

Environmental Energy Technologies Division Lawrence Berkeley National Laboratory

Distributed Generation: Trends and Solutions in US

LIN Jiang, Ryan Wiser, Wei Feng & Chris Marnay

International Forum on Energy Transitions Suzhou, China October 29-31 2016

13 Nobel Prizes

Luis W. Alvarez

Melvin Calvin

Owen Chamberlain

Steven Chu

Donald A. Glaser

Ernest Orlando Lawrence

Yuan T. Lee

Edwin M.

McMillan

Intergovernmental Panel on Climate Change (IPCC)

Saul Perlmutter

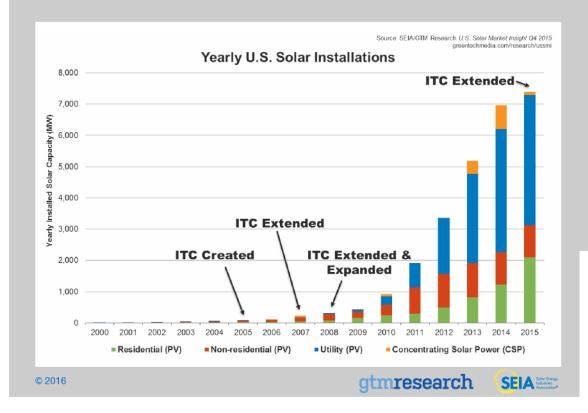
3

Glenn T. Seaborg

Emilio G. Segrè

3

- Distributed Generation: trends and policies in US
- District Energy System Optimization Tools
- Distributed Energy System/Microgrid pilots


Trends in Distributed Generation in US

- Distributed Generation
 - a variety of technologies that generate electricity at or near where it will be used, such as solar panels and combined heat and power.
 - Distributed generation may serve a single structure, such as a building, or be part of a microgrid, such as at a industrial park, a military base, or a large college campus.
 - Solar, gas turbine/engines, fuel cells, biomass
- The Major sources of Distributed Generation includes
 - Rooftop solar, *fastest growing*
 - CHP, the largest source, about 8% of power capacity
- Increasing interests in District Energy Systems with microgrids to improve resilience

Growing at 60%, expected to reach 20 GW by 2020

- Diversified market: utility, residential, commercial
- 1% U.S. electricity supply in total (DG PV = 0.3% nationwide, 6% HI, nearing 2% CA/NJ)
- 2016 expectation: ~16 GW new installation

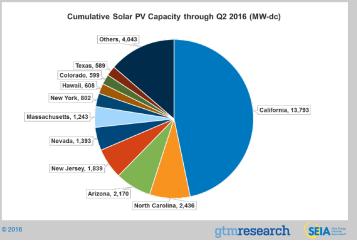
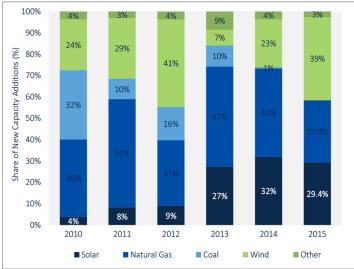
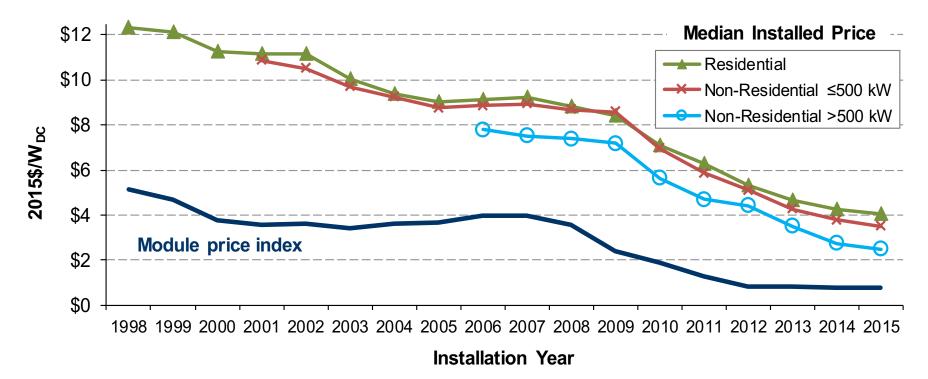



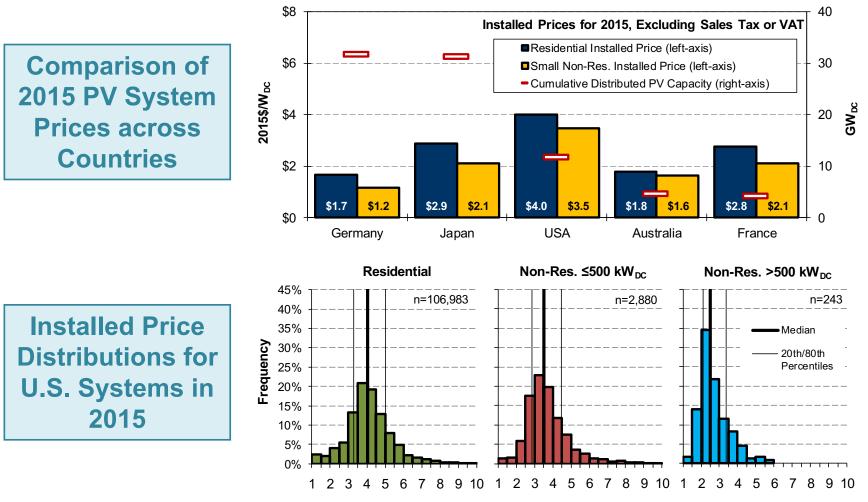
Figure 1.2 New U.S. Electricity-Generating Capacity Additions, 2012-2015

Source: GTM Research (solar) FERC (all other technologies)



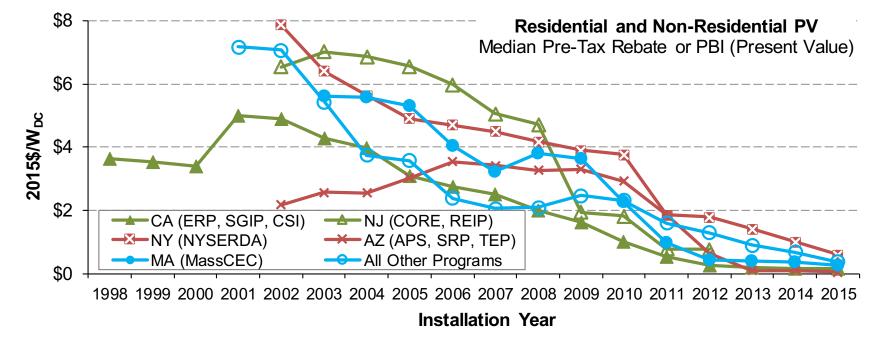
- Falling costs and improving performance
- Policy intervention at national and state levels
- Business and financing innovations
 - third party ownership
 - private loans, PACE, etc.
 - shared / community solar

Prices for Distributed Solar Continue to Decline



Median installed price series is based on data from 451,693 systems, assembled by Berkeley Lab (<u>trackingthesun.lbl.gov</u>). Module price index is from SPV Market Research.

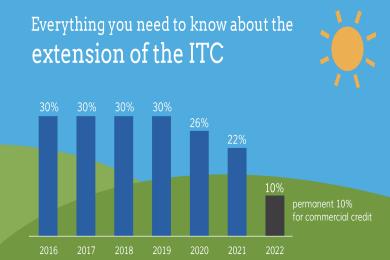
Even Lower-Cost Systems Are Commonplace: potential for further price declines



Installed Price (2015\$/W_{DC})

10

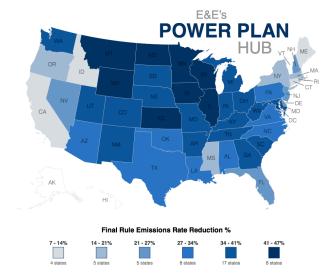
Installed Price Declines Have Been Partially Offset by Falling State and Utility Incentives


Reductions in rebates and PBIs since their peak equate to 60% to 120% of the corresponding drop in installed prices

Notes: The figure depicts the pre-tax value of rebates and PBI payments (calculated on a present-value basis) provided through state/utility PV incentive programs, among only those systems that received such incentives. Although not shown in the figure, a growing portion of the sample received no direct cash incentive.

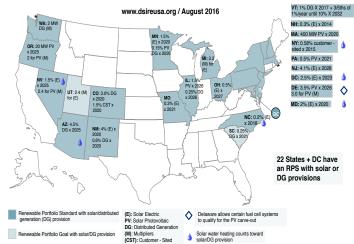
Federal Policy Drivers:

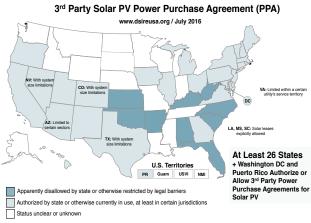
- 30% investment tax credit (ITC)
 - Extended to 2021 (for projects started)
 - Drops to 10% for commercial entities, phased out for residential customers
- Accelerated tax depreciation
 - 5-year term
- Clean Power Plan
 - Potential impacts after 2020
 - Fate and impact highly uncertain



Source: http://news.energysage.com/congress-extends-the-solar-tax-credit/

EPA Carbon Reduction in Power Sector

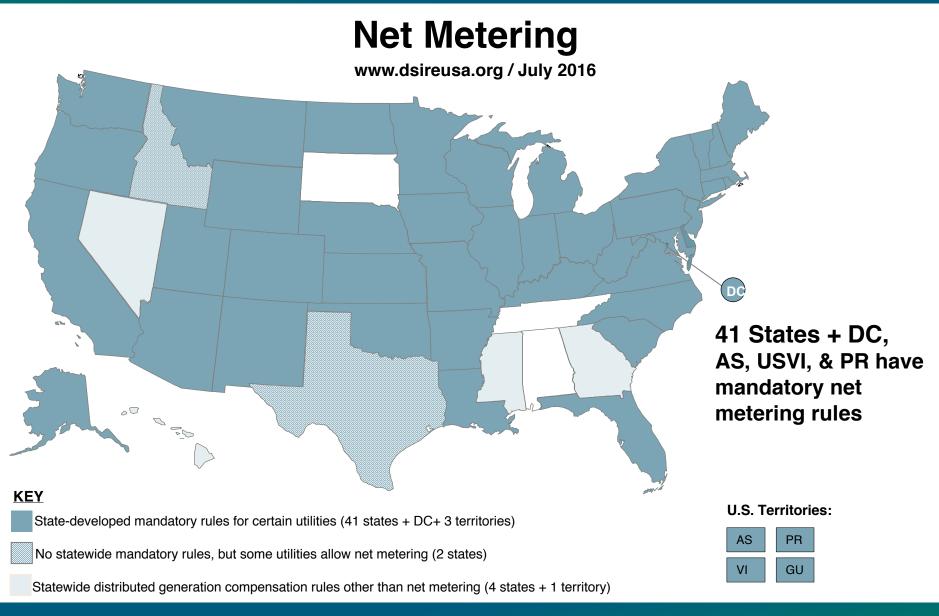

- Two components: new fossil plants, existing fossil plants
- New plants: new coal effectively precluded absent CCS
- Existing plants = Clean Power Plan (CPP), 32% reduction by 2030 relative to 2005, compliance period begins in 2022
- How will RE contribute? Who knows???
 - Depends on decisions, including states & obligated entities
 - EPA estimate: growth from 13% today to 20% by 2030
 - Supports growth consistent with past: deployment "floor"



State Policy Drivers

- Renewables Portfolio Standards
 - 22 States + DC have an RPS with solar or DG provisions
- Net Metering and Favorable Rates
 - 41 states and the District of Columbia require certain utilities to offer net metering to distributed solar customers as of the beginning of 2016.
- State Tax and Financial Incentives
 - State tax credits
 - State sales/property tax incentives
 - Up-front cash rebates
 - Performance based incentives
- 3rd Party Solar PV Power Purchase Agreement (PPA)
 - At Least 26 States + DC and Puerto Rico authorize or allow 3rd Party Power Purchase Agreements for Solar PV

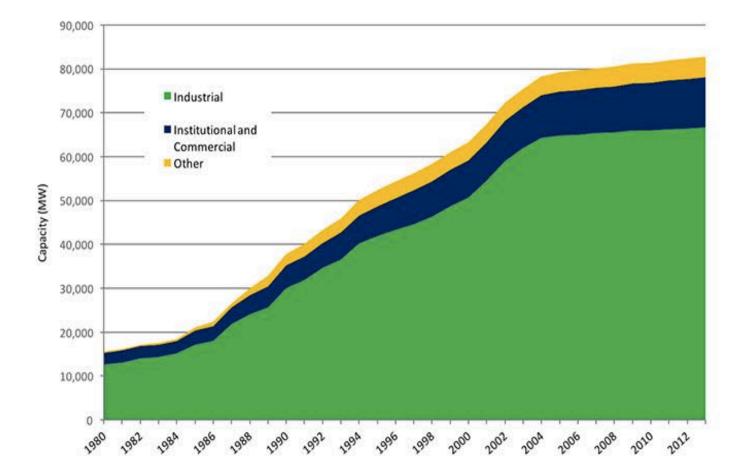
More information on solar programs and policies: http://programs.dsireusa.org/system/program/maps



Renewable Portfolio Standards (RPS) with Solar or Distributed Generation Provisions

Net Metering Supports Distributed PV: Designs Vary

- Rate tiers that increase with usage
- Primarily volumetric rates, with low fixed charges


Rate designs that are less attractive for solar generally feature...

- Low overall retail rate levels
- Higher fixed customer or standby charges
- Demand charges tied to peak customer load

Trends in Distributed Generation: CHP

US CHP Capacity: 85% Industrial

Source: ACEEE, 2016. http://aceee.org/blog/2016/02/brief-history-chp-development-united

Trends in Distributed Generation: CHP

BERKELEY LAB

- CHP
 - 83 GW, ~8% of power capacity & 12% generation
 - Additional 40 GW target by 2030
 - In CA, the installed capacity in 2012 was 8,815 megawatts (MW), another 6,500 MW by 2030
 - However, the future is less clear for CHP to meet the long-term GHG target of 80% reduction.

Federal and State Policy Support: CHP

- Federal
 - Tax credit: 10% of expenditures of CHP (EE>60%)
 - DOE 7 CHP Technical Assistance Partnership
- CA incentives
 - SGIP
 - conventional CHP technologies \$0.50/ watt and
 - fuel cells \$2.25/watt for both electric only and CHP applications.
 - The biogas incentive \$2/watt
 - PACE: non-residential buildings

伯克利区域能源优化模型简介 Berkeley Lab's District Energy Optimization Tool

MOD-DEM: Microgrid Optimal Dispatch with Demand-side Energy Management

Model concept 建模概念

Demand side

- Lower peak energy usage
- Bring higher capacity factor and security of distribution grids

Supply side

- Microgrid to integrate distributed generation and storage
- Combined heat and power

Challenge: Coordinate both the demand and supply sides in a renewablepenetrated, storage augmented, DR-enabled microgrid

Motivation 动机

- DES as a smart *prosumer*: 分布式能源作为一个智能能 源参与者
 - Optimize operation by effective coordination of technologies (storages, CHP, etc.) in accord with renewable generation and demand response signals
 - Investigate dispatch strategies under uncertainty
- DES as a *smart partner* with the grid: 分布式能源是大电网的一个智能伙伴
 - Offer ancillary service for overall efficiency and grid stability
 - Encourage more demand side participation in the market and appropriately valuing demand response
- Retail market optimization 服务于能源零售市场

Case Study: Excessive renewables generation 案例:智能微网帮助消纳电网过剩的可再生能源

Scenario:

140

120

100

80

60

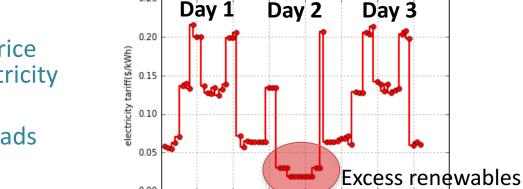
40

20

0

0

Day 1


20

30

10

electric energy(MW)

- **Excessive renewables** \bigcirc (wind/solar) \rightarrow triggers price drop \rightarrow DR to prefer electricity
- DES: heating + electric loads Ο (elastic / inelastic)

10

20

30

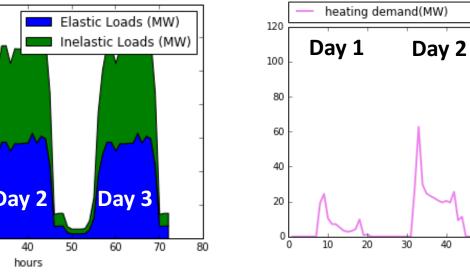
hour

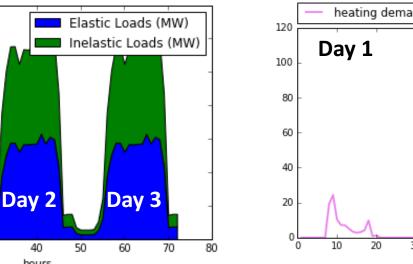
40

50

[™]→ price drop

Day 3

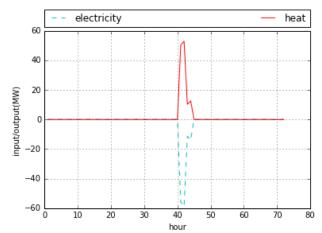

70


80

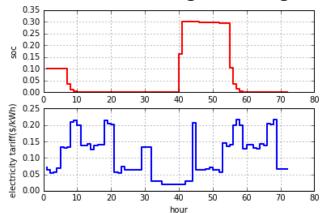
60

0.25

0.00 0 electricity tariff(\$/kWh)



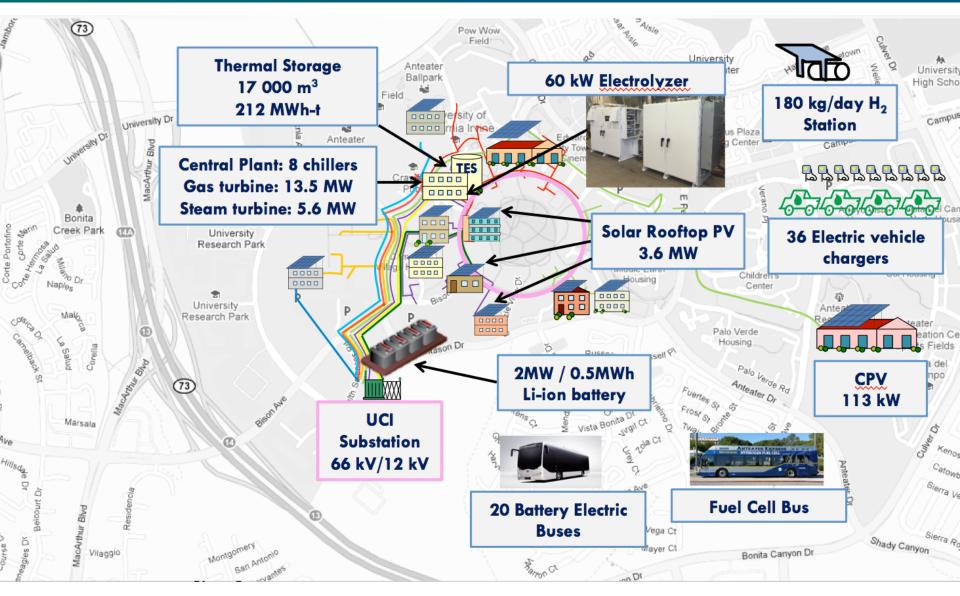
Case Study: Excessive renewables generation



- Heating balance: electric + natural gas boiler
 - NG is used as a default in most of the time
 - Shifting to electric boiler to use more electricity
 - Excess heat generation is stored for later use

Electric boiler switched on during DR to convert excess electricity to heat

Heat tank is charged during DR



分布式能源微网案例分析 Distributed energy micorgrid case study

加州大学, 欧文分校微电网/U.C. Irvine Microgrid

加州大学欧文分校微电网成本效益结果/ U.C. Irvine Microgrid Cost-Benefit Results

- Cost benefit analysis of microgrid technologies using microgrid tools
- 运用微网计算工具对分布式微网各种技术做成本效益后评估

NPV	СНР	PV	MgC	LiB
Cost	\$ (1.2M)	\$ (0.55M)	\$ (46,000)	\$ (20,000)
Benefits	\$ 5M	\$ 1.7M	\$ 9.7M	\$ 140,000
Net Benefit	\$ 3.7M	\$ 1.2M	\$ 9.6M	\$ 120,000
B/C Rat.	4.0	3.2	212	6.8

Thank you! Visit us: China.lbl.gov