and data sources/inputs for DER and load 

forecasting. From Orange Rockland Utilities, Inc.’s 2020 DSIP report: 
● “Describe the forecasts provided separately for key areas including but not limited to photovoltaics, energy 

storage, electric vehicles, and energy efficiency”
● “Identify where and how DER developers and other stakeholders can readily access, navigate, view, sort, filter, 

and download up-to-date load and supply forecasts”
◼ Additional scenarios and sensitivity analysis. From Orange Rockland Utilities, Inc.’s 2020 DSIP report: 

● “Provide sensitivity analyses which explain how the accuracy of substation-level forecasts is affected by DG, 
energy storage, EVs, beneficial electrification, and EE measures”

► Designated and proactive forecasting stakeholder working groups can help support understanding 
and agreement 
◼ Hawaii – Forecast Assumptions Working Group
◼ California – Distribution Forecasting Working Groups
◼ New York – NYISO Electric System Planning Working Group

https://documents.dps.ny.gov/public/Common/ViewDoc.aspx?DocRefId=%7b6F7F49E7-7C16-4524-A8EF-E98E59F9EFAA%7d
https://documents.dps.ny.gov/public/Common/ViewDoc.aspx?DocRefId=%7b6F7F49E7-7C16-4524-A8EF-E98E59F9EFAA%7d
https://www.hawaiianelectric.com/clean-energy-hawaii/integrated-grid-planning/stakeholder-engagement/working-groups/forecast-assumptions-documents
https://drpwg.org/growth-scenarios/
https://www.nyiso.com/espwg


55

Questions?



Contact 

Grid Planning and Analysis Center
National Renewable Energy Laboratory

https://www.nrel.gov/

Elaine Hale
elaine.hale@nrel.gov

(303) 384-7812

https://www.nrel.gov/
mailto:elaine.hale@nrel.gov
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Forecasting Efficiency and Demand Flexibility

Berkeley Lab
Natalie Mims Frick

This presentation was funded by the U.S. Department of Energy’s
Office of Electricity and Building Technologies Office. 



Agenda

► Two approaches to forecast energy efficiency (EE), demand response (DR) and demand flexibility 
(DF)
◼ Potential studies
◼ Use EE and other distributed energy resources (DERs) as selectable resources

► Interactions between potential studies and load forecasts
► Questions states can ask 



Resource potential assessments

► The objective of EE and DF potential assessments is to 
provide accurate and reliable information on:
 Quantity of EE and DF available 
 Timing of availability (e.g., new construction, stock turnover)
 EE and DF measure cost 
 Load or savings shape 

NIPSCO 
estimated four 
types of 
potential in 
their 2021 
Market 
Potential Study 
for electric and 
gas efficiency.  

Source: NIPSCO

https://www.nipsco.com/docs/librariesprovider11/rates-and-tariffs/irp/2021-nipsco-irp-appendix-b.pdf?sfvrsn=1ae0251_6


Typically, an EE or DF forecast is developed in a 6-step 
process.

► Step 1 – Estimate technical potential on a per application basis (i.e., savings per unit)

► Step 2 – Estimate economic potential on a per application basis (i.e., levelized cost per unit) based on 
“avoided cost” of a “proxy” resource or capacity expansion model marginal resource analysis

► Step 3 – Estimate number of applicable units (account for physical limits, retirements, new 
construction, etc.)

► Step 4 – Estimate economic potential for all applicable units

► Step 5 – Estimate economically achievable potential for all realistically achievable units

► Step 6 – Reduce the load forecast provided to the capacity expansion model by the amount of 
economically achievable savings (determined in Step 5) before the model is used to “optimize” supply 
side resources

6262



An alternative to forecasting EE and DF from potential 
studies is to consider them as selectable resources 
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► Integrated Resource Planning (IRP) is intended to evaluate multiple resource portfolio 
options in an organized, holistic, and technology-neutral manner and normalize 
solution evaluation across generation, distribution, and transmission systems and 
demand-side resources.

► In this framework, DERs are a decision variable directly comparable to amounts and 
timing of generation options. This allows for consideration of relative cost and risk 
across the broadest array of potential solutions.

► Modeling energy efficiency and other DERs as resource options for bulk power 
systems can support many state objectives, including greater reliability and resilience, 
reduced electricity costs, achieving energy efficiency and renewable energy targets, 
and lower air pollutant emissions. 



The process and order are different when considering EE and 
DF as selectable resources in IRPs.

► Step 1 – Estimate technical potential on a per application basis (i.e., savings per unit)

► Step 2 – Estimate number of applicable units (account for physical limits, retirements, 
new construction, etc.)

► Step 3 – Estimate technical potential for all applicable units

► Step 4 – Estimate achievable potential for all realistically achievable units

► Step 5 – Estimate economic potential for all realistically achievable units by competing 
EE and DR against supply side resources in capacity expansion modeling*

*Any Energy Efficiency Resource Standard (EERS) requirements are 
typically modeled as “must build” resources. Only additional increments 
above EERS requirements compete against generating resources in 
capacity expansion modeling.



What is an efficiency supply curve? 

► EE potential is comprised of hundreds of 
measures.

► IRP models cannot simulate individual 
efficiency measures, so they are grouped 
together.

► Supply curves for EE (and other DERs) 
are usually represented as the amount of 
resource potential available in discrete 
“bundles” or “bins.”

Source: NWPC Draft 8th Plan 

Methods to Incorporate Energy Efficiency 
in Electricity System Planning and Markets

https://www.nwcouncil.org/2021powerplan_conservationpotential


Example: Georgia Power EE bundling approaches 

Source: Georgia Power

https://psc.ga.gov/search/facts-document/?documentId=185485


Example: Northwest Power and Conservation Council DR 
supply curve

Source: NWPCC

https://www.nwcouncil.org/2021powerplan_demand-response-rpm-input-parameters/


Several states and utilities considering efficiency as a 
selectable resource in long-term electricity planning*
► California 

◼ 2021 Energy Efficiency Potential and Goals Study
◼ Staff Proposal for Incorporating Energy Efficiency into 

the SB 350 Integrated Resource Planning Process
► Georgia 

◼ Georgia Power - Supply-Side Representation of 
Energy Efficiency Resources in the Georgia Power 
IRP Model

► Hawaii 
◼ Hawaiian Electric Company Integrated Grid Plan

► Idaho 
◼ Idaho Power – 2nd Amended 2019 IRP

► Indiana
◼ Duke Energy – 2020 IRP
◼ Vectren
◼ IPL/AES – 2019 IRP 
◼ NIPSCO 
◼ I&M 

► Louisiana 
◼ Entergy New Orleans - 2018 IRP

► Missouri 
◼ Ameren 2020 IRP 

► Minnesota 
◼ Xcel Energy /Northern States Power 2020 IRP

► Northwest Power and Conservation Council 
◼ Draft 8th Power Plan 

► PacifiCorp (CA, OR, WA, WY, UT)
◼ 2021 IRP

► Tennessee
◼ Tennessee Valley Authority - 2019 IRP

► Washington 
◼ Puget Sound Energy – 2021 IRP
◼ Avista – 2021 IRP

68

*These are the states/utilities that I am aware of - please let me know if you see an omission.

https://pda.energydataweb.com/#!/documents/2531/view
https://pda.energydataweb.com/#!/documents/2083/view
http://psc.ga.gov/search/facts-document/?documentId=185485
https://www.hawaiianelectric.com/clean-energy-hawaii/integrated-grid-planning
https://docs.idahopower.com/pdfs/AboutUs/PlanningForFuture/irp/2019/SecondAmended2019IRP.pdf
https://www.in.gov/iurc/files/IURC-CTIC-DEI-EE-Bundles-07152021.pdf
https://www.in.gov/iurc/files/2019-IPL-IRP-Public-Volume-1_121619.pdf
https://cdn.entergy-neworleans.com/userfiles/content/IRP/2018_Integrated_Resource_Plan_Report.pdf?_ga=2.36297632.1891874748.1633717924-953264423.1633717924
https://www.ameren.com/-/media/missouri-site/files/environment/irp/2020/ch8-demand-side-resources.pdf?la=en-us-mo&hash=672DDBD28E1AD2765175E76B280CC32F284290B0
https://www.xcelenergy.com/staticfiles/xe-responsive/Company/Rates%20&%20Regulations/The-Resource-Plan-No-Appendices.pdf
https://www.nwcouncil.org/2021-northwest-power-plan
https://www.pacificorp.com/energy/integrated-resource-plan.html
https://www.tva.com/environment/environmental-stewardship/integrated-resource-plan
https://pse-irp.participate.online/2021-IRP/Reports
https://www.myavista.com/about-us/integrated-resource-planning


Challenges with potential studies

► Data inputs to the potential study must be robust. Common shortcomings with potential studies 
include:
◼ Not using accurate load shapes 
◼ Not accounting for variations in interactions between DERs
◼ Not accounting for variations in interactions between DERs and existing and future utility system 

resources
◼ Not accounting for all benefits, including distribution and transmission system capacity impacts

► Using efficiency and other DERs as selectable resource overcomes some of these shortcomings.



Each measure assigned the applicable energy savings load 
shape or end use load shape
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Example: Illinois end-use load profiles

Source: ResStock

https://resstock.nrel.gov/datasets


Treating EE and DR as selectable resources in a capacity 
expansion model permits optimization between these 
resources
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Treating EE and DR as selectable resource options in a 
capacity expansion model permits optimization across 
supply side and demand side resources
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Source: Northwest Power and Conservation Council, 7th Power Plan

https://www.nwcouncil.org/reports/seventh-power-plan


Example: Value of residential air-conditioning measure varies 
based on avoided costs included in analysis
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EE and DF potential interact with the load forecast

► EE and DF forecast interact with the load forecast in both approaches.
◼ The more common approach uses the EE or DF potential to reduce the load forecast.
◼ Considering EE or DF as a selectable resource requires planners to know the quantity of the 

resource in the load forecast and the quantity the model can select. 
► Internal consistency between the load forecast and EE and DF potential assessments is necessary to 

avoid the potential for over or under estimating remaining EE and DF potential.
◼ Baseline use and efficiency assumptions should be equivalent.
◼ “Units” (e.g., houses, commercial floor space, appliance counts) should be identical.

► Emerging issues such as electrification impact the load forecast. 
◼ Replacing an electric resistance heater with an air source heat pump that is more efficient will 

reduce electricity consumption. 
◼ Replacing a gas heater with an air source heat pump will increase electricity consumption. 
◼ It is important to understand where this data is used in the analysis (e.g., load forecast, potential 

study, both, neither) for consistency.



Example: NIPSCO includes building electrification in their 
load forecast, but not their potential study. 

► NIPSCO considers the impact of efficient HVAC in their potential study for electric and gas 
customers, but there is no consideration of fuel switching.

► NIPSCO considers the impact of building electrification in their Economy Wide Decarbonization
load forecast scenario.

Source: NIPSCO IRP

https://www.nipsco.com/docs/librariesprovider11/rates-and-tariffs/irp/2021-nipsco-integrated-resource-plan.pdf


Example: National Grid includes building electrification in 
their EE and DR potential study

Source: MA EEAC

https://ma-eeac.org/wp-content/uploads/Appendix-C-Potential-Studies.pdf


Questions states can ask

► How are utilities in your state modeling EE, DR and other DERs today?
► Are the EE and other DER potential studies assumptions clearly provided? Are the load forecast 

and EE and other DER forecasts aligned? 
► What state policy or regulatory changes are needed to facilitate consideration of EE, DR and other 

DERs as selectable resources in electricity planning? 



Resources for more information

Berkeley Lab’s research on time- and locational-sensitive value of DERs

U.S. Department of Energy. 2021. A Roadmap for Grid-interactive Efficient Buildings. Prepared by Andrew Satchwell, Ryan Hledik, Mary Ann 
Piette, Aditya Khandekar, Jessica Granderson, Natalie Mims Frick, Ahmad Faruqui, Long Lam, Stephanie Ross, Jesse Cohen, Kitty Wang, 
Daniela Urigwe, Dan Delurey, Monica Neukomm and David Nemtzow

Natalie Mims Frick, Tom Eckman, Greg Leventis, and Alan Sanstad. Methods to Incorporate Energy Efficiency in Electricity System Planning 
and Markets. January 2021

State and Local Energy Efficiency Action Network. 2020. Determining Utility System Value of Demand Flexibility from Grid-Interactive Efficient 
Buildings. Prepared by: Tom Eckman, Lisa Schwartz, and Greg Leventis, Lawrence Berkeley National Laboratory. 
https://emp.lbl.gov/publications/determining-utility-system-value

Natalie Mims Frick, Snuller Price, Lisa Schwartz, Nichole Hanus, and Ben Shapiro. Locational Value of Distributed Energy Resources

Natalie Mims Frick, Juan Pablo Carvallo and Lisa Schwartz. Quantifying reliability and resilience impacts of energy efficiency: Examples and 
opportunities

Natalie Mims Frick, Juan Pablo Carvallo and Margaret Pigman. Time-sensitive Value of Efficiency Calculator

Fredrich Kahrl, Andrew D Mills, Luke Lavin, Nancy Ryan, Arne Olsen, and Lisa Schwartz (ed.). The Future of Electricity Resource Planning. 
2016. Berkeley Lab’s Future Electric Utility Regulation report series.

Berkeley Lab and NREL’s End Use Load Profiles for the U.S. Building Stock project

https://emp.lbl.gov/projects/time-value-efficiency
https://gebroadmap.lbl.gov/
https://emp.lbl.gov/publications/methods-incorporate-energy-efficiency
https://emp.lbl.gov/publications/determining-utility-system-value
https://emp.lbl.gov/publications/locational-value-distributed-energy
https://emp.lbl.gov/publications/quantifying-reliability-and
https://emp.lbl.gov/publications/time-sensitive-value-efficiency
https://emp.lbl.gov/projects/feur/
https://emp.lbl.gov/publications/end-use-load-profiles-us-building-0
https://www.nrel.gov/buildings/end-use-load-profiles.html
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Lawrence Berkeley National Laboratory

Building Electrification Forecasting: 
Best Practices and Case Studies
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► Current state of building electrification forecasting
► Methodological approaches for forecasting building 

electrification
◼ Scenario analysis-based approaches 
◼ Adoption model-based approaches

► Scenario analysis case study
◼ Guidehouse scenarios developed for U.S. DOE’s Energy 

Emissions, and Equity (E3) Initiative
► Adoption model case study

◼ ISO-NE ASHP adoption forecast
► Future research needs

Agenda

Photo by Izuddin Helmi Adnan on Unsplash



► Methods and approaches for forecasting building 
electrification are less well developed than for 
other DERs (e.g., EVs, PV)

► Challenge of lack of data/evidence  regarding 
consumer decision-making for building 
electrification

► Primary approaches include scenario-based 
analyses with varying assumptions and statistical-
based analyses (diffusion models, regressions)

► Most approaches rely on expert judgment of how 
broader economic/policy environment will influence 
consumer choice

► In many cases, forecasts rely on published 
scenarios from research for different regions/states

Current state of building electrification forecasting

83
Photo by Shea Rouda on Unsplash



► Granular/technology-rich estimates of baseline 
stock characteristics

► Prescriptive scenarios developed based on 
combination of expert judgment and current 
trends (economic/regulatory)

► Bottom-up accounting and multi-sectoral 
representation

► Geographical resolution: national/regional

Methodological approaches: Scenario Analyses
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Source: NREL Electrification Futures Study (Mai et al., 2018)Source: S&P Global Market Intelligence



Source: PGE 2022 Distribution System Plan

► Granular/technology-rich estimates of 
baseline stock characteristics

► Statistical/modeling approach based on select 
input parameters (e.g., Bass diffusion model)

► Often rely on expert judgment to determine 
modeling parameters

► Geographical resolution: utility/municipal 
service territory

Methodological approaches: Adoption Models
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Source: Final 2022 Heating Electrification Forecast (ISO-NE, 2022)
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Scenarios case study: Guidehouse E3 Initiative 
Scenarios of Heat Pump Adoption
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Scenarios case study: Guidehouse E3 Initiative 
Scenarios of Heat Pump Adoption
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Scenarios case study: Guidehouse E3 Initiative 
Scenarios of Heat Pump Adoption

Conservative 
Scenario

Optimistic 
Scenario

Aggressive 
Scenario

Most Aggressive 
Scenario

Segment Representative 
Equipment

2019 HP 
Sales 

Market 
Share (US)

2019 
Shipments

Segment Share 
of Total 

Shipments 
2019 (All 

Categories)

2030 Sales 
Market 
Share

2050 Sales 
Market 
Share

2030 Sales 
Market 
Share

2050 Sales 
Market 
Share

2030 Sales 
Market 
Share

2050 Sales 
Market 
Share

2030 Sales 
Market 
Share

2050 Sales 
Market 
Share

Residential Space 
Heating

Central ducted 
furnace+AC / HP 37% 7,500,000 47% 45% 61% 50% 76% 63%* 85% 75% 90%

Residential 
Water Heating

Storage water 
heater 1% 7,880,000 50% 10% 30% 20% 60% 40%* 75% 50% 85%

Commercial 
Space Heating Rooftop unit 9% 220,000 1% 15% 27% 20% 42% 25% 66% 30% 85%

Commercial 
Water Heating

Storage water 
heater 0.10% 240,000 2% 3% 20% 5% 30% 7% 45% 10% 50%

U.S. Total Sales Shares (Weighted Average of Unit Shipments) 27% 44% 34% 67% 50% 79% 61% 87%



► Approach considers potential pathways to 
space and water heating electrification based 
on existing building stock characteristics as 
well as state policy and economic 
considerations

► Adoption forecasts based on a Bass diffusion 
model with following input parameters:
– Return on Investment (ROI)
– State-level policy
– Barrier indicator
– Current levels of technology saturation

► Uncertainty in the evolution of ROI and policy 
impacts over the forecast horizon is reflected 
via a Monte Carlo simulation

Quantitative case study #2: ISO-NE ASHP adoption
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Source: Final 2022 Heating Electrification Forecast (ISO-NE, 2022)
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► Assess what is currently understood about the 
various drivers of and impact on customer adoption 
of electrification technologies (heating, water heating, 
cooking)

► Develop analytical frameworks to improve the 
representation of adoption
◼ Include the identification of key drivers of adoption of 

electrification technologies 
◼ Develop quantitative assessment of these drivers’ 

impacts on adoption
► Assess how the key drivers of adoption of 

electrification technologies affect the adoption of 
other technologies (e.g., EVs, PV)

► U.S. DOE’s DECARB research project – scoping 
study for building electrification adoption

Future Research Needs

Photo by Shea Rouda on Unsplash
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Pacific Northwest National Laboratory

EV Forecasting:
Best Practices and Case Studies
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► Major components of EV load
► Load shape considerations
► Major modeling approaches
► Commonly used models
► Model examples

EV Load Forecasting Agenda



93

Electric Vehicle Load Forecasting Overview

Stock Forecast EV Charging 
Patterns

EV Charging Load 
Profile

t
• Number of Vehicles – price, 

income, access to charging, 
incentives (state, federal)

• Type of Vehicles –
consumer preferences (size, 
range), what they can afford

- impact - differing charging 
rates, energy consumption, 
ranges 0

500

1000

1500

2000

9/27 10/27 11/27 12/27 1/27 2/27

2032 Stacked Hourly Load at the 
Primary Meter (kWh)

Building load Uncoordinated EV Bus Charging Profilenoon12 am 12 am
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ra

ge Rate plans
E21(3-6) EZ3
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E26 Res TOU
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8000
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Images reproduced from EPRI http://mydocs.epri.com/docs/PublicMeetingMaterials/ee/000000003002013754.pdf
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► Two major approaches: 

EV Stock Forecasting Modeling Approaches

T
o
p

D
o
w
n

Start with a 
regional EV stock 

forecast

Estimate EV stock 
at local or circuit 

level

Scale-
down

Population 
weighting

B
o
t
t
o
m

U
p

Use only data in 
the planning  

areas (i.e., circuit 
level) of concern 
to forecast stock

Approach Pros Cons

Top 
Down

•Easier because of  
data availability

•More robust
•Good for 
generalizations 
and overall 
movement of the 
market

•Often difficult to 
scale-down when 
average system
characteristics are 
not the same as the 
circuit

•Difficult to evaluate 
policy impacts on 
load

Bottom 
Up

•Potentially more 
accurate because 
you are basing 
the forecast on 
actual customer 
characteristics 
and preferences.

•Data for new 
technologies may not 
be available

•Errors as micro level 
are amplified at 
macro level when 
scaling up

1 2
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Three categories of commonly used adoption models relevant to EVs:
1. Consumer preference models - Describe behaviors regarding consumer choice based on known or discovered 

consumer preferences
 Discrete choice models – predict choices between two or more discrete alternatives, i.e., deciding to purchase an EV or internal 

combustion engine (Top-down approach)
 Agent based models – used to study interactions between people, things, places, and time. Data intensive (Bottom-up 

approach). 
2. Propensity models – a set of approaches to building predictive models based on past behavior, e.g., identify 

the characteristics of customers who purchased a hybrid vehicle
 Random forest – machine learning algorithm; based on multiple decision trees built over a random extraction of observations 

from the dataset
3. Diffusion models - All use the common ‘S’ shaped adoption curve based on diffusion of innovation (Rogers)

 Include Bass, Gompertz, Weibull, and Logistic

Types of Models Used for Either Approach

Practical Customer Segmentation (stock considerations)
Light Duty Vehicles

◼ Residential, commercial
Med- & Heavy-Duty Vehicles

◼ Commercial fleets, truck transportation
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How some major labs and utilities forecast EV stock
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Aggregate EV adoption illustration using diffusion 
models 

Starting point 
- EV vehicle 
registrations

Shape 
determined by 
model type 

Saturation points – somewhat 
deterministic
- Known no. of registrants and 
population growth rates
-Driven by state ZEV targets 
-Income distributions
-Charging accessibility

• Start with the end-points
• Curve shape driven by the 

type of model – usually Bass, 
Logistic, Gompertz

t

Scenarios:
Low – Bass model solves 
endogenously (Normal 
market activities)
Medium – ZEV goals 
assuming some 
competitive 
technologies
High - EV targets 
according to state goals

Ad
op

tio
n 

Ra
te

Car Groups (i.e., Tesla, 
Leaf, PEV hybrid)
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Customer EV distribution at the circuit-level 
produced from a discrete choice model

 Creates a household probability of adoption based on housing type or 
income. Uses Monte Carlo simulation to distribute EVs to remaining 
households

 Projections of EV adoption by households that can be located on the 
map for distribution planning

 Adoption model can be calibrated to local, regional, state EV goals  

• Indicates EV vehicle

2040

*simulation based on PNNL’s work for SCE

2030 20502040
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► The full model uses trip data and varying EV adoption levels to 
estimate charging demand, infrastructure requirements, and 
the resulting impact on the grid

► EVI-Pro Lite is a simplified web interface that can be used to 
get reasonable estimates of charging infrastructure needs for 
different US cities or states
◼ https://afdc.energy.gov/evi-pro-lite

► Learn more about EVI-Pro here:
◼ https://www.nrel.gov/transportation/evi-pro.html

Electric Vehicle Infrastructure Projection Tool:
EVI-Pro

Sample Aggregated EVSE Load Profile

Departure Arrival Destination
7:00 AM 7:45 AM Public
9:30 AM 10:30 AM Public

12:45 PM 3:00 PM Public
4:00 PM 5:00 PM Home

Travel Data

Driver A
None
None
None

Home L2

Driver C
Public DCFC

None
None
None

Driver B
None

Public L2
None

Home L2

Simulated Charge Events

Public L2

Home L2
Public DCFC

Driving, 
Charging 

Simulations

https://afdc.energy.gov/evi-pro-lite
https://www.nrel.gov/transportation/evi-pro.html


100

Grid load smoothing potential with V2X

Bi-directional flow of energy between EV and grid/home

Electric Vehicle Service Equipment
EV Battery as DER

Utilities, such as PNM are starting to plan 
for V2G, V2H, V2X capability in buildings, 
to use batteries as a grid resource. 

Utilities are performing V2G pilots:
• Snohomish PUD - testing V2G with two 

Nissan Leafs SnoPUD V2G microgrid
• Duke – testing five Ford f-150 Lightning 

trucks Duke eTrucks as grid resource
• ConEdison – V2G pilot with five Lion 

electric school buses ConEd Bus V2G 
Demonstration

https://www.power-grid.com/renewable-energy/snopud-microgrid-is-a-glimpse-into-a-v2g-future/#gref
https://news.duke-energy.com/releases/illuminating-possibility-duke-energy-and-ford-motor-company-plan-to-use-f-150-lightning-electric-trucks-to-help-power-the-grid
https://lpdd.org/resources/coned-electric-school-bus-v2g-demonstration-project/
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► What does the future of EV ownership in the region look? How might this be informed by historical 
adoption or other regional trends?

► How far are EV owners driving? How much do they need to charge?

► Where and when are they charging? How powerful are the chargers (level 1, 2, or 3)?

► What is the concentration of EV ownership? How will this impact grid for those areas?

► Are workplaces providing charging?

► Are there EV fleets with high VMT that would require frequent charging?

Relevant questions for EV charging load forecasting
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asatremeloy@lbl.gov
christine.holland@pnnl.gov

Questions?

mailto:asatremeloy@lbl.gov
mailto:christine.holland@pnnl.gov


► EVs
◼ Electric Power Research Institute (EPRI)

● Identifying Likely Electric Vehicle Adopters
● The Impact of Incentives on Electric Vehicle 

Adoption
◼ EVI-Pro Lite 

● https://afdc.energy.gov/evi-pro-lite
◼ EV Sales data (global) from IEA

● https://www.iea.org/reports/electric-vehicles
◼ EV Station utilization estimates

● https://www.sciencedirect.com/science/article
/pii/S136192092200390X

► Building Electrification
◼ NREL Electrification Futures Study

● Scenarios of Electric Technology Adoption and 
Power Consumption for the United States

◼ Portland General Electric (PGE) Distribution 
System Plan
● Chapter 6. Plug and play: enabling DER adoption

◼ Cadmus Group
● The Building Electrification Primer for City-Utility 

Coordination
◼ E3

● Residential Building Electrification in California: 
Consumer economics, greenhouse gases, and grid 
impacts

◼ NPCC
● https://www.nwcouncil.org/sites/default/files/7thplan

final_chap07_demandforecast_1.pdf
● https://www.nwcouncil.org/sites/default/files/7thplan

final_appdixj_demrspnse_1.pdf

Additional Examples, Resources, and Links
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mailto:https://www.epri.com/research/products/000000003002017550
mailto:https://www.epri.com/research/products/000000003002014473
https://afdc.energy.gov/evi-pro-lite
https://www.iea.org/reports/electric-vehicles
https://www.sciencedirect.com/science/article/pii/S136192092200390X
mailto:https://www.nrel.gov/docs/fy18osti/71500.pdf
mailto:https://assets.ctfassets.net/416ywc1laqmd/5GhnOUe5oejThQMtdvP7nt/a01a807098da288defaa12d3af97966e/DSP_2021_Report_Chapter6.pdf
mailto:https://www.usdn.org/uploads/cms/documents/city-utility_building_electrification_primer_final_pdf.pdf
mailto:https://www.ethree.com/wp-content/uploads/2019/04/E3_Residential_Building_Electrification_in_California_April_2019.pdf
https://www.nwcouncil.org/sites/default/files/7thplanfinal_chap07_demandforecast_1.pdf
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► To inform utilities’ investments in other energy-
system infrastructure such as transmission and 
distribution infrastructure. 

► To better understand supply requirements and thus 
to manage associated financial risks by quantifying 
the net change in electricity consumption offset by 
DER generation 

► To optimally integrate DERs into the grid to maintain 
system functionality generally and especially during 
extreme grid conditions

► To develop and drive policies to 
achieve decarbonization and climate goals

Why DERs adoption forecasting? 

systematically mis-forecasting DPV adoption over multiple 
successive planning cycles increases the present value of utility 
system costs by up to $7 million per terawatt-hour (TWh) of 
electricity sales, relative to utility system costs under a perfect 
forecast 
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► System size / capacity 

► Total number of systems  

► Location of adoption (Feeder, Tract-level, County, Utility 
territory, County, and etc.) 

► Time horizon of the adoption 

► Generation profile

► Consumption pattern and user behavior

What are we forecasting? 

Sigrin, Ben, Paritosh Das, Meghan Mooney, Ashreeta Prasanna, Dylan Harrison-
Atlas, Jane Lockshin, Katy Waechter, Brady Cowiestoll, Paul Denholm, and Sam 
Koebrich. 2021. “Chapter 4: Customer-Adopted Rooftop Solar and Storage.” In 
The Los Angeles 100% Renewable Energy Study, edited by Jaquelin Cochran and 
Paul Denholm. Golden, CO: National Renewable Energy Laboratory. NREL/TP-
6A20-79444-4. https://www.nrel.gov/docs/fy21osti/79444-4.pdf.
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► There are numerous methods to forecast adoption in the 
academic literature and in use 

► These methods can be studied using three different 
lenses. 

◼ The approach used for building the model, i.e., a top-down 
approach or a bottom-up approach. 

◼ The model specification: the relationship between the 
indicators and the outcome. Theory driven vs. Data Driven

◼ Assessing the capability of the model. E.g., adaptability of 
the model. Can the model for PG&E customers be adapted 
for Xcel customers? 

Different approaches to understand a model
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► Uses macro-level indicators to model market 
forecasts

► Aggregated- historical data is sufficient to develop 
these models. 

► Two classes of top-down models are popularly used 
to forecast DER deployment—time series, and Bass 
diffusion. 
◼ Time-series models extrapolate from historical data to 

infer future outcomes. They are the simplest 
specification to use because they only require past 
observations, though typically are only useful in near-
term forecasting.

◼ Bass models are among the most widely used 
specifications because they are simple to 
parameterize and are intended to simulate diffusion of 
new technologies. (Dong et al., 2017) 

Modeling Approach: Top-down Models

Image credit: https://www.qad.com/blog/2022/08/diffusion-of-
innovation-how-adoption-of-new-ideas-spreads

Source: TELLO, A., LEE, W. G., & 
CARLINO, R. Drivers of Innovation. 
https://emp.lbl.gov/sites/default/files/i
nnovativeness_across_technologies_an
d_domains.pdf

https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib11
https://www.qad.com/blog/2022/08/diffusion-of-innovation-how-adoption-of-new-ideas-spreads
https://emp.lbl.gov/sites/default/files/innovativeness_across_technologies_and_domains.pdf
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► Bottom-up approach uses micro-level 
indicators to model individual forecasts, 
which are then aggregated into a market 
forecast.

► Micro-level indicators represent the traits of 
a fairly granular unit—typically an individual 
or a household, but it can also be a small 
spatial area such as a block—within the 
marke

► Common bottom-up approaches include: 
◼ Econometric models (Bernards et al., 

2018; Davidson et al., 2014; Dharshing, 
2017)

◼ Agent-based models (Rai and Henry, 
2016; Rai and Robinson, 2015; Sigrin et al., 
2016;)

◼ Machine learning models (Zhang et al., 
2016)

Modeling Approach: Bottom-up Models 

R. Bernards, J. Morren and H. Slootweg, "Development and Implementation 
of Statistical Models for Estimating Diversified Adoption of Energy Transition 
Technologies," in IEEE Transactions on Sustainable Energy, vol. 9, no. 4, 
pp. 1540-1554, Oct. 2018, doi: 10.1109/TSTE.2018.2794579.

https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib7
https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib8
https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib9
https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib31
https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib34
https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib35
https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib48
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► Bottom-up approach uses micro-level 
indicators to model individual forecasts, 
which are then aggregated into a market 
forecast.

► Micro-level indicators represent the traits of 
a fairly granular unit—typically an individual 
or a household, but it can also be a small 
spatial area such as a block—within the 
marke

► Common bottom-up approaches include: 
◼ Econometric models (Bernards et al., 

2018; Davidson et al., 2014; Dharshing, 
2017)

◼ Agent-based models (Rai and Henry, 
2016; Rai and Robinson, 2015; Sigrin et al., 
2016;)

◼ Machine learning models (Zhang et al., 
2016)

Modeling Approach: Bottom-up Models 

Moglia, M., Cook, S., & McGregor, J. (2017). A review of Agent-Based Modelling of technology 
diffusion with special reference to residential energy efficiency. Sustainable Cities and Society, 
31, 173-182.

https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib7
https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib8
https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib9
https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib31
https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib34
https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib35
https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib48


Theory-driven Models Data-driven Models

► Theory-driven models impose a relationship 
between the indicators and the outcome based 
on a theory of individual or market behavior. 

► Theory-driven models are diagnostic in nature 
and can help decision makers understand the 
drivers and barriers of DER adoption/non-
adoption while also serving as a tool for 
evaluating the impact of different policy 
interventions. 

► The drawback wit theory driven model include 
the need to establish the theoretical linkage and 
collecting necessary data concerning the 
indicators variables

► Data-driven models, on the other hand, are 
agnostic and ideally expose hidden 
relationships in the data that explain 
outcomes better than theory. 

► This is the foundation of machine learning, 
which has demonstrated superior predictive 
accuracy compared with theory-driven 
approaches 

► Data-driven models have several drawbacks 
including: requiring large amounts of data, 
susceptibility to overfitting, and decreased 
interpretability.

Relationship between indicators and outcomes

113
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► It is also important that models are adaptable, scalable, 
and have sufficient spatial resolution, all while 
remaining sensitive to changing policy contexts, 
incentives, and techno-economic conditions. 

► Rai and Robinson (2015) present a highly granular 
agent-based model of residential solar PV adoption at 
the scale of a utility service territory (Austin, Texas). 
Their model incorporates not only economic but also 
physical and social household-level determinants of 
residential PV adoption. While the model is calibrated 
and validated across multiple outcomes, computational 
cost and data requirements make this model difficult to 
scale and adapt to different geographies. 

► Williams et al. (2020) models annual PV installations as 
a function of net present value for five different 
international regions (three U.S. states and two 
countries). Given regional economics, the model is 
adaptable and highly scalable; however, spatial 
resolution of the model is quite coarse.

Capability of the model

Household 
level data

Survey data 
specific to 

Austin 
households 

Rai and Robinson (2015)

Williams et al. 
(2020)

https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib34
https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib43
https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib34
https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib43
https://www.sciencedirect.com/science/article/pii/S2589004222006526#bib43
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What category would the models fit? 

Bass Model 

Agent Based Model

Econometric Model 

• Approach
• Theory vs. Data driven
• Capability
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Models Bottom-up vs. Top-Down Theory-Driven vs. Data-Driven Model scalability and Robustness

Bass Model Top-down Theory-driven Yes

Econometric Model Bottom-up / Top-down Theory Driven/ Data-Driven Depends – data requirement 

Agent Based Model Bottom-up Theory Driven No – data and computational 
requirement 

Summary 

Models Data Requirement Policy Analysis

Bass Model Low: Historic adoption Minimal

Econometric Model Moderate: Historic adoption + 
Independent variables 

Moderate – can test the effect of the 
independent variables on adoption (e.g., 
price of solar panels)

Agent Based Model High: Historic adoption + 
Independent variables (open 
sourced and surveys)

Maximum – not only test independent 
variable effect but also understand 
impact of attitudes, behavior and 
informational aspects e.g., peer effects. 
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► The motivations for commercial or industrial consumers to adopt solar and storage are very 
different from residential consumers. Particularly, the attitudinal, emotional, and social and 
person norms-based motivations are prevalent among residential consumers.

► Models that forecasts solar-only adoption will be different to solar and storage co-adoption. The 
motivations for co-adoptions are currently being explored. 

► Researchers use hybrid methods to solve the shortcomings from each modeling type described 
in the presentation.   

Other salient aspects to consider 
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► Knowing the difference between technical 
potential, economic potential and market 
potential. 

► Understanding the difference helps constrain 
the model and perform sanity checks. 

► For rooftop residential solar 
◼ Technical potential – calculated as the total 

suitable roof available via Lidar 
◼ Economic potential – of the technical potential 

what percentage of the population has a 
positive NPV 

◼ Market potential – include policy impacts e.g., 
tax credits when calculating NPV 

◼ Adoption – consider what % of the population 
with market potential that would adopt. 

Other salient aspects to consider 
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► These three questions help deduce the capability of the model using the summary table presented 
in the slide above. 
◼ What is the modeling approach top-down or bottom-up? 
◼ Is the model theory-driven or data-driven 
◼ Is the model scalable/adaptable to other regions? 

► Other detailed questions include: 
◼ What is the geographic resolution of the model? 
◼ What is the temporal resolution of the model? 
◼ Has the model been validated using historic data? How was the validation performed? 
◼ What policy intervention can one test with the model? (e.g., effect of tariff design, incentives) 
◼ If the model developed is using a bottom-up approach, identify the capability of the model 

● Can the model use complex utility rate design 
● How is solar system size calculated for each household? Is it constrained based on roof availability 
● Has current and expected future incentives and rebates captured?  
● What scenarios for storage dispatch assumptions? 

Relevant questions for Solar and Storage adoption 
Forecasts
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Questions?

ASHOK SEKAR
asekar@nrel.gov
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► B. Sigrin, M. Gleason, R. Preus, I. Baring-Gould, R. Margolis. Distributed generation Market Demand model (dGen): documentation. No. 
NREL/TP-6A20-65231 https://doi.org/10.2172/1239054 (2016)

► C. Davidson, E. Drury, A. Lopez, R. Elmore, R. Margolis. Modeling photovoltaic diffusion: an analysis of geospatial datasets. Environ. 
Res. Lett., 9 (2014), p. 074009

► C. Dong, B. Sigrin, G. Brinkman. Forecasting residential solar photovoltaic deployment in California. Technol. Forecast. Soc. 
Change, 117 (2017), pp. 251-265, 10.1016/j.techfore.2016.11.021
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► R. Bernards, J. Morren, H. Slootweg. Development and implementation of statistical models for estimating diversified adoption of 
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Overview of dGen Model

The Distributed Generation Market Demand 
(dGenTM) model simulates customer adoption of 
distributed energy resources for residential, 
commercial, and industrial entities in the United 
States or other countries through 2050.
• Consumer decision-making based on cost-

effectiveness of technology
• Identification of drivers of adoption by analysis of 

multiple scenarios
• Hybrid model that combines agent-based 

methodological framework and bass model. 



Methodology Steps

Data Preparation
1. Develop a database of potential solar adopters 

(“agents”) 
2. Estimate Technical Potential: Assess rooftop solar 

feasibility for each agent using LiDAR data. 

Adoption Modeling
For each agent, year, and scenario:
3.    Estimate Economic Potential: Determine solar 

capacity that maximizes agent net present value using 
5.3% weighted average cost of capital. Scenarios varied 
PV cost projections and tariff structures.

4.    Estimate Adoption Probability: Assess adoption 
probability using a Bass Diffusion model and household 
propensity modeling. 

Rooftop Technical 
Potential

Rooftop Economic 
Potential

Rooftop Adoption 
Estimate
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Statistical-based agent generation

Household or Parcel-level agents 
can also be developed
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Assessing Rooftop Solar Technical Potential

Clockwise:
(1) Raw LiDAR imagery 

of buildings

(2) Developable area 
estimated for each 
building in dataset, 
then aggregated at 
regional level

(3) Suitability based 
on roof plane 
orientations, tilt, 
size, and shading
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Solar Technical Potential

• REPLICA data set provides 
tract-level estimates of 
residential rooftop solar 
potential by income, tenure, 
and building type

• Annual U.S. residential solar 
potential is 1000 TWh (roughly 
75% of residential electricity 
consumption) (794 GW)

• LMI opportunity is 416 TWh, 
nearly half (42%) of total 
annual residential solar 
potential

• Average household potential is 
8,553 kWh nationally

County-level technical potential for low and moderate 
income households
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Load Profiles
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Retail Tariff

Energy Charge components are shown in table below, the 
schedule is shown in the figure (right).  

https://apps.openei.org/IURDB/rate/view/62d06f573f6b437e6929e75a#2__Demand

Example rate from URDB

1) Utility rate database (or)
2) Custom rates 



NREL    |    129

Five Variants of Sizing Decisions

Sizing Ratio (%)

Net Present Value ($)
100%

Size = 100%; Tariff-constrained
1) “I want more PV”

Size = 0%; Tariff-constrained
2) “PV is uneconomic for me”

Size = 0%; Roof-constrained
3) “My roof is unsuitable”

Size = 0-100%; Roof-constrained
4) “I want a bigger roof”

Size = 0-100%; Tariff-constrained
5) “I’m getting the best I can”

0%

Optimal Sizing 
Ratio

Sizing Ratio = Annual system generation(kWh)
Annual end−user consumption (kWh)

Calculated using 
NREL’s System 
Advisor Model
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Market Potential 

Using consumer surveys, relate the system payback 
to the fraction of consumers that would adopt 
solar1,2. 

Maximum market share is paired with a Bass 
Diffusion model to simulate aggregate adoption 
over time. The aggregate adoption is then 
disaggregated to individual agents based on their 
predicted probability

These values used to 
estimate market adoption 
(deployment) from 
economic potential

1 Dong & Sigrin 2019; 2 Paidipati et al. 2008
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Results from Solar Future Study
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Economic 
Potential  and 
Adoption
Economic potential is the total 
capacity in a given year that could 
return a positive NPV. A discounted 
cash flow analysis determines the 
NPV.

DER value is created through the 
sum of three value streams:
1. Value created by reducing 

electricity bills 
2. Value of backup power
3. Revenue from selling excess PV 

generation.

Economic Potential Battery Storage

Cumulative Adoption of Battery Storage
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4:20-4:50 Cost Forecasting
4:50-5:00 Final Thoughts
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Pacific Northwest National Laboratory

Cost Forecasting Methodologies and Best 
Practices
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► Scope of cost forecasting in this workshop
◼ Approaches applicable to O&M and capital investments for distribution systems

► Methods for cost forecasting
◼ Range of approaches
◼ Top-down approaches
◼ Bottom-up approaches

► Best practices in cost forecasting
◼ Best practices for I-X approaches
◼ Challenges and best practices for bottom-up approaches

● O&M
● Capital Additions

◼ Examples from New York Reforming Our Energy Vision
► Worked example: Benefit Cost Analysis of a Non-Wires Alternative

Overview of Cost Forecasting Workshop
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Scope of Cost Forecasting in this Workshop
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► There are a range of approaches to estimate distribution system costs
◼ Methods vary in the granularity of the approach

Bottom-up Approaches to Cost Forecasts

Location-specific 
modeling of the 

distribution 
system

Marginal cost 
analysis for 
distribution 

system

Per customer 
costs (revenue 

decoupling)

Indexing methods
Bottom up Top down

Example

Example

https://www.puc.nh.gov/regulatory/Docketbk/2019/19-057/INITIAL%20FILING%20-%20PETITION/19-057_2019-05-28_EVERSOURCE_ATT_DTESTIMONY_NIETO_MCOSS.PDF
https://www.raponline.org/wp-content/uploads/2016/11/rap-revenue-regulation-decoupling-guide-second-printing-2016-november.pdf
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► Rates or revenues are escalated between rate 
cases with an index based on utility cost trends

► Growth in Revenue = Inflation – X
◼ Inflation is usually a macroeconomic indicator: GDPPI
◼ X Factor is a productivity offset, reflecting average 

historical productivity trends for a peer group of 
utilities

◼ Assessed with total factor productivity studies
► Utilities are compensated for important cost 

drivers such as inflation and customer growth
► Best practices include that methodologies and 

assumptions should be transparent enough that 
the study could be reproduced, and sensitivity 
analysis of key assumptions can be undertaken 
to show the sensitivity of TFP to changing those 
key assumptions

► See Lowry et al. (2017) for further reading

Top-Down Approaches: I-X

The X Factor specifies the 
rate at which inflation-
adjusted revenues or 
prices must decline

The X-factor sums the difference in TFP 
growth rates in the electric industry and 

the rest of the economy (TFP 
differential) and the difference in input 
price growth rates between the rest of 
the economy and the electric industry 

(input price differential)

TFP is simply the 
difference in growth rates 

between a company’s 
physical outputs and 

physical inputs

X Factor Explanation
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Bottom-up Approaches: Detailed Cost Forecast

• Detailed forecasting 
approach which 
builds up from 
customers/meters/
modeling of the 
distribution system

• Used to inform 
necessary 
investments and 
operations and 
maintenance 
expenditures



Best Practices for Bottom-up Approaches: O&M

Description of current O&M budgeting process

Five-year historical and budgeted O&M spending amounts

Forecasts for O&M budgets for the multiyear rate plan or forecast 
period

Identification and documentation of driving factors when there are 
large changes between historic, current, and future spending amounts

140

Utilities can provide: 



Best Practices for Bottom-up Approaches: O&M 
Sample Questions

Do forecasts reflect historical costs?

Are deviations explained?

Are test year costs unusually high?

How are sporadic costs represented?

For Covid-19 costs, are costs or efficiencies one-time or recurring?

Are increases in cost adequately explained?

141
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► Distribution system spending (as a 
share of total utility capital 
investment) is increasing

► Rapid growth in DER investment
► New investments are needed to 

modernize the grid
◼ Need for smart investment in 

expensive, new technologies
► Best practices to evaluate 

distribution system investments are 
still emerging

Challenges in Evaluating Bottom-up Cost Forecasts

Projected Functional CapEx
Source: Edison Electric Institute (2022), reproduced 

from Shenot et al. (2022)



Challenges in Evaluating Bottom-up Cost Forecasts

► Typically, trying to 
evaluate solution 
options (capital 
investments) from a 
larger distribution 
planning process

Hawaii Integrated Grid Planning (IGP) Technical Conference June 2021

https://www.hawaiianelectric.com/documents/clean_energy_hawaii/integrated_grid_planning/20210604_tech_conf_igp.pdf
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Best Practices for Bottom-up Approaches: Capital 
Additions

► While best practices, or a single best approach for bottom-up cost forecasts are still emerging, 
there are two common approaches for regulators evaluating future year utility investments (Woolf 
et al., 2021; Shenot et al., 2022) 

► Requires utilities to provide enough data to perform this type of analysis

Least Cost/Best Fit

• Compare total costs of investment 
alternatives, including capital costs and O&M 
costs, over a defined period of time

• Identify options that minimize the net present 
value of the revenue requirement

• Often used to select the least cost alternative, 
but best fit may be selected

• Used for investments deemed necessary
• Does not require the benefits associated with 

each investment alternative to be quantified

Benefit Cost Analysis

• Compare the benefits and costs of investment 
alternatives

• Used to select the option that maximizes net 
benefits (benefits minus costs)
• Considers benefits beyond reducing the 

revenue requirement
• Often used to determine if investment will be 

cost-effective
• Often used to evaluate investments in new 

technologies
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ns Identification of current reliability planning criteria
Description of current capital budgeting process
Five-year historical spending amounts for transmission, substation, and 
distribution infrastructure, as well as information technologies, 
communications, and shared services
Five-year forecast capital budgets for the same categories above, as well as 
details on upgrades required … and projects where DER has the potential to 
impact project needs
Identification of the driving factors and mitigating technologies considered, 
or rejected (and an explanation of why such techniques were rejected) for 
areas where there are large changes between the historic, current, and 
future spending amounts

NY REV: DSIP Framework 

► Some states are starting to implement useful frameworks to guide cost forecasting approaches
◼ New York Reforming Our Energy Vision 
◼ Intended to provide greater transparency and visibility of electric system planning and operations

● Benefit/Cost Analysis Framework
● Distributed System Implementation Plan Framework

http://documents.dps.ny.gov/public/Common/ViewDoc.aspx?DocRefId=%7b0B599D87-445B-4197-9815-24C27623A6A0%7d
https://documents.dps.ny.gov/public/Common/ViewDoc.aspx?DocRefId=%7bF8C835E1-EDB5-47FF-BD78-73EB5B3B177A%7d
http://documents.dps.ny.gov/public/Common/ViewDoc.aspx?DocRefId=%7bB1C7035C-B447-459A-8957-20BF3BDB6D0F%7d
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► Enables comparison of the value of benefits obtained against the costs incurred for a potential 
project, quantifying the net present value of the project

NY REV: Benefit Cost Analysis Framework

Foundational Principles

Based on 
transparent 
assumptions 

and 
methods; 

list all 
benefits and 

costs

Avoid 
combining 

or conflating 
different 

benefits and 
costs

Assess 
portfolios 

rather than 
individual 

measures or 
investments

Address the 
full lifetime 

of the 
investment 

while 
reflecting 

sensitivities 
on key 

assumptions

Compare 
benefits and 

costs to 
traditional 

alternatives 
instead of 

valuing 
them in 
isolation

Methodological Approaches
► Societal Cost Test (SCT)
► Utility Cost Test (UCT)
► Rate Impact Measure (RIM)

See the California Standard Practice Manual for detail 
on how to perform these tests and the National 
Standard Practice Manual for Benefit-Cost Analysis of 
Distributed Energy Resources for additional information 
on implementing BCA for different resource types.

Source: NY REV Benefit/Cost Analysis Framework

https://www.raponline.org/wp-content/uploads/2016/05/cpuc-standardpractice-manual-2001-10.pdf
https://www.nationalenergyscreeningproject.org/national-standard-practice-manual/
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Worked Example: Evaluating a non-wires alternative 
investment

Source: 
National Standard Practice 
Manual for Benefit-Cost Analysis 
of Distributed Energy Resources

https://www.nationalenergyscreeningproject.org/national-standard-practice-manual/


148

► Example benefits and costs:

Worked Example: Evaluating a non-wires alternative 
investment

Source: 
National Standard Practice Manual for Benefit-Cost Analysis of Distributed Energy Resources

https://www.nationalenergyscreeningproject.org/national-standard-practice-manual/
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► There are a range of approaches to estimate distribution system costs which inform 
cost forecasts
◼ Top-down: I-X
◼ Bottom-up: Granular distribution system modeling resulting in detailed capital and O&M 

forecasts
►Although best practices exist for evaluating top-down methods, best practices for 

evaluating bottom-up methods are still emerging
◼ Two dominant approaches exist for evaluating current or future year investments

● Least cost/best fit
● Benefit cost analysis

◼ Further, states are implementing frameworks to guide the cost forecasting process and provide 
more rigorous requirements for data that must be provided with proposed investments

Conclusion



Questions?
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Contact
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Brittany Tarufelli
Brittany.Tarufelli@pnnl.gov

Energy and Environment Directorate
Economics, Policy & Institutional Support
https://www.pnnl.gov/sustainable-energy

https://www.pnnl.gov/sustainable-energy
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Appendix: Best Practices for Top-Down (I-X) 
Approaches to MYP

► Total factor productivity, and the X-factor, is typically measured using index number methods
► Index number methods combine changes in diverse outputs and inputs into measures of change in 

total outputs and total inputs

► Key challenges in TFP measurement include the measurement of output, the measurement of 
input—especially the concept of capital—missing or inappropriate data, and the weights used for 
indexes 

► Best practices include that methodologies and assumptions should be transparent enough that the 
study could be reproduced, and sensitivity analysis of key assumptions can be undertaken to show 
the sensitivity of TFP to changing those key assumptions
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Appendix: Benefit Cost Analysis

► Key Steps (Shenot et al., 2022)
◼ Select the cost effectiveness test

● See the California Standard 
Practices Manual and the National 
Standard Practice Manual for 
Benefit-Cost Analysis of Distributed 
Energy Resources

◼ Identify incremental impacts of a 
proposed expenditure compared to 
a reference scenario without the 
expenditure

◼ Examine costs or avoided costs of 
incremental impacts. Consider 
additional benefits or avoided costs 
as recommended by the cost-
effectiveness test

◼ If benefits > costs, the investment is 
cost effective

Test Key Question 
Answered

Benefits/Costs 
Considered

Societal Cost Test Will total costs to 
society be reduced?

Benefits and costs 
experienced by 
society

Utility Cost Test Will utility system 
costs be reduced?

Benefits and costs 
experienced by the 
utility system

Ratepayer Impact 
Measure

Are rates likely to 
increase or decrease 
due to the 
investment?

Benefits and costs 
that affect utility 
rates 

Cost-Effectiveness Tests
Source: Adapted from NSPM (2022) 

https://www.cpuc.ca.gov/-/media/cpuc-website/files/uploadedfiles/cpuc_public_website/content/utilities_and_industries/energy_-_electricity_and_natural_gas/cpuc-standard-practice-manual.pdf
https://www.nationalenergyscreeningproject.org/national-standard-practice-manual/
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Contact 
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https://emp.lbl.gov/
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