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Abstract: Building energy consumption accounts for 36% of the overall energy end use worldwide
and is growing rapidly as developing countries continue to urbanize. Understanding the energy use at
urban scale will lay the foundation for identification of energy efficiency opportunities to be deployed
at speed. China has almost half of global new constructions and plays an important role in building
suitability. However, an open source national building energy consumption database is not available
in China. To provide data support for building energy consumptions, this paper used a simulation
method to develop an urban building energy consumption database for a pilot city in Wuhan, China.
First, residential, small, and large office building archetype energy models were created in EnergyPlus
to represent typical building energy consumption in Wuhan. The baseline reference model simulation
results were further validated using survey data from the literature. Second, stochastic simulations
were conducted to consider different design parameters and occupants’ energy usage intensity
scenarios, such as thermal properties of the building envelope, lighting power density, equipment
power density, HVAC (heating, ventilation and air conditioning) schedule, etc. A building energy
consumption database was generated for typical building archetypes. Third, data-driven regression
analysis was conducted to support quick building energy consumption prediction using key high-
level building information inputs. Finally, a web-based urban energy platform and an interface
were developed to support further third-party application development. The research is expected to
provide fast energy efficiency building design solutions for urban planning, new constructions as
well as building retrofits.
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1. Introduction

By 2050, 66% of the world’s population will live in urban areas [1], making urbanization one of
the critical themes and challenges in this century. This is the case especially for some Asian countries,
such as China, where city boundaries are expanding with numerous new constructions every year.
China has contributed to approximately 50% of the world’s new constructions since 2010 [2]. Rapid
global urbanization has resulted in significant increases in energy consumption, greenhouse gas
emissions, pollutant emissions, and widespread environmental degradation. Urban areas account for
67–76% of global energy use and 71–76% of CO2 emissions [3]. Cities around the world are searching
for strategies to reduce energy consumption and to become green and low-carbon cities, and enhance
their resilience in a changing climate.

Building energy consumption accounts for 36% of the global final energy use in 2017, and this
number is much higher in urban areas [4,5]. In the U.S., national level building energy consumption
databases have been developed and regularly updated to represent actual building energy usage
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levels. For example, the Residential Energy Consumption Survey (RECS) and Commercial Buildings
Energy Consumption Survey (CBECS) collect energy-related building characteristics and energy usage
information [6,7]. However, this kind of open source national building energy consumption database
is not available in China.

To better understand building energy consumption in urban areas, besides survey and
measurement, urban datasets and urban-scale building energy consumption platforms have been
developed based on urban-scale building energy simulations. Urban-scale building energy simulation
can play an essential role in sustainable urbanization, allowing planners and policy makers to develop
planning strategies using the lens of energy performance.

A research group from the college of Architecture at Georgia Institute of Technology developed a
GIS-based urban building energy modeling system, called Urban-EPC. It includes four main models: the
Data Preparation Model, the Pre-Simulation Model, the Main Simulation Model and the Visualization
and Analysis Model. This Urban-EPC tool also uses physics models and calculates the hourly heat
balance of the whole building. It contains three categories of building vintage (based on the construction
year), each of which includes 16 building types representing most of the commercial buildings across
16 US climate zones. The development team also conducted a case study for Manhattan. They obtained
the building footprint data from New York city planning database with references to Google Earth 3D
building [8].

The sustainable design lab at Massachusetts Institute of Technology (MIT) also developed an
Urban Building Energy Model (UBEM) for Boston to estimate citywide hourly energy demands at the
building level. In this project, the geometric input for Boston was also extracted from GIS shapefiles
into the Rhinoceros 3D V5 CAD environment, and a total of 76 different building archetypes were
then assigned to individual buildings based on land use and building age. Bayesian calibration was
applied to update the probability distributions of uncertain parameters in archetype descriptions
using monthly and annual measured energy usage data. EnergyPlus was used to simulate the energy
consumption results of individual building models. The urban energy use pattern of different times
of the day is visualized and overlaid with the Boston map. The tool can help local communities
to evaluate energy related decisions and building retrofit strategies to reduce building energy use.
They also predicated future scenarios, including solar photovoltaic (PV) penetration, and demand
response strategy implantation [9,10].

Lawrence Berkeley National Laboratory (LBNL) developed and released a web-based urban-
scale building stock simulation platform, called City Building Energy Saver (CityBES). It is designed to
support building retrofit analysis. CityBES uses an open standard, CityGML, to represent the 3D city
models, and then it categorizes buildings into different types, including small/medium/large offices,
hotels, schools, and hospitals. For each type of these buildings, CityBES generates baseline EnergyPlus
simulation models based on the cities’ building datasets and user-selected energy conservation
measures (ECMs). There are three main layers: the data layer, the simulation algorithms and software
tools layer, and the use-cases layer. The neighborhood buildings in CityBES are modeled as shading
surfaces in EnergyPlus to consider the shading interactions between buildings. Simulation results,
such as energy use intensity (EUI), can be color-coded and mapped to the 3D buildings with the GIS
database. A case study using CityBES for San Francisco shows a potential retrofit site energy saving of
23–38% per building [11].

In addition, the Oak Ridge National Laboratory and National Renewable Energy Laboratory have
also developed urban scale simulation tools, called AutoBEM and URBANopt, respectively [12,13].
They used similar approaches: generate baseline building energy models for each building type as
a template, categorize buildings in the area of interest into corresponding archetype and link to the
template results, map the simulation results to a GIS platform for visualization. This method can
provide quick design support for large scale energy decision making based on archetype data, without
running detailed building energy simulation.
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However, the above case studies are based mainly on simulation results. It is important to validate
the numerical simulations using ground truth building energy survey data and consider occupants’
energy usage behavior. Furthermore, the case studies are for large cities in the US, where rapid
urbanization has almost been completed. Due to rapid urbanization, China has a large percentage of
new constructions. Meanwhile, old buildings with different years of building exist in the same urban
region. The building age variation could be as high as several decades. As they were subject to different
building design standards/codes, the same type of building, if built in different years, could show very
different building consumption profiles. Therefore, building vintage is a key parameter to consider.
However, open-source building energy models for typical archetypes have not been well developed in
China. It is important to develop an updated urban-scale building energy consumption platform for
China, to understand both the spatial and temporal urban energy system.

This paper shows our efforts on building archetype development for the urban energy simulation
platform. Three main archetype buildings (residential building, small office building, and large office
building) are created and demonstrated in this paper with the following innovations.

• Develop reference building energy models for residential, small office, and large office building
types in Wuhan, China, considering different vintages and unique HVAC usage patterns

• Create an application programming interface (API) for Wuhan to support urban building energy
platform development.

2. Reference Building Models

Currently, there are no open sourced well-developed reference building models in China.
Residential and office building are selected for prototype development in this paper because these two
types of buildings are the top two largest building stocks in China, with a percentage of 73% and 9%,
respectively [14].

Working with local project partners, the most popular configurations and geometries for residential
buildings as well as office buildings were collected through a survey. Figure 1 shows the geometry of a
typical residential building. It is a 10-story apartment building with a total building area of 7836 m2.
According to the different orientation, each floor is divided into nine thermal zones: eight apartment
units, and one corridor. The floor area of each apartment is about 88 m2.
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Figure 2 shows the most popular geometries of a typical small office building (left) and a large
office building (right). The small office building has three floors and the large office has eighteen floors.
Each floor has four external zones and one core zone. The total building areas are 8176 m2 for the small
office and 26,142 m2 for the large office, respectively.
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Figure 2. Geometries of reference office buildings (left: small office, right: large office).

Key building design parameters, such as the building envelope’s thermal properties, lighting
power density, equipment load density, HVAC system and schedules, were defined based on the
corresponding residential and commercial building design standards [15,16].

Based on the survey, the HVAC systems for these three building types are different. Residential
and small office buildings use ductless mini-split heat pumps for heating and cooling, while large
office buildings use chillers and cooling towers for cooling and boilers for heating.

To capture the average energy usage level, the China Residential Energy Consumption Survey
(CRECS) data were used to determine the heating and cooling schedules for residential and small
office building. The CRECS was conducted by Renming University in 2012. The CRECS2012 includes
residential appliance usage and electricity consumption data from 1450 residential buildings across 26
provinces in China [17]. Valid instances numbering 218 from the hot summer and cold winter climate
zone (where Wuhan is located) were used to calibrate the baseline residential model. Figure 3 shows
the number of heating days in winter and the number of cooling days in summer, respectively. It can
be observed that most people only use heating for less than one month in winter, and use cooling
for one to two months in summer. Compared with cooling, the residents seem to be more tolerant
of heating. Figure 4 shows the daily distribution of heating and cooling hours. It shows that most
people use heating or cooling for less than 5 h per day. The heating and cooling schedules (days/year
and hours/day) as well as the temperature setpoints of the reference buildings were adjusted to be the
average values according to the survey data.
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The baseline reference buildings were developed using EnergyPlus software. EnergyPlus is an
open source simulation engine for whole building energy consumption [18]. It was developed and
is supported by the U.S. Department of Energy. EnergyPlus has been widely used and validated
by researchers and designers. It is a console-based program, not a user interface. Some graphical
interfaces for EnergyPlus, such as DesignBuilder and OpenStudio, are also available. Since the inputs
and outputs for EnergyPlus are all text-based, users can easily edit the information to develop a
customized system and run parametric simulations using scripts. The detail settings of each model are
summarized in Table 1.
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Table 1. Baseline EnergyPlus model settings.

Input
Parameters Unit Small

Office
Large
Office

Residential
Building Reference

External wall
insulation W/m2

·K 0.597 0.597 0.88

Residential building:
DB42T-559-2013 [10];
Small and large office

buildings:
GB50189-2015 [11]

Roof insulation W/m2
·K 0.399 0.399 0.447

Ground floor
insulation W/m2

·K 0.253 0.253 1.2

External
Windows W/m2

·K 2.6 2.6 2.7

Infiltration rate ACH 1 1 1

Lighting power
dentistry W/m2 9 9 Apartment: 4.2,

Corridor: 1.8

Equipment
power density W/m2 15 15 Plug load: 2,

Kitchen: 5

Occupancy
density m2/person 10 10 2

Infiltration rate 1/h 1.0 1.0 1.0

HVAC system -
Mini-split

air
conditioner

Chiller +
Natural gas

boiler

Mini-split air
conditioner

Survey data [12]
Heating/Cooling

setpoints
◦C 20.5/23.5 20.5/23.5 18/26

Heating Schedule - 9:00–12:00,
1/1–2/14

8:00–15:00,
1/1–2/14

19:00–22:00,
1/1–2/14

Cooling Schedule - 12:00–16:00,
7/18–8/31

10:00–17:00,
7/18–8/31

18:00–22:00,
7/18–8/31

Wuhan’s hourly weather data were used to simulate annual building energy consumption [19].
Figure 5 shows the simulation results of a baseline residential building. The simulated total
building electricity consumption is 27.8 kWh/m2. It can be observed that heating and cooling
energy consumptions only account for approximately 30% of the total annual electricity consumption.
People tend to use the heat pumps only when the weather is too cold or too hot, to reduce their
electricity bills. The occupants’ behavioral energy saving patterns can be found.
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Figure 6 shows the distribution of electricity consumption in the hot summer and cold winter
climate zone from the CRECS survey. The mean value (25.8 kWh/m2) matches well with the EnergyPlus
simulation result, which further validates the reference building model. It is of note that the electricity
consumption is expected to be 35.3 kWh/m2 (37% higher than the actual mean value) in the Guideline
for Energy Consumption Quota of Civil Buildings in Wuhan [20]. Therefore, it is critical to consider
occupants’ energy use behavior and reflect the actual energy usage when making regional building
energy consumption standards.
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Similarly, the HVAC schedules of small office and large office buildings were calibrated using
the survey data. The annual energy consumptions were simulated in EnergyPlus. Figure 7 shows
the simulation results. The total electricity consumption is 61.0 kWh/m2 for the small office and
130.9 kWh/m2 for the large office.

1 
 

 
Figure 7. Reference office building electricity consumptions [kWh/m2] (top: small office, bottom:
large office).
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3. Stochastic Simulations

After the reference building models were validated, stochastic simulations were conducted to
consider different building design variations for the urban building energy consumption database
development. Eight different design parameters, such as the building envelope’s thermal properties,
infiltration, heating and cooling schedules, lighting power density, and equipment power density,
were considered to cover different constructions, building design scenarios and the occupant’s energy
usage patterns.

To differentiate building vintage, three levels (high, medium, and low) of building envelopes were
studied by grouping U factors of different parts (external wall, slab, roof, and glass). The building
geometry was kept constant to represent the most common configuration in Wuhan.

To reflect the actual energy saving behavior of the occupants and better capture different energy
usage patterns, thirteen heating and cooling schedules were proposed. The schedule information was
derived based on statistical analysis of the actual building energy data from CRECS. The data from
the CRECS energy consumption survey was ranked from low to high. Level of 5% means the top
5% from the ranking. It represents the most efficient energy usage, in terms of heating and cooling
hours per day and days per year. Level of 95% represents the least efficient energy usage (bottom
5% from the ranking). It is assumed that the lighting and plug/equipment loads are coupled with
heating/cooling schedules, since people’s energy saving behavior is consistent. Other energy usage
profiles can be interpolated.

Figure 8 shows the stochastic cases of the residential building. In total, 117 design scenarios were
considered. The combination of residential building baseline model is highlighted in yellow. In a
similar way, 117 small office and 117 large office EnergyPlus models were generated to cover different
energy use intensity scenarios for office buildings.Energies 2020, 13, x FOR PEER REVIEW 9 of 17 
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4. Results and Discussion

Stochastic simulations were performed using EnergyPlus. Figure 9 shows the annual energy
simulation results of residential buildings. It is of note that the energy consumptions are based on
pure stochastic simulations defined in Section 3, assuming a uniform distribution of the 117 parametric
design scenarios of each building type without any additional weighting factor. In reality, there may
be less people in the very low (left) and very high (right) energy consumption ranges. To get a more
realistic energy consumption distribution, we collected Wuhan’s housing price (for residential building)
and rent (for office building) information and adjusted the energy distribution accordingly. Figure 10
shows the housing price distribution of 18,864 residential buildings in Wuhan.
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Furthermore, a data-driven regression model was developed to predict building energy
consumption. Suggested by local urban planners and energy policy makers, building’s price/rent and
vintage were chosen to be the two key independent variables for the regression model.

Various machine learning algorithms were applied to the dataset to compare prediction accuracy.
However, due to the very limited number of inputs, more complex algorithms did not show much
advantage. Finally, linear regression models were selected, because of their robustness and high
prediction accuracy. Tables 2–4 show the regression functions for residential, small office and large
office buildings, respectively.
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Table 2. Regression functions for residential buildings.

Item Regression Function [kWh/m2] R2

total electricity (0.0034× price− 29.2658) × (1 + F) 0.93
heat electricity (0.0005× price− 3.4929) × (1 + F) 0.77
cool electricity (0.0006× price− 5.4794) × (1 + F) 0.92
light electricity (0.001× price− 9.406) × (1 + F) 0.95
equip electricity (0.0013× price− 10.7288) × (1 + F) 0.95

fan electricity (0.00005× price− 0.1587) × (1 + F) 0.89
equip gas (0.0012× price− 9.941) 0.95

where

F =


0, i f year = 2010

0.0245, i f year = 2000
0.0603, i f year = 1990

Table 3. Regression functions for small office buildings.

Item Regression Function [kWh/m2] R2

total electricity (2.2161× rent− 62.4217) × (1 + F) 0.97
heat electricity

(
1.9× 10−5

× rent3
− 3.82× 10−5

× rent2 + 0.37× rent− 7.21
)
× (1 + F) 0.81

cool electricity (0.2944× rent− 10.2555) × (1 + F) 0.95
light electricity (0.7× rent− 19.4252) × (1 + F) 0.97
equip electricity (1.2163× rent− 33.7546) × (1 + F) 0.97

fan electricity (0.0057× rent− 0.1856) × (1 + F) 0.96

where

F =


0, i f year = 2010

0.0119, i f year = 2000
0.0228, i f year = 1990

Table 4. Regression functions for large office buildings.

Item Regression Function [kWh/m2] R2

total electricity (1.4117× rent + 21.5392) × (1 + Fele) 0.86
heat electricity

(
10−6

× rent− 7× 10−5
)
× (1 + Fele) 0.88

cool electricity (0.0811× rent + 26.5387) × (1 + Fele) 0.83
light electricity (0.4711× rent− 11.3829) × (1 + Fele) 0.84
equip electricity (0.7851× rent− 18.9715) × (1 + Fele) 0.84

fan electricity (0.0549× rent + 18.6239) × (1 + Fele) 0.65
pump electricity (0.0027× rent + 1.0361) × (1 + Fele) 0.84

heatRej electricity (0.0169× rent + 5.6949) × (1 + Fele) 0.82
heat gas (0.0692× rent + 16.2071) ×

(
1 + Fgas

)
0.80

where

Fele =


0, i f year = 2010

0.0204, i f year = 2000
0.0245, i f year = 1990

, Fgas =


0, i f year = 2010

0.0544, i f year = 2000
0.0847, i f year = 1990

To better illustrate our methods and make it easy and friendly to use, we developed a building
simulation platform based on JavaEE technologies [8,9,21,22]. Figure 12 shows the system architecture.
The platform consists of two parts. The first part is the service consumer (Application layer).
The consumer here refers to the end users or any other third-party applications. The end user can
utilize the service which results directly by opening a given service endpoint URL through the browser.
Our service can also be incorporated into other external systems easily. The second part is the service
provider. It generally includes three main layers: data layer, core algorithms implementation layer,
and RESTful WebService layer. The data layer is responsible for providing enough data to make the
platform work securely, such as the building information, system data, and stochastic simulation data.
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Figure 13 shows how the simulation data is stored in the database. From the E-R diagram, we can see
that hourly building energy consumptions can be simulated for the main types of buildings, such as
large office, small office, and residential, in different scenarios. The core algorithm layer implements the
core algorithms to simulate the building energy consumption. This layer mainly includes regression
analysis and interpolation algorithms. To support third-party applications, our platform was designed
to be a Service Oriented Architecture (SOA) based program [23]. Specifically, we chose the widely
used RESTful WebService to wrap the core simulation APIs, so that everyone would be able to use
our platform by just calling these standard WebServices [24]. For instance, users can use the API
directly through their browsers by typing into the service endpoint as shown in Figure 14. In addition,
third-party applications written in any programming languages can incorporate the APIs easily as
these APIs are developed using the standard WebService.
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The building energy prediction models and the APIs created in this paper can be used to support
further third-party urban energy application development. For example, Figure 15 shows an example
of an urban building energy prediction platform developed by one of our research partners. Monthly
energy consumptions (in EUI) of different building types are color-coded and mapped to individual
buildings in a GIS database. Dark red represent a high EUI, while light red represents a lower EUI
value. To support HVAC system design and equipment selection, high fidelity hourly EUIs are also
provided for typical design days. By clicking any individual buildings from the web-based platform,
the annual EUI of the selected building is shown with other building characteristics information,
including building height, floor area, year of building, and housing price/rent. If the user toggles the
year bar in the bottom, the platform can also visualize energy information in the past and predict future
scenarios. This urban-scale 3D platform is currently used by the local government. It provides spatial
and temporal building energy assessment and visualization to support design decision makings for
city managers and urban planners.Energies 2020, 13, x FOR PEER REVIEW 14 of 17 

 

 
Figure 15. An urban building energy prediction platform developed based on our API [25]. 

5. Limitations and Future Work 

This paper demonstrates the development of residential and office building archetypes using a 
case study in Wuhan, China. Data-driven regression models were developed based on stochastic 
simulations. A web-based urban energy platform and an interface were created to support further 
third-party application development. Future work can be improved based on the following 
limitations. 

A uniform distribution was assumed to generate different design variations for stochastic 
simulations. The actual distribution was adjusted through post processing to match the distribution 
of the survey data. In future work, we will apply a Bayesian calibration to consider the probability 
distribution of key uncertain variables. Due to the limited number of inputs for regression model 
development, the advantages of more complex non-linear machine learning algorithms, such as 
support vector machine or gradient boosting, cannot be reflected. In the next step, we will collaborate 
with our colleagues and partners and collect more available input data to improve our models. In 
addition, the platform will be fully verified using real-world data from our partners. Furthermore, it 
is usually straightforward to model building energy consumption for each single building using the 
traditional physics-based energy simulation methods, but it does not work well for modelling 
multiple building at community or city level [26–28], hence we are trying to use deep learning to 
discover the hidden and complex dynamics between multiple buildings so as to make our model 
more accurate while simulating the city scale energy consumption. 

6. Conclusions 

Urban-scale building energy consumption data are important for city managers or urban 
planners. However, an open source national building energy consumption database is not available 
in China. Instead of an energy consumption survey or measurement, urban scale building energy 
simulation can play an essential role in sustainable development during the urbanization process. It 
can enable high resolution analysis to estimate city level energy and track dynamic change. The 
requirement for citywide dynamic energy consumption information is urgent for city planning and 
energy policy making. Urban planners and policy makers can use the urban energy simulation 
platform to support urban-scale spatial and temporal decision-making on energy. 

Figure 15. An urban building energy prediction platform developed based on our API [25].



Energies 2020, 13, 3210 14 of 16

5. Limitations and Future Work

This paper demonstrates the development of residential and office building archetypes using
a case study in Wuhan, China. Data-driven regression models were developed based on stochastic
simulations. A web-based urban energy platform and an interface were created to support further
third-party application development. Future work can be improved based on the following limitations.

A uniform distribution was assumed to generate different design variations for stochastic
simulations. The actual distribution was adjusted through post processing to match the distribution
of the survey data. In future work, we will apply a Bayesian calibration to consider the probability
distribution of key uncertain variables. Due to the limited number of inputs for regression model
development, the advantages of more complex non-linear machine learning algorithms, such as support
vector machine or gradient boosting, cannot be reflected. In the next step, we will collaborate with our
colleagues and partners and collect more available input data to improve our models. In addition,
the platform will be fully verified using real-world data from our partners. Furthermore, it is usually
straightforward to model building energy consumption for each single building using the traditional
physics-based energy simulation methods, but it does not work well for modelling multiple building
at community or city level [26–28], hence we are trying to use deep learning to discover the hidden
and complex dynamics between multiple buildings so as to make our model more accurate while
simulating the city scale energy consumption.

6. Conclusions

Urban-scale building energy consumption data are important for city managers or urban planners.
However, an open source national building energy consumption database is not available in China.
Instead of an energy consumption survey or measurement, urban scale building energy simulation
can play an essential role in sustainable development during the urbanization process. It can enable
high resolution analysis to estimate city level energy and track dynamic change. The requirement
for citywide dynamic energy consumption information is urgent for city planning and energy policy
making. Urban planners and policy makers can use the urban energy simulation platform to support
urban-scale spatial and temporal decision-making on energy.

To develop such an urban-scale building energy platform, this paper demonstrates our work on
generating a representative building energy consumption database for typical residential building,
small office building, and large office building. The reference residential building, small and large office
building energy models for Wuhan China were developed in EnergyPlus. The baseline residential
reference building was calibrated using China’s CRECS2012 building energy survey data to consider
different building characteristics and occupants’ unique HVAC usage patterns. Stochastic simulations
were conducted to generate the numerical building energy consumption database. Three different
construction levels were considered to reflect building vintages. Energy consumption distributions
were adjusted using Wuhan’s housing price and rent data.

Urban-scale building energy simulation requires engineering knowledge and computational
resources, which creates a barrier for fast decision-making support. To solve this challenge, the building
energy consumption database was further used to develop statistical regression models. To better
illustrate our methods and make it easy and friendly to use, we developed a building simulation
platform based on JavaEE technologies and standard WebServices. The platform and APIs are expected
to provide design support for new constructions as well as for building retrofit. Combined with GIS
database, the API can be easily used to develop a 3D urban energy prediction platform. With the
support of data visualization, city managers and urban planners can check the spatial and temporal
building energy distributions in a city area and assemble fast polices regarding building efficiency
and sustainability.
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