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A dynamic Bayesian Network (DBN) is proposed in this
study to diagnose faults for building heating, ventilating, and
air-conditioning (HVAC) systems that are controlled based
on American Society of Heating, Refrigerating and
Air-Conditioning Engineers (ASHRAE)’s Guideline 36: High
Performance Sequence of Operation for HVAC (hereinafter
Guideline 36). Guideline 36 provides recommendations on
supervisory-level control. HVAC systems that adopt these
strategies have more comprehensive setpoint reset
schedules and more advanced control logics than typical
HVAC systems. It is hence of interest to understand how
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faults might affect the performance of HVAC systems that
are controlled based on Guideline 36 and whether we can
develop strategies to diagnose and isolate faults even for
systems with such comprehensive control sequences.
Contrarily to a Bayesian Network (BN), DBN method
incorporates the temporal dependencies of fault nodes
between time steps using temporal conditional probabilities.
This allows fault beliefs to accumulate over time and thus
improves diagnosis accuracy. In this study, the accuracy
and scalability of the proposed method is evaluated using
the data from a Modelica-based simulated testbed. Overall,
the developed DBN shows good potential in diagnosing and
isolating the root fault causes for HVAC systems that are
controlled based on the Guideline 36 control sequence.
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1. Introduction

Studies and field practices have shown that applying
automated fault detection and diagnosis (AFDD) tools in
HVAC systems, followed up with service and corrections,
can help reduce the energy waste, improve occupant
comfort and extend equipment lifecycle [3]. Within the
AFDD framework, the process of locating and isolating the
physical root cause of a fault has been challenging for
HVAC systems since a detailed and accurate reasoning of
the HVAC system and its control strategies is required.
Among several inference and classification approaches that
have been developed as fault diagnosis tools, Bayesian
networks (BN) models based on the conditional probability
theorem that predict the fault responses based on a set of
observations have been popular for the HVAC system [6,7]

Successfully implemented BNs for fault diagnosis for
different HYAC components have been reported in existing
literature for both component-level and whole building fault
diagnosis [4,5,8,9,10,11]. Although the existing studies
demonstrate good potentials of BNs for both
component-level and whole building fault diagnosis, the BN
structure model used are event-based, time-invariant
models (i.e., information from the previous time steps are
not carried over to the next time step). Instead, a dynamic
BN (DBN) model is more suitable for diagnosing faults for a
continuous-time engineering system such as a building
HVAC system [12]. The main advantage is that a DBN
carries over past information which allows fault belief to
accumulate over time. Using the past information could help
eliminate measurement errors and only retain persistent
faults [13]. In our earlier work [14], we conducted a
systematic comparison between conventional BN and DBN
by converting the existing WPM-BN model from [10] for
whole building fault diagnosis. The DBN was demonstrated
to be more effective in diagnosing and isolating faults when
multiple and/or propagating symptoms are seen across
various components or sub-systems. However, the HVAC
system that has been examined by existing studies have
been controlled by conventional control strategies with
minimum supervisory control. It is of interest to understand,
when a HVAC system adopts more advanced control
strategies with varying setpoints and much more
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complicated subsystem interactions, whether the DBN
would still be effective at diagnosing root causes of a fault.

ASHRAE Guideline 36 [17], first published in 2018,
provides best-in-class HVAC sequences of operation to
maximize the energy efficiency, improve system stability,
enhance code compliance, and allow fault detection and
diagnostics. Guideline 36 will be continuously developed
with the state-of-the-art research on the high-performance
sequences of operation for HVYAC systems and expand the
coverage to the whole building system types and
configurations. Hence, HVAC systems that adopt Guideline
36 would experience much more dynamic setpoints and
much more interactions among subsystems which add more
challenges for fault diagnosis tools.

In this paper, the DBN structure model reported in [14] is
further adapted to diagnose faults from HVAC systems that
are controlled following the newest Guideline 36, in order to
test the scalability of the DBN framework under different
control sequences. A small-scale evaluation is performed
using operation data from a virtual testbed to examine the
effectiveness of the adapted DBN framework.

2. DBN for Fault Diagnosis

A BN or DBN is a probabilistic graphical model formed
using causal relations. For fault diagnosis, a directed acyclic
network is used in which the nodes represent the faults and
symptoms  (evidences) from measurements and
observations, and the arcs represent the direct probabilistic
dependencies among the connected nodes [4] . Details on
how the BN is developed for fault diagnosis can be found in
[10].

A DBN is an extension of the conventional, static BN
which can represent temporal relationships of the fault and
symptom nodes between different time steps. Figure 1
shows the difference between a BN and a DBN with one
fault and one symptom node for n-time steps. In a static BN,
the probability of a fault node (F., only depends on the
corresponding symptom node (S;.,), whereas, in a DBN, the
probability of node F,;.; depends on its symptom nodes S;.,
and also its own values at the previous time step F.
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Figure 1. Schematics of a static BN (above) and a
dynamic BN (below)

The additional dependency on the fault node from the
previous time step requires a temporal CPT, P(Ft+1|F), to

define the relationship. The temporal CPTs carry over
posterior probabilities from the previous to the current time
step.

Maximum likelihood estimation (MLE) and Bayesian
estimation (BE) are some of the techniques used to
estimate the unknown probabilities [16]. However, utilizing
statistical techniques to obtain the probability distributions is
a major challenge for building system data since (i) ground
truth data that confirms the root fault causes of
natural-occurring faults are hard to obtain, and (ii) even if
the ground truth data exists for a specific building, the
probability distributions learned from specific building
system data are usually not scalable to other building
systems [10]. Hence, in this study, the temporal CPT are
also developed using some expert knowledge and
parameter sensitivity analysis.

3. Method Description

As reported in [14], the development of the DBN
methodology is divided into seven steps. First, incoming
shapshot data and baseline data under similar weather
conditions are collected in Step 1. Following this, in Step 2,
the DBN structure which includes the nodes for the fault and
associated evidence, and the causal relation between them
based on expert knowledge is developed. In Steps 3 and 4,
various probability distributions for each fault node and
evidence node, including the LEAK distribution, are
calculated and assigned in the parameter model. Next, the
evidence event are developed to compare the incoming
shapshot data with the baseline in Step 5. An evidence
event is classified to be abnormal if the incoming data is
significantly different from the baseline, i.e., is higher than
the statistical threshold. Based on the judgment in this step,
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the Bayesian inference in Step 6 is trigged, and the
posterior probabilities of each fault node is calculated.
Finally, the posterior probabilities are ranked, and the root
fault is isolated based on pre-defined rules in Step 7.

In this study, the above-described DBN is developed for
a medium-sized office building with an air handling unit that
is served by a chiller. In total, 17 fault nodes which
represent the faults implemented in the AHU, and 15
evidence nodes using both direct measurements and
physics-based models (e.g., fan curve fits) are used to
create a two-layer DBN. Table 1 list all fault nodes included
in the DBN. Several common faults such as outdoor air
damper stuck, cooling coil valve stuck, supply temperature
bias etc. are considered. Again, the structure of the DBN is
developed based on physical analysis,
first-principle-models, and expert knowledge of the authors,
as described in [14].

Table 1. Fault node descriptions

F;z# Fault Node Description
1 AHU outdoor air damper stuck higher than normal
2 AHU outdoor air damper stuck lower than normal
3 AHU cooling coil valve stuck higher than normal
4 AHU cooling coil valve stuck lower than normal
5 AHU return fan speed higher than normal
6 AHU return fan speed lower than normal
7 AHU return fan complete failure
8 AHU outdoor air damper leaking
9 AHU Air Loop Supply Duct Leakage

10 AHU Supply Air Temperature Positive Bias

11 AHU Supply Air Temperature Negative Bias

12 AHU Return Air Temperature Positive Bias

13 AHU Return Air Temperature Negative Bias

14 AHU Outdoor Air Flowrate Sensor Positive Scale Error

15 AHU Outdoor Air Flowrate Sensor Negative Scale Error

16 Chilled water differential pressure sensor positive bias

17 Chilled water differential pressure sensor negative bias

4. Method Evaluation

4.1 Description of Experimental Data

To evaluate the DBN for fault diagnosis, simulated
experimental data collected from a Modelica-based
simulation testbed is used. More details about the testbed
and fault simulation are provided in [18].

The system is a one-floor, five-zone medium-sized office
building. Heating and cooling are delivered by a single-duct
VAV system. It has one AHU connected with five VAV
terminal boxes serving five zones (four exterior zones, and
one interior zone, respectively). The chilled water is
supplied by a central chiller plant which consists of a chiller,
a waterside economizer, a cooling tower, and one chilled
water pump and one cooling water pump. A boiler, fed by
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natural gas, supplies the hot water to the AHU heating coil.
The reheat in the VAV terminals is supplied by electric
resistance coils.

Figure 2 illustrates the schematics of the system. The
system is sized under the ASHRAE climate zone 5A
Chicago, IL. Airside (AHU and VAV terminals) and waterside
(chilled water loop and hot water loop) are scheduled for an
automatic operation on a time-of-day basis with seven types
of system operation mode according to Guideline 36, PART

5.C.6 [17].
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Figure 2. Schematics of the system model [18]

A total of 14 faults, which are artificially injected to the
system fault model during the summer and transitional
seasons as, are used to evaluate the DBN. The fault
injection model is detailed in [18]. Data is collected for the
period when the faults are implemented. Data that
represented the baseline fault-free conditions is also
collected from the simulation testbed. The baseline data is
used to calculate the statistical thresholds for generating
evidences in the DBN framework.

4.2 Results

The fault diagnosis results using a DBN is generated for
the 15 cases. Table 2 summarizes the fault cases and the
posterior probabilities of the fault identified by the DBN.

Table 2. Fault ranking for artificially injected faults

i | pe
AHU Cooling coil valve stuck at 0% 87% Diagnosed
lelégi)Cooling coil valve stuck at 63% Misdiagnosed
1ASH(;)J Cooling coil valve stuck at 39% Diagnosed
AHU Cooling coil valve stuck at 5% 88% Diagnosed
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AHU Outdoor air damper leakage of 29 No fault
10% ° symptoms
(?)ZIU Outdoor air damper stuck at 35% Diagnosed
lelégiOutdoor air damper stuck at 71% Diagnosed
1ASH(;)J Outdoor air damper stuck at 71% Diagnosed
;ZIU Outdoor air damper stuck at 32% Diagnosed
Chilled water differential pressure 39 No fault
sensor negative bias of 10 kPa o0 symptoms
Chilled water differential pressure 6% No fault
sensor positive bias of 10 kPa ° symptoms
OAfHZI(_)I er loop supply duct leakage 90% Diagnosed
AHU Outdoor air flow rate sensor o .
negative scale error of 30% 74% Diagnosed
AHU Outdoor air flow rate sensor o .
positive scale error of 30% 67% Diagnosed

Out of the 14 cases, the DBN correctly diagnosed 10
cases, i.e., identified the root causes of the faults. For three
of four remaining cases, the implemented fault did not yield
any symptom which is reflected by the low posterior
probability value from the DBN. The one misdiagnosed case
was for the fault of cooling coil valve stuck at 100% position.
Key symptoms for this fault were believed, based on
physical knowledge, to be heating coil valve at a
higher-than-normal value and increase in chilled water
flowrate and chiller cooling. A closer manual inspection of
the data revealed that the heating valve was not opened
further since the boiler was prevented from turning on in the
hot summer day in the simulated control logic. This caused
the fault belief to be very low for the AHU cooling coil valve
stuck higher than normal fault node since the heating coil
valve was a critical symptom for this fault. Overall, the
proposed framework was able to diagnose most considered
faults for HVAC systems controlled by the Guideline 36
control sequences. Further improvements are needed to
increase the diagnosis accuracy, especially for faults that
are impacted by the boiler operation schedule.

As mentioned in our previous work in [14], the fault
beliefs (posterior probabilities) obtained when using a DBN
is stronger when compared to a static BN. Since a DBN
allows the evidence to accumulate over time, whereas in a
static BN, only evidence from a single time step is
considered for inference, the fault belief is often limited to a
lower value for static BN. Similar trends are seen across the
fault cases evaluated in this paper.

5. Conclusions

This paper presents a DBN framework for diagnosing
faults of HVAC systems that are controlled based on
Guideline 36, which significantly increases the dynamics
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and coupling of different subsystems and hence adds
challenges for fault diagnosis tools. The DBN models
incorporates the temporal relationship between fault nodes
in the previous time step to the current fault node using
temporal conditional probabilities, contrarily to static BNs
which are time-invariant models. The proposed method is
evaluated using data from a simulated testbed. Causal
relations between faults and their corresponding symptoms
are developed using expert knowledge and observations
from the data. Preliminary results show that the proposed
method shows good potential in diagnosing and isolating
root fault causes for HVAC system controlled by the
Guideline 36 control sequences. Further study and
improvements are needed to increase the diagnosis
accuracy.
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