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Abstract 

Optimal Real-time Dispatch for Integrated Energy Systems 

by 

Ryan Michael Firestone 

Doctor of Philosophy in Engineering- Mechanical Engineering 

University of California, Berkeley 

Professor David Auslander, Chair 

 

This report describes the development and application of a dispatch 

optimization algorithm for integrated energy systems (IES) comprised of on-site 

cogeneration of heat and electricity, energy storage devices, and demand response 

opportunities.  This work is intended to aid commercial and industrial sites in making 

use of modern computing power and optimization algorithms to make informed, near-

optimal decisions under significant uncertainty and complex objective functions.  The 

optimization algorithm uses a finite set of randomly generated future scenarios to 

approximate the true, stochastic future; constraints are included that prevent solutions 

to this approximate problem from deviating from solutions to the actual problem.  

The algorithm is then expressed as a mixed integer linear program, to which a 

powerful commercial solver is applied.   

A case study of United States Postal Service Processing and Distribution 

Centers (P&DC) in four cities and under three different electricity tariff structures is 

conducted to 1) determine the added value of optimal control to a cogeneration 

system over current, heuristic control strategies; 2) determine the value of limited 
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electric load curtailment opportunities, with and without cogeneration; and 3) 

determine the trade-off between least-cost and least-carbon operations of a 

cogeneration system. 

Key results for the P&DC sites studied include 1) in locations where the 

average electricity and natural gas prices suggest a marginally profitable cogeneration 

system, optimal control can add up to 67% to the value of the cogeneration system; 

optimal control adds less value in locations where cogeneration is more clearly 

profitable; 2) optimal control under real-time pricing is a) more complicated than 

under typical time-of-use tariffs and b) at times necessary to make cogeneration 

economic at all; 3) limited electric load curtailment opportunities can be more 

valuable as a compliment to the cogeneration system than alone; and 4) most of the 

trade-off between least-cost and least-carbon IES is determined during the system 

design stage; for the IES system considered, there is little difference between least-

cost control and least-carbon control.  
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Preface 

 

This report describes the development and application of a dispatch optimization 

algorithm for integrated energy systems comprised of on-site cogeneration of heat 

and electricity, energy storage devices, and demand response opportunities.  This 

work is intended to aid commercial and industrial sites in making use of modern 

computing power and optimization algorithms to make informed, near-optimal 

decisions under significant uncertainty and complex objective functions. 

 

This work makes headway in the more general and daunting field of multi-stage 

operational optimization, where multi-stage is in the hundreds of time-steps and 

optimization is over many mixed-integer decision variables.  The context of the work, 

however, is an application to commercial and industrial energy consumption, a topic 

rising in popularity on the coat-tails of economic, political, and environmental 

concerns. 

 

Part 1 of this report describes the integrated energy system (IES) and the dispatch 

optimization problem that arises from the system’s uncertainty, operational 

constraints, and complex objective functions.  Part 1 also describes prior research 

done on this and related topics.  Part 2 describes the IES dispatch optimization 

algorithm.  Part 3 illustrates the application of the algorithm.  Part 4 provides 

conclusions and suggests directions for further research. 
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Executive Summary 

Introduction: Integrated Energy Systems (IES) and the Need for Generic Real-

Time Dispatch Optimization Algorithms 

Market deregulation has shaped the United States energy sector for the past three 

decades.  The Public Utility Regulatory Policy Act (PURPA) of 1978 first invited 

relatively small-scale generators into the electricity market, and wholesale 

competition has become widespread during the last decade, especially in some 

jurisdictions, notably California, New York, New England, and the Pennsylvania-

New Jersey-Maryland interconnection.  On the customer side of the meter, the change 

has been less dramatic, but nonetheless, expectations of the electricity supply system 

have evolved following experiments with customer choice, greater exposure of 

consumers to the variability of electricity prices, and an emerging generation roller 

coaster investment cycle.  And, of course, the 2000-2001 California energy crisis, the 

terrorist threat, and the August 2003 Northeast blackout have radically reshaped 

expectations of supply security.   

 

Simultaneously, improvements to small-scale and renewable technology have spurred 

an industry that has, in recent years, made even smaller (business scale) electricity 

generation an economically viable option for some consumers.  On-site energy 

production, known as distributed generation (DG) offers consumers many benefits, 

such as energy cost reductions and predictability, improved system efficiency, 

improved reliability, control over power quality, and in many cases, greener 



xxi 
 
 
 

electricity.  Additionally, DG systems can benefit electric utilities by reducing 

congestion on the grid, reducing the need for new generation and transmission 

capacity, and offering ancillary services such as voltage support and demand 

response.   Additional on-site energy storage and conversion devices offer further 

benefit, and include heat exchangers for waste heat recovery, thermally activated 

cooling, electrical storage, and thermal storage.  These technologies are collectively 

referred to as distributed energy resources (DER). 

 

The economic analysis of energy efficiency (EE) measures has become 

commonplace.   Businesses and institutions have become less hostile to demand 

response (DR) measures – i.e. curtailment and rescheduling – due to government 

mandates, conservation campaigns (such as “Flex Your Power” in California), new 

tariffs that put a premium on electricity during times of system scarcity, and lucrative 

interruptible service contracts from utilities. 

 

This suite of customer-side energy options – EE, DER, and DR – gives customers 

complex investment and operation decisions.  The value of these investments is 

dependent on how the system is operated; therefore dispatch optimization is a 

necessary part of the investment optimization problem.  However, the enumeratively 

large set of candidate EE/DER/DR systems in the investment problem necessitates a 

simplification of the dispatch problem.  Typically, this simplification is achieved by 

limiting the number of days considered, assuming determistic loads, prices, and 

equipment availability, and approximating the electricity tariff structure.  
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While the investment problem has been given considerable attention in recent years, 

the operation problem has not been adequately addressed.  The approximate 

approaches used in investment optimizations may be adequate for rough system 

identification and sizing; however, they may not be accurate enough for a more 

detailed study of a particular system or as controllers for actual systems.  It is the 

intent of this project to develop a general solution to the real-time optimal dispatch 

problem for integrated systems of DER and demand response, herein referred to as 

integrated energy systems (IES). 

 

IES Components 

IES for a site may consist of a large range of energy conversion and storage devices, 

as well as demand response options, giving the site control of both its supply of and 

demand for electrical and thermal energy.  The economically optimal dispatch of any 

IES must be in response to current and forecasted energy prices, energy demand, and 

DER equipment availability.  Dispatch must be within mechanical and regulatory 

constraints on the IES.   

 

Typical electricity generation equipment found on-site includes natural gas-, propane- 

or biogas-fueled gas turbines, reciprocating engines, microturbines, and fuel cells.  

Heat recovery from these devices can be used for site steam or heating needs or for 

thermally-activated cooling.  Often this use for the waste-heat from electricity 
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generation is what tips the scales in favor of on-site generation.  Renewable electricity 

sources (photovoltaics and small-scale wind turbines) and thermal sources (solar 

thermal collectors and ground-source heat pumps) are also present. 

 

Thermally-activated cooling is achieved through absorption or adsorption chillers, 

which utilize a modified compression-chiller cycle to replace much of the electric 

energy input requirement with a thermal energy requirement.  Desiccant 

dehumidifiers use heat to remove moisture from air before cooling it, which reduces 

the energy required to cool the air. 

 

Electrical and thermal storage technologies can add value to an energy source by 

shifting its utilization from times of low value to times of high value.  For example, 

the waste-heat from a continuously running generator can be stored throughout the 

day and used during times of high thermal load.  Similarly, low-priced electricity 

such as off-peak power or excess wind-power can be stored for use during high-

priced on-peak hours using a battery or other electrical storage device. 

 

Demand Response 

The high price of peak electricity has encouraged price responsiveness among some 

customers.  Some customers may respond to price or control signals from their utility 

to reduce or reschedule electric loads, a practice known as demand response. Demand 

response opportunities can be characterized as 1) curtailable, such as non-essential 
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lighting (e.g. hallways, parking garages), 2) reschedulable, such as energy-intensive 

industrial processes, or 3) part-curtailable/part-reschedulable, such as cooling loads.  

In pilot programs where the hourly and daily volatility of prices is passed directly to 

consumers, rather than monthly averaging, demand response behavior increases.  This 

holds promise for bringing demand elasticity to the electricity market, a valuable step 

towards reducing peak capacity costs and mitigating the threat of market power 

abuse.  Voluntary programs that hyper-incent demand response (and in some cases 

automatically shed customer load) have proved a cost-effective substitute for some 

amount ultra-peak capacity, i.e. peaker plants that are only used a handful of hours 

per year. 

   

Energy Pricing and Tariff Structure 

Electricity 

Utilities incur both variable and fixed expenses; tariffs are typically designed to cover 

three kinds of costs: 

• Fixed charges are invariant, $/month.  These are infrastructure costs of 

supply and delivery required by the customer regardless of their energy 

consumption for that month.   

• Volumetric charges are proportional to the amount of energy consumed.  

They are expressed in $/kWh and may vary by time of day within a month.  

Volumetric rates are intended to cover the variable costs of producing 
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electricity, such as fuel and some maintenance, in addition to the fixed costs 

that generators recover in their volumetric sales of electricity.   

• Demand charges are expressed in $/kW and levied on the maximum power 

consumption during a specified time range (such as the on-peak hours of the 

month), regardless of the duration or frequency of that level of power 

consumption.  Demand charges are intended to collect the fixed costs of 

infrastructure shared with other customers by raising revenue in proportion to 

the amount of power required by the individual. 

 

Demand charges play an integral role in the problem of dispatch optimization because 

of their magnitude and mathematic non-linearity.  The demand charges can be a third 

to a half of a customer’s electricity bill.  Because they are a function of the maximum 

power consumption during the month, they are non-linear and they act over the entire 

month, making decision making at one time-step dependent on plans for future time-

steps. 

 

In this research, three types of tariff structures are considered: 

• time of use (TOU) – the volumetric price of electricity varies by on-peak, 

mid-peak, and off-peak periods of consumption each month 

• critical peak pricing (CPP) – similar to TOU, but with much higher 

volumetric rates during periods of high system load 
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• real-time pricing (RTP) – the volumetric price of electricity varies from hour 

to hour, reflecting to the true marginal cost of electricity to the utility. 

 

Natural Gas and Other Fossil Fuels 

Tariffs for natural gas and other fuels typically consist of fixed and volumetric 

components.   

 

Energy Demand 

Site energy demand can be divided into end-use types.  A convenient division is non-

cooling electricity, cooling (which may be further divided into space-cooling, 

refrigeration, etc.), space-heating, and natural-gas-only (such as cooking and 

distributed space-heating).  The reason for separating cooling from other electricity 

loads is that cooling loads can also be met or offset by thermally-activated cooling.  

Energy demand is stochastic in nature.  The statistical makeup of these loads will 

depend on the site, but key influences on load are weather and business/operation 

state. 

 

Equipment Availability 

DER equipment is subject to failure, which results in unscheduled outages.  The 

occurrence and duration of these outages are stochastic.  For grid-connected DER, 

unplanned outages can create surges in utility electricity purchase, resulting in large 
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demand charges.  The intermittency of solar- and wind-powered electricity can have 

similar effect.   

 

Dispatch Constraints 

DER dispatch is limited by 1) physical constraints of the system, such as maximum 

ramping rates and rated capacities and 2) regulatory constraints such as limits on 

specific or total hours equipment can run or minimum system efficiency 

requirements. 

 

The Integrated Energy System 

In order to best meet a site’s energy objectives, all of the equipment, loads, prices, 

forecasts, demand response options, and operational constraints should be viewed as a 

single, integrated energy system, or IES.  IES contain several key features that make 

their optimal dispatch difficult.  One of these features is uncertainty, which arises in 

energy loads, energy prices and IES equipment availability.  Another is the 

intertemporal coupling of solutions caused by 1) demand charges, which act across an 

entire month, and 2) limits on the number of curtailment episodes and total hours of 

DER operation; these factors require scheduling as part of an optimal solution.  

Scheduling is further required to ensure minimum efficiency requirements, or to 

address limited fuel constraints.   
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Demand charges make economic minimization particularly difficult in situations 

where the marginal cost of on-site generation is greater than that of utility electricity 

purchase, yet demand charges still make some amount of on-site generation 

economic.  Here, the correct level of demand charge mitigation must be determined in 

light of stochastic loads and equipment availability. 

 

Cost minimization may not be the sole objective of a site’s IES dispatch optimization.  

Public sites may be more motivated by a reduction in primary fuel consumption 

and/or greenhouse gas emissions, as might environmental champions or image-

conscious entities. 

 

Hypothesis - Heuristic Dispatch: Functional, Not Optimal 

The economically or environmentally optimal dispatch of a building’s IES is a 

problem rarely addressed in building operations.  Typically, building managers are in 

charge of dispatch decisions, yet their primary concern is ensuring that systems meet 

the needs of users, not that needs are met in an optimally efficient manner.  Optimal 

dispatch would require continuous decision-making based on historic data, current 

conditions, equipment availability, demand response opportunities, and stochastic 

forecasts of the future (prices, loads, and availability of equipment and of intermittent 

renewable resources). 

 



xxix 
 
 
 

Building managers typically employ heuristic controls to their IES, such as a schedule 

for running their DER, or a target electricity demand level that they try to avoid 

exceeding for each month.  A detailed, quantitative analysis is not performed to 

ensure that, if a schedule is to be used, this particular schedule is the right one, or that 

the correct target demand level has been selected.  To the author’s knowledge, no 

such methodology exists in the public domain. 

 

For cost minimization, demand charges, which can be a third to a half of a customer’s 

utility electricity bill, turn a problem that would otherwise be a straight forward 

comparison of marginal costs into a problem requiring planning under significant 

uncertainty.  Further planning is required when heat can be stored for later use and 

when curtailment can be used in limited frequency.  For primary fuel or carbon 

emissions minimizations, planning is required to match fuel savings opportunities 

with energy requirements, again under uncertainty. 

 

Given that IES have multiple degrees of freedom, and that IES operators consider 

only a limited set of dispatch options, it is most likely that optimal IES operation is 

not being achieved.  This observation introduces the hypothesis of this research: 

 

Heuristic dispatch typically used by building managers is not optimal.  

Optimization algorithms can be developed to make near-optimal decisions, 

resulting in improved realization of objectives such as the minimization of cost, 

primary fuel consumption, and/or carbon emissions. 
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Two questions come directly from this hypothesis: 

• How can optimal dispatch be determined? 

• How much better could site objectives be met under optimal dispatch of IES? 

These questions were the initial motivation for this research. 

 

Prior Research 

This work builds on much prior work, including research on dispatch optimization 

from vertically-integrated electric utilities, distributed generation investment 

optimization, demand response. 

 

Vertically-integrated Electric Utilities 

The most direct comparison to the IES dispatch problem is the vertically-integrated 

utility dispatch optimization problem. This problem, in its entirety, is enormous, 

requiring decision making on the order of minutes over a timespan of a year or more 

(to include maintenance scheduling and the rationing of scarce resources), with 

uncertainty in demand and in generator/transmission/distribution availability at every 

time-step.  To make the problem manageable, it is typically divided into three 

separate problems:  

• a planning problem for the day-to-day problem (over the course of months); 

• a unit commitment problem for the hour-to-hour problem (over the course of 

several days); and  
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• a power flow problem for the minute-to-minute decisions (over the course of 

tens of minutes) and to ensure that transmission lines are not overloaded and 

to account for both real and reactive power demand. 

The unit commitment problem is the one most closely related to IES dispatch.  After 

more than a century, this problem is still an open field of research.  The large number 

of discrete decisions (i.e. on/off decisions) required for this problem make it 

particularly challenging.  Prior to the advent of modern computing power, heuristic 

approaches to the problem were developed in which priority lists of available units 

were generated, and generators were called on- or off-line based on their placement 

on the priority list.  Over the years, the dominant approach to improved solutions to 

the unit commitment problem (both in research and in practice) has been to improve 

upon the methods for developing priority lists. 

  

Optimization techniques developed in the field of operations research have proved 

useful for the unit commitment problem.  Analytic techniques (e.g. Lagrangian 

relaxation), as well as stochastic techniques that mimic natural selection in 

heterozygous reproduction (e.g. genetic algorithms) have both had success. 

 

Distributed Generation Investment Optimization 

 

With the recent advent of small (100s of kW to several MW) DG that is cost 

competitive with utility power purchase, much research has been done on the DG 
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investment optimization problem.  Dispatch must be considered in the investment 

optimization problem because the value of a given DG system will depend on how it 

is operated. Several software tools have been developed to determine optimal 

investment, including Lawrence Berkeley National Laboratory’s Distributed Energy 

Resources Customer Adoption Model (DER-CAM), National Renewable Energy 

Laboratory’s Hybrid Optimization Model for Electric Renewables (HOMER), 

Natural Resource Canada’s Renewable Energy Technologies Screening tools 

(RETScreen), and InterEnergy Software’s D-Gen Pro.  Determining the value of a 

specific DER system requires knowledge of how the system will be operated; the 

investment optimization problem necessarily includes the dispatch optimization 

problem.  The investment tools listed necessarily make many simplifying 

assumptions about operation in order to consider a large set of investment options. 

 

The true dispatch optimization problem, however, contains many details that are not 

covered by investment optimization programs, yet affect the bottom line of actual 

systems.  These details include the stochastic natural of equipment availability, 

energy loads, and energy prices, regulatory constraints on DG operation, the 

complexity of electricity tariff structures, and integrated decision making for complex 

systems.  Several research efforts have made in-roads on the DG dispatch 

optimization problem.  This research furthers the detail covered in prior research and 

additionally considers the entire IES.   

 

Demand Response 
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Studies of utility and building experience with demand response include those by 

Goldman, Kintner-Meyer, and Heffner (2002), Goldman et al. (2004), Motegi, Piette, 

and Kinney (2003b), Piette et al. (2004), and Watson et al. (2004).  Key results of 

these studies include 

• Approximately 85% of DR is load curtailment, rather than rescheduling; 

• Lighting and air conditioning are the most common DR loads, but elevators, 

process loads, and plug-loads are also common; and 

• Most customers handle DR manually; additional savings would be possible 

with automated DR. 

• In typical commercial and industrial buildings, automated DR reductions of at 

least 5-15% are feasible. 

 

DSM, though, has been proven to be valuable to informed customers, even in the 

absence of strong signals from special demand response programs (Stadler et al. 2006 

and Firestone, Stadler, and Marnay 2006b).  This dissertation makes a new 

contribution by examining the interaction of DG with DSM, and, more generally 

examining the value of integrating decision making of disparate energy options in a 

building. 

 

DG Case Studies 
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During the process of developing DER-CAM, case studies were performed by the 

LBNL DER team (Bailey et al. 2003 and Firestone et al. 2003).  The intent of the 

case-studies was to validate DER-CAM by comparing investment solutions posed by 

DER-CAM with those chosen by sites.  One significant realization from these case-

studies and later ones by the LBNL DER team was frustration that building managers 

expressed over the discrepancy in performance of their system and cost results with 

those expected prior to installation. Much of this was because of demand charges: 

initial maintenance schedules were often made to include maintenance on DG 

equipment during business hours (when the maintenance crew was most available), 

which resulted in no decrease in demand charges.  Furthermore, frequent unplanned 

outages - however brief - also resulted in no demand charge savings.  Some managers 

mentioned that they did not consider how changes in natural gas prices from month to 

month would affect system economics; often they realized several months too late 

that they should have changed their operation schedule in response to changes in 

energy prices. Given the inevitable spikes in demand during unscheduled outages, 

some building managers wondered how worthwhile it would be to curtail or 

reschedule some of their loads.  The experiences and ponderings of these building 

managers were the inspiration for this dissertation research. 

 

Algorithm Development 

This research develops an algorithm for determining near-optimal solutions to multi-

stage optimization problems with several stochastic parameters.  The resulting Real-
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Time Optimal Control Model (RT-OPTICOM) is then applied to the IES problem of 

a DG system with limited curtailment opportunities subject to uncertainty in energy 

loads, energy prices, and DG equipment availability.  The RT-OPTICOM IES model 

is developed as a mixed integer linear program (MILP), for which various robust 

commercial solvers are available.  

 

In order to be expressed as a MILP, randomly generated scenarios are used to 

represent stochastic parameters.  Each scenario contains randomly generated values 

of energy loads (non-cooling electric, electric, and heating), electricity prices, DG 

availability, and solar insolation.  

 

The optimization problem is discretized into time-steps in the range of minutes to an 

hour.  It is solved sequentially at each time-step, although dispatch decisions made at 

each time-step must be made for the current time-step as well as for all future time-

steps.  All future dispatch decisions are conditional on the future i.e., there is a 

separate decision for each scenario at each future time-step.  Future optimization, or a 

strategy, is necessary because 1) electricity demand charges are non-additive, but 

rather are determined by the maximum over all time-steps in the month and 2) there 

are inter-temporal (annual) constraints such as regulatory limits on system efficiency 

and emissions.    

 

The true stochastic optimization problem contains branching sets of scenarios, 

whereas the finite-scenario optimization problem contains only single-strands of 
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scenarios.  Figure ES 1 illustrates this.  Because of this discrepancy, certain additional 

constraints must be added to the finite-scenario problem.  These constraints must 

ensure that solutions that would be unrealistic for the real, nondeterministic system 

are not attempted.  The most obvious example of this is when a significant but 

unlikely event happens at the end of a timespan in a scenario.  If this event is 

deterministically known, the optimal behavior of the system in time-steps prior to the 

event is different than if it is only known that there is some probability of this 

occurrence.  

 

t=1 t=2 t=3 t=1 t=2 t=3

stochastic 
scenarios

deterministic 
scenarios

 

Figure ES 1. discrepancy between stochastic and deterministic scenarios 
 

RT-OPTICOM can be used for two purposes: real-time dispatch optimization and 

system simulation.  For real-time dispatch optimization, past and current information 

is the actual information about the energy system (loads, equipment availability, 

prices), whereas for system simulation, the “actual values” are an additional randomly 
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generated scenario or set of historic actual values.  For either purpose, “actual values” 

for a particular time-step are not revealed to RT-OPTICOM until that time-step. 

 

Figure ES 2 illustrates the parameters and variables at time-step i of timespan length 

T.  Rows are different parameter variables types.  Columns are time-steps and the 

current time-step is i.  Each box in the figure represents a set of data or variables for a 

particular time-step, t.  The actual parameter values for all past and the current time-

step, (0 ≤ t ≤ i), are known and sent to RT-OPTICOM.  For future time-steps (t > i), 

sets of stochastic possible parameter values are also sent to RT-OPTICOM.  Finally, 

all previous dispatch decisions are sent to RT-OPTICOM.  The program then 

determines the actual dispatch for the current time-step, i, and a set of dispatch plans, 

contingent on future parameter values, for all scenarios 1,...,n at all future times 

i+1,…,T. 

 

timestep,t
1 2 … i … T

actual parameters APt parameters sent to RT-OPTICOM unknown
stochastic SP1,t unnecessary parameters
parameters SP2,t sent to

… RT-OPTICOM
SPn,t

actual dispatch ADt parameters sent to RT-OPTICOM unknown
dispatch strategy DS1,t unnecessary variables

DS2,t determined

… in RT-OPTICOM
DSn,t  

Figure ES 2. parameters and variables at time-step i of RT-OPTICOM 
 

Figure ES 2 is explained mathematically in equation (ES 1). 

 



xxxviii 
 
 
 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

++

−

++

,,...,,...,,...
,,,...,

,,...,,...,,...
,,...,

cosminarg

,,11,1,1

11

,,11,1,1

1

TnTtnt

tt

TnTtnt

t

t

DSDSDSDS
ADADAD

SPSPSPSP
APAP

tEAD  (ES 1) 
 

where  

• i is the current time-step 

• T is the last time-step of the timespan 

• E(cost()) is the expected energy costs for the timespan 1 to T 

• ADt is the actual dispatch at time-step t (a parameter for t < i , a variable for t 

= Ii) 

• APt is the actual scenario parameter values (known for t ≤ i) 

• SPj,t is the randomly generated parameter values for stochastic scenario j at 

time-step t (known for all t, but replaced by APt for all t ≤ i ) 

• DSj,t is the planned dispatch for stochastic scenario j at time t (a variable for 

all j and for all t > i) 

 

RT-OPTICOM Application: The United States Postal Service Processing and 

Distribution Centers 

The validation of the RT-OPTICOM IES tool was in the process of answering several 

previously unanswered questions: 
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• To what extent are the heuristic controls strategies employed for CHP systems 

sub-optimal, i.e. to what extent could more intelligent controls improve site 

objectives? 

• What is the value of an integrated approach to site energy dispatch decisions? 

• For dispatch decisions, what is the tradeoff between cost minimization and 

carbon emissions minimization? 

 

The United States Postal Service Processing and Distribution Centers (P&DCs) were 

selected as a case study for this research.  These light-industrial sites collect and route 

both incoming and outgoing mail for their regions using energy intensive machinery.  

P&DCs are fairly similar across regions; their energy-situations vary by climate-

driven thermal loads, local energy prices, and emissions from electricity production, 

but not by schedule or machinery load.   

 

RT-OPTICOM is used to study P&DCs from several regions, and several tariff 

structures in each region, illustrating the usefulness of such a general model while 

answering the questions posed here. 

 

Site Description, Data Collection, and Modeling 

The United States Postal Service (USPS) operates nearly 300 Processing and 

Distribution Centers (P&DCs) across the United States.  The machinery used to align, 

scan, sort, and route mail is energy-intensive, with sites typically having peak electric 
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loads of approximately 1-3 MW.  The tremendous amount of heat given off by the 

machinery makes for large cooling loads, even on days of mild temperature.  The 

relatively flat energy profile and significant space conditioning loads make P&DCs 

good candidates for DER. 

 

P&DCs offer a rare opportunity for industrial building energy research because they 

are federal, rather than private, buildings.  Most private buildings contacted by the 

author for this project would not release detailed energy consumption data, and in 

general considered most information about their buildings proprietary. This lack of 

access to actual energy consumption data limits the scope of much building energy 

research.  P&DCs, on the other hand, are not limited by competition concerns, but 

only by security concerns.  As well, the USPS has regional offices actively pursuing 

energy and energy-cost savings, which encourage research that might benefit their 

sites.   

 

For this research, the USPS Margaret L. Sellers P&DC in San Diego, California was 

studied in detail.  A DER system was recently installed there, consisting of a 1.5 MW 

natural-gas-fired reciprocating engine coupled to a 1 MW (300 ton) absorption 

chiller.  The chiller offsets the site’s electric compression chiller load by 250 kW at 

rated capacity.  Additionally, 12 kW of PV are installed at the site.   

  

The CHP system uses a load-following control i.e., the generator is run as high as 

possible at all times.  One objective of this research is to examine economic 
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efficiency of this load-following control strategy by comparing energy costs from a 

load-following strategy to those from an optimal dispatch control strategy. 

 

An additional objective is to examine the results and character of optimal control 

under varying tariff structures.  Time-of-use (TOU) tariffs are the default from the 

utility, and critical peak pricing (CPP) tariffs are already an option.  Debate over real-

time pricing (RTP) tariffs continues and could possibly be offered or imposed in the 

near future. 

 

P&DC sites across the United States have similar machines, building design, and 

operating schedules.  The most significant differences in energy consumption at 

similarly sized P&DC sites across the United States are due to climactic differences.  

The San Diego site was studied in detail to understand the non-cooling electric loads 

– which would not vary by location – and to correlated space conditioning loads to 

weather and electric loads.  This information was then used to develop building 

energy simulation models of P&DCs in four United States cities: San Diego, CA, 

Baltimore, MD, Boston, MA, and Houston, TX. 

 

A great deal of data were required for the site modeling and simulations.  Energy 

consumption data were collected from the San Diego P&DC.  Historic electricity and 

natural gas prices were collected from the local utilities.  Real-time clearing prices 

were collected from the regional independent system operator (ISO) or its equivalent.  

Historic temperature and solar insolation data were collected from the Weather 
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Underground and the National Renewable Energy Laboratory, respectively.  

Stochastic models of loads and clearing prices were correlated to temperature data.  A 

stochastic model of generator availability was also developed.  

 

Figure ES 3 shows the average monthly price for electricity and natural gas for 

industrial customers in California.  The thin solid (red) line is the ratio of the two, or 

spark spread, with values plotted on the right vertical axis.  The spark spread has 

ranged from 1.96 to 4.31 in less than three years. Given that DG converts natural gas 

to electricity, optimal dispatch must be responsive to the relative fluctuations in these 

two commodities’ prices. 
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Figure ES 3. electricity and natural gas prices for January 2004 to August 2006 and 
the ratio of electricity to natural gas price 
 

Experiments 

Three experiments were conducted using RT-OPTICOM and the P&DC data sets.  

These experiments were intended to demonstrate the capabilities of RT-OPTICOM 
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and begin to explore some pertinent open questions concerning DG and demand 

response.  The three experiments were 

1. a valuation of optimal DG control under various tariff structures 

2. a valuation of demand side management options with and without DG 

3. a co-optimization of cost and carbon emissions using DG 

All experiments were conducted on all four cities and under all three tariff structures 

to provide insight into the effects of energy-situation on results. 

 

Optimal Control Valuation 

One of the early questions that motivated this research project was of what value a 

sophisticated dispatch optimization – relative to standard heuristic controls - would be 

for a DG system.  To explore this question, simulation of the P&DC sites for each 

month from January 2004 to December 2006 was conducted under four control 

strategies: 

• no-DG – The generator and absorption chiller are not run, showing site 

behavior prior to DG installation. 

• load-following – The generator is run as much as possible, mimicking the 

site’s current strategy. 

• heat-following – The generator is dispatched to run at a level for which all 

recovered heat will be useful to the absorption chiller and space-heating. 

• optimal dispatch – The full optimization program is used to make dispatch 

decisions. 
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The simulations were repeated for each of the three tariff structures (TOU, CPP, and 

RTP).  All input data were consistent across tariff structure and control strategy.  

Thus, for a given month of simulation, the actual values and stochastic forecast values 

of non-cooling loads and DG availability were the same for each location, tariff, and 

control strategy.  Cooling and heating loads for each location were determined by the 

non-cooling loads and the local weather.  Actual clearing prices for each location 

were used for the actual years, and the location and weather dependent stochastic 

model of clearing prices was used to generate the clearing price stochastic scenarios.  

These clearing prices were then used to determine the CPP episode days – the six 

highest priced weekdays in each of the summer months.  Actual solar insolation data 

for each of the stochastic scenario years were used, and historic average data were 

used for the actual years1.   

 

Figure ES 4 plots the resulting monthly energy prices for Boston.  The optimal 

solution for the TOU and CPP tariffs is approximately a selection between one of the 

three heuristic strategies.  During most of 2004 and 2005, the optimal control strategy 

was approximately no-DG, whereas in 2006, the optimal control strategy was 

                                                 
1 Data for the actual years considered (2004 to 2006) could not be found – average 
daily profiles from the 1961 to 1970 data were used instead.  For a site with more 
sizeable solar energy harvesting, this averaging would not be appropriate.  However, 
for this particular site, the 12 kW photovoltaic system provides, at most, about 0.5% 
of the site’s electric load.  Including the stochastic solar insolation in the model is 
mostly a placeholder for studies targeted at renewables, for which the only 
modification to this work would be to update the solar data for the actual years 
considered. 
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approximately to heat- or load-follow.  Where there was a significant difference 

between heat- and load-following, heat-following was almost always a lower-cost 

strategy than load-following.  Under RTP tariff, optimal control provides lower cost 

in many months than any of the heuristic strategies. 
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Figure ES 4. Boston - monthly energy costs under all tariffs and control strategies 
 

Similar results were obtained for all four cities.  The results for the four cities 

demonstrate that, quite often, optimal control can be reasonably approximated by a 

monthly selection between one of the three heuristic control strategies.  This is 

particularly noticeable in the results under TOU and CPP tariffs.  Under RTP tariffs, 
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optimal control becomes more valuable, as scheduling alone is an inadequate 

approach to stochastic, volatile energy prices. 

 

Table ES 1 summarizes these cost results.  The maximum value of DG is defined as 

the difference between average annual energy costs under no-DG and under optimal 

control strategies.  The optimal control value is defined as the difference between 

average annual energy costs under heat-following (consistently the most valuable 

heuristic control strategy) and under optimal control.  This value as a percentage of 

the maximum value is also reported.  Figure ES 5 shows this information graphically, 

where it becomes clear that optimal control 1) has the most value in the two cities 

where DG has the least value (Baltimore and Boston), 2) has marginal value in the 

city where DG has intermediate value (Houston), and 3) has almost no value in the 

city where DG is most valuable (San Diego).  In other words, the value of optimal 

control is generally inversely proportional to the overall value (with or without 

optimal control) of DG.  Here, relative levels of DG value are estimated by the 

magnitude of difference between electricity prices and natural gas prices. The reason 

for this inverse relationship is that in areas like San Diego or Houston, where 

dispatching DG is economic in most months, there is little need for a sophisticated 

controller.  However, in areas like Baltimore or Boston, where dispatching DG is only 

economic in certain months, an intelligent controller provides value by identifying 

uneconomic DG dispatch. 
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For reference, the turnkey capitol cost of a a 1.5 MW engine and 1 MW (300 ton) 

absorption chiller like those installed at the San Diego P&DC is approximately 

$3,000,000 to $4,000,000 (using data from US-EPA 2007 and Firestone 2004)2.  

Assuming a 5% discount rate and 20 year lifetime, this is an annualized cost of 

$230,000 to $310,000/year.  Annual savings greater than this suggest profitable 

circumstances for the site, a third party that installs and owns the CHP, or some 

combination of the two.  Where subsidies for CHP systems are available, DG may 

even be profitable when annual energy savings are lower than $230,000 to $310,000.  

At these estimated annualized costs and without subsidy, only the San Diego site 

would be an economically attractive site for CHP. 

Table ES 1. summary of average annual 
optimal control valuation 

Baltimore Boston Houston San Diego

TOU
maximum value of DG 

(k$/year) 200 184 265 415

optimal control value 
(k$/year) 77 71 19 3

optimal control value 
(% of maximum value) 38% 38% 7% 1%

CPP
maximum value of DG 

(k$/year) 217 194 281 419

optimal control value 
(k$/year) 87 75 28 6

optimal control value 
(% of maximum value) 40% 39% 10% 1%

RTP
maximum value of DG 

(k$/year) 335 317 358 453

optimal control value 
(k$/year) 134 118 57 9

optimal control value 
(% of maximum value) 40% 37% 16% 2%

0

100

200

300

400

500

TO
U

C
P

P
R

TP

TO
U

C
P

P
R

TP

TO
U

C
P

P
R

TP

TO
U

C
P

P
R

TP

Baltimore Boston Houston San
Diego

k$
/y

ea
r

added value of optimal control
value under heat-follow control

 

Figure ES 5. average annual value of DG 
 

Figure ES 6 through Figure ES 8 plot the offset of utility electricity purchase (from 

DG and cooling offsets from absorption cooling) using optimal control under each of 

the three tariffs for January 2004, July 2004, and November 2005.  The hours are 

ordered from hour of lowest RTP to highest RTP – note that the RTP prices are only 
                                                 
2 No financial details of the actual San Diego installation were revealed to the author.  
These cost estimates are based on publicly available reviews of CHP cost and 
performance.  
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seen by the optimization under the RTP tariff (directly) and the CPP tariff (indirectly 

through critical episodes).  In these figures the real-time price is plotted on the right 

vertical axis and the electricity offset under the three tariffs is plotted on the left 

vertical axis.  A 20-hour rolling average is used to smooth the RTP-ordered 

consumption plots.  Under RTP, the site is responding to the fluctuations in price, 

producing significant demand elasticity.  Note the in November 2005, during a 

natural gas price spike, almost all DG dispatch was uneconomic.  Regardless, there 

were some hours of high real-time electricity price in which dispatch was economic. 

 

0 100 200 300 400 500 600 700
0

500

1000

1500

2000

2500

el
ec

tr
ic

ity
 o

ffs
et

 (
kW

)

RTP−price−ordered hour

Baltimore

0 100 200 300 400 500 600 700
0

0.05

0.1

0.15

0.2

0.25

R
T

P
 p

ric
e 

($
/k

W
h)

RTP TOU CPP RTP price

Figure ES 6. Baltimore – January 2004 – 
electricity purchase by hour, ordered 
from least to highest RTP 
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Figure ES 7. Baltimore – July 2004 – 
electricity purchase by hour, ordered 
from least to highest RTP 
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Figure ES 8. Baltimore – November 2005 
– electricity purchase by hour, ordered 
from least to highest RTP 

 

 

The results of this experiment demonstrate the potential price-responsiveness of DG 

under RTP tariffs.  This behavior can improve price stability and grid stability to the 

extent that prices reflect supply margins.  However, as seen in the third experiment, 

RTP tariffs can incent less DG dispatch than TOU or CPP tariffs, reducing the energy 

and environmental benefits of CHP. 

 

Demand Side Management Valuation 

The second experiment conducted was a valuation of demand side management 

(DSM) programs.  Unplanned DG outages often cause DG site utility consumption to 

be much peakier than that of their non-DG counterparts.  It was hypothesized by the 

author that DSM programs could be more valuable to DG sites than non-DG sites by 

mitigating demand charges.  This synergy between DG and DSM was demonstrated 

by Firestone, Stadler, and Marnay (2006b).   
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Figure ES 9 illustrates this phenomenon.  The graph on the left is a load duration 

curve of on-peak hours for a site with no-DG.  The red dashed line indicates 80% of 

peak demand; the intersection of the 80% line with the duration curve is used to 

identify the number of hours of DSM required to successfully reduce monthly 

demand by 20%.  In this example, approximately 90 hours of curtailment would be 

required.  The middle graph plots utility electricity consumption for the same site, in 

the same order of hours as the left graph, although this time with DG and subject to 

random DG outages.  Peaks in the middle graph indicate hours of DG outage.  The 

graph on the right shows the load duration curve for the site with DG, i.e. the utility 

purchase from the middle graph is now reordered from hour of greatest purchase to 

hour of least purchase.  In this example, DG successfully mitigates almost the full 

20% of demand cost.  Nearly 25% more demand could be mitigated if DSM could be 

used for the few hours of the month when the DG is unavailable.  This figure shows 

how much fewer hours of DSM may be required to achieve equivalent (or greater) 

demand charge mitigation if DG is present. 
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Figure ES 9. duration curves that demonstrate the peakier nature of DG customers’ 
utility purchase 
 
For this experiment, a DSM program of 1-hour curtailments was considered, with two 

program parameters: 1) number of allowable curtailments per month, and 2) the 

magnitude of curtailment.  For each of the four sites, under each of the three tariff 

structures, for the 2006 data, site simulation using RT-OPTICOM for dispatch 

optimization was conducted for the following cases: 

• no DG or DSM dispatch: the site purchases electricity to meet all electric 

demand and natural gas to meet all thermal demand   

• DG dispatch only: the site meets electric and thermal demands through a 

combination of DG operation, electricity purchase, and natural gas 

consumption in boilers/furnaces. 

• DSM dispatch only: the site purchases electricity to meet all electric demand 

and natural gas to meet all thermal demand, but also does a limited amount of 

curtailment to offset electric loads. 
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• DG and DSM dispatch: the site meets electric and thermal demands through 

a combination of DG operation, electricity purchase, natural gas consumption 

in boilers/furnaces, and limited curtailment of electric loads. 

For all cases with DSM dispatch, RT-OPTICOM runs with all combinations of 

curtailable hours {5, 10, 15, 20, 25} and curtailable magnitude (kW) {50, 100, 150, 

200, 250} were considered.  The results from these cases were then used to determine 

the value of DSM programs with and without DG systems.  For the TOU tariff and 

with DG, Figure ES 10 shows contour plots of the annual value of the DSM program, 

i.e. the difference between the annual energy cost without DSM and with DSM, 

ceteris paribus.  
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Figure ES 10. TOU – with-DG – annual value (k$) of varying DSM programs in 2006 
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Table ES 2 summarizes the DSM value for each combination of tariff, city, and 

presence/absence of DG dispatch at two levels: 1) 10 hours/month of 100 kW 

curtailment and 2) 25 hours/month of 250 kW curtailment.  Peak loads at the sites are 

approximately 2 MW.  Without DG, DSM is most valuable under CPP tariffs, where 

curtailment episodes coincide with critical episodes.  When DG is included in the 

dispatch, DSM generally becomes more valuable for a small curtailment program (10 

hours per month at 100 kW), i.e. the hypothesized synergy between DG and DSM as 

illustrated in Figure ES 9 is observed.  However, the results are not conclusive for a 

larger curtailment program (25 hours per month at 250 kW); DSM becomes less 

valuable in two of the four cities (Baltimore and San Diego), more valuable in the 

other two (Boston and Houston).  These results illustrate the complexity of 

determining DSM value, which is dependent on the particular DSM program, the size 

and structure of demand charges and the energy purchase duration curve.  The 

duration curve is in turn dependent on generator availability and climate-driven 

thermal loads. 
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Table ES 2. DSM program value (k$/year) for a 10hour/month, 100 kW/episode 
program and a 25 hour/month, 250 kW/episode program in 2006 

without DG with DG without DG with DG
Baltimore TOU 2 2 10 10

CPP 3 4 18 14
RTP 2 2 14 8

Boston TOU 13 23 37 53
CPP 15 18 42 48
RTP 16 28 40 50

Houston TOU 1 1 5 5
CPP 2 2 10 13
RTP 2 1 10 7

San Diego TOU 4 14 14 25
CPP 5 5 21 15
RTP 5 7 16 11

10 one-hour curtailments per 
month

100 kW maximum curtailment

25 one-hour curtailments per 
month

250 kW maximum curtailment

 

 

Cost-Carbon Co-optimization 

The final experiment was to examine the trade-off between site-attributable carbon 

emissions and energy costs under optimal control and the three different tariffs.  Site-

attributable carbon emissions are the sum of emission from grid electricity and on-site 

natural gas consumption.  One constraint in RT-OPTICOM is a ceiling on the amount 

of site-attributable carbon emissions in each month.  For this experiment, for the 

months of January 2004 to December 2006, the simulation under optimal control and 

each of the three tariffs was rerun for a series of carbon constraint levels.  For utility 

electricity, regional average marginal emissions factors from The Climate Trust 

(2005) were used. 
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The set of costs and carbon emissions levels from these runs were then analyzed to 

obtain an estimate of the cost/carbon trade-off under each tariff structure.  Results for 

Baltimore are plotted in Figure ES 11 and Figure ES 12, with carbon emissions on the 

horizontal axis and the corresponding minimum possible annual energy cost on the 

vertical axis.  For each city, these values are plotted in average annual dollars and 

tons of carbon (graphs on the left) and as percentages of the lowest possible level of 

cost and carbon (graphs on the right).  All points on these figures are determined by 

running the RT-OPTICOM model for each city/month/tariff combination at many 

different levels of carbon constraint and then solving a separate optimization problem 

which finds the least-cost combination of monthly results for a given total level of 

carbon emissions.  These least cost values could not be obtained in practice because 

they assume perfect foresight in natural gas prices for the three years and general 

trends in electricity prices; however they do provide an estimate of the cost/carbon 

trade-off.   

 

The approximately right angles in Figure ES 11 under all tariffs illustrate that there is 

very little room in dispatch decision-making for trade-off between cost and carbon.  

Figure ES 12 shows these dual optimization, or Pareto, fronts in more detail, and in 

terms of percentage of best-cost and best-carbon values.  For TOU and CPP tariffs, 

least-cost solutions result in about 10% more carbon than least-carbon dispatch 

(bottom right corner of the graph), whereas least-carbon dispatch costs the site about 

10% more than least cost dispatch.  Under RTP tariffs, this angle is more rounded, 

showing more room for trade-off. 
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Figure ES 11. Baltimore - cost-carbon 
Pareto front 
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Figure ES 12. Baltimore - cost-carbon 
Pareto front, as percentage of best-cost 
and best-carbon solutions   

 

Figure ES 13 and Figure ES 14 show these results for San Diego.  Here, the Pareto 

fronts are right angles: least-cost dispatch is least-carbon dispatch. 
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Figure ES 13. San Diego - cost-carbon 
Pareto front 
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Figure ES 14. San Diego - cost-carbon 
Pareto front, as percentage of best-cost 
and best-carbon solutions   

 

The results of this experiment show that, for the P&DC sites considered, there is little 

or no difference between least-cost and least-carbon dispatch of the installed system.  

If greenhouse gas reductions are of interest to these sites, the crucial stage of the 

decision making is the design of the IES. 
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Summary of Project and Conclusions 

This project sought to quantify the economic savings possible from improved controls 

of integrated energy systems (IES).  To accomplish this, a technique for obtaining 

near-optimal solutions to stochastic problems that are too complicated to solve 

analytically or using conventional operations research methods was required.  This 

technique was developed and applied to the specific IES problem.  Finally, case 

studies using the resulting program were conducted to answer several pertinent 

questions about DG dispatch and the integrated combination of DG and DSM.   

Key findings for the P&DC sites include: 

• Optimal control is most valuable in areas where DG is marginally cost-

effective, as predicted by the relative costs of electricity and natural gas.  In 

these areas, up to 40% of the value of a DG system can be attributed to 

optimal control.  Restated, optimal control can increase the value of a DG 

system by 67%. 

• For simple systems such as the single generator system considered here, 

simple heuristic strategies could achieve much of the benefit of optimal-

control if they contained rules for switching between heuristic strategies as 

conditions change. 

• Heuristics may not be adequate for more complicated situations such as that 

arising from real-time electricity pricing. 
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• Demand charges in typical tariffs can make curtailment worthwhile at a site, 

even in the absence of a demand response incentive program.  

• In situations where stochastic generator outages make for a particularly peaky 

utility electricity purchase profile, limited curtailment programs can be more 

beneficial as part of a DG/DSM IES than on their own. 

• Cost-minimizing control is roughly carbon-minimizing control for all four 

sites. 

 



1 
 
 
 

PART 1: INTRODUCTION TO INTEGRATED ENERGY SYSTEMS (IES) 

AND THE NEED FOR GENERIC REAL-TIME DISPATCH OPTIMIZATION 

ALGORITHMS 

 

Market deregulation has shaped the United States energy sector for the past three 

decades.  The Public Utility Regulatory Policy Act (PURPA) of 1978 first invited 

relatively small-scale generators into the electricity market, and wholesale 

competition has become widespread during the last decade, especially in some 

jurisdictions, notably California, New York, New England, and the Pennsylvania-

New Jersey-Maryland interconnection.  On the customer side of the meter, the change 

has been less dramatic, but nonetheless, expectations of the electricity supply system 

have evolved following experiments with customer choice, greater exposure of 

consumers to the variability of electricity prices, and an emerging generation roller 

coaster investment cycle.  And, of course, the 2000-2001 California energy crisis, the 

terrorist threat, and the August 2003 Northeast blackout have radically reshaped 

expectations of supply security.   

 

Simultaneously, improvements to small-scale and renewable technology have spurred 

an industry that has, in recent years, made even smaller (business scale) electricity 

generation an economically viable option for some consumers.  On-site energy 

production, known as distributed generation (DG), offers consumers many benefits, 

such as bill savings and predictability, improved system efficiency, improved 
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reliability, control over power quality, and in many cases, greener electricity.  

Additionally, DG systems can benefit electric utilities by reducing congestion on the 

grid, reducing the need for new generation and transmission capacity, and offering 

ancillary services such as voltage support and demand response.   Additional on-site 

energy storage and conversion devices offer further benefit, and include heat 

exchangers for waste heat recovery, thermally activated cooling, electrical storage, 

and thermal storage.  These technologies are collectively referred to as distributed 

energy resources (DER). 

 

The economic analysis of energy efficiency (EE) measures has become 

commonplace.   Businesses and institutions have become less hostile to demand 

response (DR) measures – i.e. curtailment and rescheduling – due to government 

mandates, conservation campaigns (such as “Flex Your Power” in California), new 

tariffs that put a premium on electricity during times of system scarcity, and lucrative 

interruptible service contracts from utilities. 

 

This suite of customer-side energy options – EE, DER, and DR – gives customers 

complex investment and operation decisions.  While the investment problem has been 

given considerable attention in recent years, the operation problem has not been 

adequately addressed.   It is the intent of this project to develop a general solution to 

the real-time optimal dispatch problem for integrated systems of DER and demand 

response, herein referred to as integrated energy systems (IES). 
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Part 1 introduces the IES and discusses the optimal dispatch problem.  Chapter 1 

describes the components of the IES, along with the tariff structures, and regulatory 

and operational constraints that make optimal dispatch a challenge.  Chapter 2 

presents the hypothesis of this research: that near-optimal dispatch of IES is a 

tractable problem.  This chapter also discusses the merits of a generic solution to the 

IES dispatch problem, rather than a site specific approach.  Chapter 3 discusses prior 

research on related optimization problems, DR potential, and operations research. 
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1. INTRODUCTION 

IES for a site may consist of a large range of energy conversion and storage devices, 

as well as demand response options, giving the site control of both its supply of and 

demand for electrical and thermal energy.  The economically optimal dispatch of any 

IES must be in response to current and forecasted energy prices, energy demand, and 

DER equipment availability.  Dispatch must be within mechanical and regulatory 

constraints on the IES.  This chapter describes these factors. 

 

1.1 IES Equipment 

IES for a site may consist of electricity generation devices, energy conversion devices 

for the utilization of waste heat and/or solar insolation, energy storage devices, 

thermal cooling devices, and/or demand response.  This section describes these 

devices.  Several texts and reports provide more detailed overviews of generation 

devices, including Willis and Scott (2000), Goldstein et al. (2003) and WADE 

(2003). 

 

1.1.1 Electricity Generation Devices 

1.1.1.1 Gas Turbines 

Prime-power on-site generation above ~5 MW is most commonly provided by gas 

turbines.  Air is compressed, combined with gaseous fuel, combusted, and expanded 

through a turbine in a continuous process.  Gas turbines typically have electrical 
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efficiencies in the range of 25-40%.  The portion of fuel energy not converted to 

electricity exits the turbine in the form of hot exhaust (250-750°C).  Gas turbines are 

available in the range of 1 MW to 100s MW.  Start-up times range from a few 

minutes for smaller units to a half hour for utility scale turbines. 

 

1.1.1.2 Reciprocating Engines 

Reciprocating engines are the most popular3 and oldest type of distributed generator 

worldwide.  Reciprocating engines contain multiple cylinders with moving pistons, in 

which a four-stroke Otto or Diesel cycle is employed: fuel/air intake, compression, 

ignition, and exhaust.  Engines are available in sizes ranging from 1 kW to 10s of 

MW.  Back-up power for sites with critical loads, such as hospitals and data servers, 

is often provided by reciprocating engines.  Reciprocating engines are also used for 

continuous power DG, typically being cost-effective and dominant to other DG 

technologies for sites with electrical demands ranging from 100s of kW to 5 MW 

(LaCommare et al. 2006).  Reciprocating engines can be diesel-fueled (Diesel engine) 

or fueled by gasoline, natural gas, propane or bio-gas methane (Otto engines).  Diesel 

engines typically have an electrical efficiency in the range of 28-40% and spark-

ignition engines typically have an electrical efficiency in the range of 20-43%.  The 

portion of fuel energy not converted to electricity is roughly evenly split between 

exhaust gas (400-600°C) and engine cooling loop (~85°C).  

 
                                                 
3 According to Willis and Scott (2000), 93% of distributed generation equipment 
worldwide is reciprocating engines. 
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Reciprocating engines have low capital costs (relative to other DG technologies), high 

reliability, and very fast (< 60 seconds) start-up times. 

 

1.1.1.3 Microturbines 

In recent years, smaller versions of gas turbines have become commercially available.  

These microturbines are available in the range of 30 kW to 100s kW.  They have 

electrical efficiencies in the range of 25-30% and exhaust gas (200-300°C) accounts 

for the remainder of fuel energy.  Relative to reciprocating engines, microturbines 

(and gas turbines) offer significantly lower rates of NOx emissions4.  Microturbines 

have been designed with all moving parts on a single shaft and with air bearings to 

eliminate the need for lubrication oils.  Such a design offers the potential for low 

maintenance/high reliability machines, although this has yet to be conclusively 

demonstrated in the field.  Microturbines have a start-up time of approximately two 

minutes. 

 

1.1.1.4 Fuel Cells 

Unlike combustion driven electricity generation equipment, fuel cells harness 

chemical oxidation to convert the chemical energy of gaseous fuels (reformed into 

hydrogen) to electricity.  Unlike combustion-driven counterparts, fuel cells emit 
                                                 
4 In California, the California Air Resources Board (CARB) must certify DG 
equipment before it can be installed.  In 2003, CARB specified emissions levels for 
DG, and more stringent regulations were enacted in January 2007.  To date, only fuel 
cells and one microturbine, the Ingersoll Rand 250 kW model, have been certified.  
No reciprocating engines have been (CARB 2007). 
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virtually no NOx, SOx, or particulate matter (PM).  Electrical efficiencies are in the 

range of 30-50% and the remainder of fuel energy is rejected through the stack 

cooling loop at temperatures 80-600°C, depending on the type and design. Fuel cells 

are available in sizes ranging from several kW to several MW, although they are still 

a developing technology and not yet commercially viable.  Public subsidies have 

spurred fuel cell adoption at 100s of sites across the U.S.  Fuel cells have the poorest 

start-up times (minutes to hours) and ramping rates of fossil fuel driven DG and are 

not good candidates for responsive DG applications. 

 

1.1.1.5 Photovoltaics 

Photovoltaics (PV) are semiconductor devices that convert solar radiation to direct 

current (DC) electricity.  Power electronic inverters are then used to convert this to 

low voltage AC electricity.  PV, while more expensive than fuel driven electricity 

generation, can still have a positive net present value to investors, particularly with 

public subsidies available in some areas.  PV offers pollution and greenhouse-gas-free 

operation, no moving parts, and requires minimal maintenance.  Public subsidies such 

as California’s Self-Generation Incentive Program and Emerging Renewables 

Program and a positive public image have made PV commonplace.  PV arrays are 

modular and available in sizes from 10s of W to several MW. 
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1.1.1.6 Small-scale Wind Turbines 

Wind turbines convert the mechanical energy of wind into electricity.  Small-scale 

wind turbines originated in Denmark in the 1890s and became popular on farms in the 

U.S. in the 1930s, before power lines had reached these areas.  While large-scale 

wind farms have proven to be cost-competitive with fossil-fuel and nuclear power 

plants, small-scale wind generation for direct customer consumption is less economic, 

unless its purpose is to avoid the cost of extending the utility distribution system to a 

site.  Wind power suffers from intermittency and significant siting restrictions due to 

view obstruction, the physical danger of heavy moving parts in an open environment, 

and danger to birds and bats.  

 

1.1.2 Heat Recovery 

Fuel-driven electricity generation devices can use “waste” heat toward site steam, 

process heat, space-heat, domestic hot water, and cooling (see Section 1.1.4) needs.  

Heat exchangers are designed to transfer heat from exhaust and cooling loops to 

useful medium.  Using generators in this way is known as combined heat and power 

(CHP).  CHP often tips the economic scales in favor of on-site generation.  Although 

fuel-driven on-site electricity generation is often less electrically efficient than central 

generation and distribution, CHP systems can lead to reduced primary fuel 

consumption relative to utility electricity purchase. 
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1.1.3 Thermal Generation 

1.1.3.1 Solar Thermal 

Solar radiation can be converted to useful heat by solar collectors.  NRC (2006) 

provides a introduction to the numerous solar collector technologies and their 

attributes.  Low temperature collectors are used to heat water to temperatures up to 

about 80°C for domestic hot water and low-grade process heat loads.  High 

temperature collectors can heat high-pressure fluids to 400°C, although at an order of 

magnitude higher cost than low temperature collectors.  Firestone, Marnay, and Wang 

(2005b) provide a brief study of solar collector economic fitness and carbon 

mitigation potential as part of a DER system.  

  

1.1.3.2 Heat Pumps 

Heat pumps use high quality energy such as electricity or fuel to draw heat up a 

thermal gradient, typically from the ground to a building.  They are most effective 

when the thermal gradient is not too large. 

 

1.1.4 Thermal Cooling 

In many regions, peak electric grid demand occurs during the summer months 

because of air conditioning and other cooling loads.  The cost of energy consumption 

at peak times is higher than at off-peak times because of increased demand and 

because the “peaker” plants that provide this energy must recover their fixed 
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infrastructure costs over a relatively small number of hours.  For this reason, electric 

cooling load offsets are particularly valuable energy savings- cooling load offsets can 

be achieved by thermally activate cooling, which uses heat to replace part of the 

electric-cooling load. 

 

1.1.4.1 Absorption and Adsorption Cooling 

Thermal energy (i.e. heat) can be used to provide cooling through the use of an 

absorption or adsorption cycle.  In absorption systems, the electric compression 

cooling cycle is modified so that the operating fluid is pumped (i.e. it remains a 

liquid), rather than compressed (i.e. as a gas).  After being pumped, which requires 

much less electric energy than compression, heat is used to separate the operating 

fluid into a non-boiling liquid (i.e. absorbent), such as lithium bromide, and a boiling 

liquid (i.e. refrigerant), such as water.  Adsorption systems work similarly, although a 

solid adsorber is used, rather than a liquid absorber.  Double-effect chillers can be 

driven by higher quality heat and use two stages (with different operating fluids).  

Triple-effect chillers are also possible.  Heat recovery from CHP systems can be used 

for thermally activated cooling. 

 

1.1.4.2 Desiccant Dehumidification 

Space-cooling loads can be reduced by reducing the humidity of air prior to cooling.  

Liquid or solid desiccants can be used to absorb moisture from air prior to cooling.  
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Heat is then used to dry out the desiccant.  This is achieved in a continuous cycle in a 

desiccant wheel. 

 

1.1.5 Storage Technologies 

1.1.5.1 Electrical Storage Technologies 

Electricity can be stored in batteries (chemical energy), capacitors (electrical 

potential), flywheels (mechanical kinetic energy), and through pumping schemes 

(hydraulic head or pressure).  While prohibitively expensive for most potential 

applications, each has found its niche: smoothing out intermittency, riding through 

short outages and start-up/ramping times on on-site equipment, and storing energy 

with limited present-time value for later use. 

 

1.1.5.2 Thermal Storage Technologies 

Thermal storage is a cost-effective way of eliminating the coincidence of heat or 

cooling production and demand.  Water or solid medium in tanks can be used to store 

heat or cooling, as can the frame of a building.  Cold storage for large sites may be in 

the form of ice, which can be economic when cooling loads are significant during 

expensive on-peak hours and off-peak electricity prices are considerably lower, or 

when an on-site generator’s capacity is not otherwise needed during evening or night-

time hours. 
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1.2 Demand Response 

The high price of peak electricity has encouraged price responsiveness among some 

customers.  Certain electricity loads may be curtailable or reschedulable.  In pilot 

programs where the hourly and daily volatility of prices is passed directly to 

consumers, rather than monthly averaging, demand response behavior increases.  This 

holds promise for bringing demand elasticity to the electricity market, a valuable step 

towards reducing peak capacity costs and mitigating the threat of market power 

abuse.  Voluntary programs that hyper-incent demand response (and in some cases 

automatically shed customer load) have proved a cost-effective substitute for some 

amount ultra-peak capacity, i.e. peaker plants that are only used a handful of hours 

per year.  There are two different types of demand response: curtailable demand and 

reschedulable demand. 

 

1.2.1 Curtailable Demand 

Curtailable demands have a preferred level, but the demand level can be lowered if a 

certain cost is associated with the load reduction.  For example, air conditioning 

operates at a temperature setpoint requiring a certain chiller load.  If the setpoint is 

raised, a warmer indoor building temperature ensues and lowers occupant amenity.  

During times of particularly high electricity prices, the cost of this incremental 

discomfort may be outweighed by the incremental cost of electricity purchase.  Other 

curtailable load is non-workplace lighting (e.g. parking garages and hallways), 
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elevators, plug-loads, and process loads at industrial sites.  Curtailable demand is not 

made up for later; it represents a reduction in total energy demand. 

 

Curtailable loads can be quantified by the following parameters: 

• full load demand, 

• percentage of load that can be curtailed, 

• cost of curtailment, 

• lead time needed before curtailment can begin, 

• ramp rate at which load can go down, 

• length of time for which load can be curtailed, and 

• maximum frequency of curtailments. 

 

1.2.2 Reschedulable Demand 

Certain demands may be flexible in their scheduling.  Rescheduling might mean 

staggering the start of several electric motors so that the large current associated with 

start-up is broken into several moderate power spikes rather than one large one.  This 

is useful for avoiding 1) demand charges or 2) overloading an isolated DG system.  

Rescheduling could also involve shifting the execution of some energy intensive 

activities to later in the day, or further into the future.    With proper planning, loads 

can be rescheduled backwards in time.  An example of this would be pre-cooling a 

building during the less energy intensive (and less expensive) hours of the morning 

rather than waiting to start cooling until there is a cooling demand.  Reschedulable 
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demand rearranges the temporal parttern of enegy demand to lower cost or achieve 

other goals but does not reduce energy consumption. 

 

Reschedulable loads could be specified by the following parameters: 

• load demand, 

• maximum time until rescheduled time, or acceptable time to reschedule, 

• cost of rescheduling, 

• lead time needed before rescheduling can take effect, and 

• ramp-rate at which load goes down once it is rescheduled. 

 

1.3 Energy Pricing and Tariff Structure 

1.3.1 Electricity 

Utilities incur both variable and fixed costs for providing electricity to customers.  

Variable costs come from producing electricity, among them buying fuel and 

operating power plants.  They may be incurred directly if the plants are self-owned, 

indirectly through electricity purchase prices contracted with suppliers, or at market 

clearing prices.  Infrastructure costs, including delivery, are largely fixed and depend 

on the size of system, but not actual electricity consumption.  Some infrastructure 

costs are localized to individual customers (power lines and substations directly 

feeding a site); others, like power plants or administration, serve the entire customer 
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base; while many lie between these two extremes, for example, shared distribution 

lines and substations. 

 

Based on these variable and fixed expenses, utilities and their regulators typically 

design tariffs to cover three kinds of costs: 

• Fixed charges are invariant, $/month.  These are infrastructure costs of supply and 

delivery required by the customer regardless of their energy consumption for that 

month.   

• Volumetric charges are proportional to the amount of energy consumed.  They 

are expressed in $/kWh and may vary by time of day within a month.  Volumetric 

rates are intended to cover the variable costs of producing electricity, such as fuel 

and some maintenance, as well as the fixed costs that generators recover in their 

volumetric sales of electricity.   

• Demand charges are expressed in $/kW and levied on the maximum power 

consumption during a specified time range (such as the on-peak hours of the 

month), regardless of the duration or frequency of that level of power 

consumption.  Demand charges are intended to collect the fixed costs of 

infrastructure shared with other customers by raising revenue in proportion to the 

amount of peak power required by the individual. 

Demand charges play an integral role in the problem of dispatch optimization because 

of their magnitude and mathematic non-linearity.  The demand charges can be a third 

to a half of a customer’s electricity bill.  Because they are a function of the maximum 
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power consumption during the month, they are non-linear and they act over the entire 

month, making decision making at one time-step dependent on plans for future time-

steps.  Even with DG, demand charges can be difficult to avoid because of stochastic 

DG outages; many customers complain that this is a large barrier to DG and CHP 

system adoption. 

 

Volumetric and demand charges may have a block structure, in which there are 

different prices for different quantities of consumption.  An example would be a 

customer that incurs a volumetric charge of $0.10/kWh for their first 1000 kWh of 

power each month, $0.08 cents for their next 2000 kWh, and $0.07/kWh for all 

consumption in excess of 3000 kWh.   

 

Volumetric charges are typically have one of the four following structures 

• flat – the volumetric price of electricity is constant throughout the day and 

throughout the month 

• time of use (TOU) – the volumetric price of electricity varies by on-peak, 

mid-peak, and off-peak periods of consumption each month 

• critical peak pricing (CPP) – similar to TOU, but with much higher 

volumetric rates during periods of high system load 

• real-time pricing (RTP) – the volumetric price of electricity varies from hour 

to hour, reflecting to the true marginal cost of electricity to the utility. 

 



17 
 
 
 

The two major components of customer electricity bills are variable electricity, or 

supply, costs and infrastructure and service, or delivery, costs.  Historically, although 

fixed in nature, some delivery costs have been collected through volumetric pricing 

($/kWh) by adding them to the charges for supply.  When a class of customers has 

similar, regular consumption patterns, volumetric delivery prices can equitably 

recover cost and generate some profit.  However, if there are significant differences in 

customer usage patterns, volumetric delivery pricing may no longer be fair.  This is 

the case with many customers who produce some electricity on-site and purchase 

some from the grid.  This issue is discussed in greater detail by Firestone, Marnay, 

and Maribu (2006) and Firestone and Marnay (2005b). 

 

1.3.2 Natural Gas and Other Fossil Fuels 

Tariffs for natural gas and other fuels typically consist of fixed and volumetric 

components.  The volumetric prices can be volatile, as seen in Figure 1, which shows 

natural gas prices to U.S. commercial customers from 2000 to 2006.  
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Commercial Natural Gas Prices 2000 -2006
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source: Energy Information Agency 

Figure 1. average U.S. commercial natural gas price from 2000 to 2006 
 

1.4 Energy Demand 

Site energy demand can be divided into end-use types.  A convenient division is non-

cooling electricity, cooling (which may be further divided into space-cooling, 

refrigeration, etc.), space-heating, natural gas only (such as cooking and distributed 

space-heating).  The reason for separating cooling from other electricity loads is that 

cooling loads can also be met or offset by thermal cooling.   

 

Energy demand is stochastic in natural.  The statistical makeup of these loads will 

depend on the site, but key influences on load are weather and business/operation 

state. 
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1.5 Equipment Availability 

DER equipment is subject to failure, which results in unscheduled outages.  The 

occurrence and duration of these outages are stochastic.  For grid-connected DER, 

unplanned outages can create surges in utility electricity purchase, resulting in large 

demand charges.  The intermittency of solar and wind powered electricity can have a 

similar effect.  The modeling and quantification of equipment availability, 

particularly as a function of maintenancing/servicing arrangement, is a poorly studied 

problem.  

 

1.6 Operation Constraints 

1.6.1 Mechanical Constraints 

Mechanical constraints will limit the set of achievable setpoints of on-site energy 

equipment.  Examples of such constraints are minimum-start times, ramping rates, 

frequency limits on switching between on and off, and time required for scheduled 

maintenance. 

 

1.6.2 Regulatory Constraints 

Equipment operation may be further constrained by regulatory constraints such as  

• emissions limits which may restrict the total number or specific hours that 

equipment may run; 
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• noise constraints which may limit the specific hours that equipment may run; 

and/or 

• minimum CHP system efficiency, which may have to be maintained in order 

to receive favorable electricity or natural gas rates. 

 

1.7 The Integrated Energy System 

In order to best meet a site’s energy objectives, all of the equipment, loads, prices, 

forecasts, demand response options, and operational constraints should be viewed as a 

single, integrated energy system, or IES.  IES contain several key features which 

make their optimal dispatch difficult.  One of these features is uncertainty, which 

arises in energy loads, energy prices and IES equipment availability.  Another is the 

multi-stage, intertemporal nature of the problem: limits on the number of curtailment 

episodes and total hours of DER operation require scheduling, as dispatch at one 

time-step will affect the set of feasible dispatch at future time-steps.  Scheduling is 

further required to ensure minimum efficiency requirements, or to address limited 

fuel constraints.   

 

Demand charges make economic minimization particularly difficult in situations 

where there marginal cost of on-site generation is greater than that of utility 

electricity purchase, yet demand charges still make some amount of on-site 

generation economic.  Here, the correct level of demand charge mitigation must be 

determined in light of stochastic loads and equipment availability. 
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Cost minimization may not be the sole objective of a site’s IES dispatch optimization.  

Public sites may be more motivated by a reduction in primary fuel consumption 

and/or greenhouse gas emissions, as might environmental champions or image-

conscious entities. 
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2. HYPOTHESIS - HEURISTIC DISPATCH: FUNCTIONAL, NOT 

OPTIMAL 

The economically or environmentally optimal dispatch of a building’s IES is a 

problem rarely addressed in building operations.  Typically, building managers are in 

charge of dispatch decisions, yet their primary concern is ensuring that systems meet 

the needs of users, not that needs are met in an optimally efficient manner.  Optimal 

dispatch would require continuous decision-making based on historic data, current 

conditions, equipment availability, demand response opportunities, and stochastic 

forecasts of the future (prices, loads, and availability of equipment and of intermittent 

renewable resources). 

 

Building managers typically employ heuristic controls to their IES, such as a schedule 

for running their DER, or a target electricity demand level that they try to avoid 

exceeding for each month.  A detailed, quantitative analysis is not performed to 

ensure that, if a schedule is to be used, this particular schedule is the right one, or that 

the correct target demand level has been selected.  To the author’s knowledge, no 

such methodology exists in the public domain.  However, the vast diversity of 

combinations of load characteristics, tariff structures, energy prices, and IES 

characteristics make it improbable that a few simple heuristic strategies are adequate 

for near-optimal utilization of IES. 
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For cost minimization, demand charges, which can be a third to a half of a customer’s 

utility electricity bill, turn a problem that would otherwise be a straight forward 

comparison of marginal costs into a problem requiring planning under significant 

uncertainty.  Further planning is required when heat can be stored for later use and 

when curtailment can be used in limited frequency.  For primary fuel or carbon 

emissions minimizations, planning is required to match fuel savings opportunities 

with energy requirements, again under uncertainty. 

 

Given that IES have multiple degrees of freedom, and that IES operators consider 

only a limited set of dispatch options, it is most likely that optimal IES operation is 

not being achieved.  This observation introduces the hypothesis of this research: 

 

Heuristic dispatch typically used by building managers is not optimal.  

Optimization algorithms can be developed to make near-optimal decisions, 

resulting in improved realization of objectives such as the minimization of cost, 

primary fuel consumption, and/or carbon emissions. 

 

Two questions come directly from this hypothesis: 

• How can optimal dispatch be determined? 

• How much better could site objectives be met under optimal dispatch of IES? 

These questions were the initial motivation for this research. 
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This work focuses on the actual dispatch decisions that must be made once a 

particular system has been designed and installed.  It can also be used in simulation to 

refine the initial savings or performance estimate that a simultaneous investment and 

operation optimization would provide.  This research does not consider the parallel 

question of DER investment optimization.  As will be discussed in Section 3.2, the 

investment optimization necessarily must simultaneously solve the dispatch 

optimization problem.  Prior research has approached this problem.  However, the 

complexity that integer investment decisions add have not allowed for the dispatch 

optimization problem to be modeled in as much detail as in the work described here.   

 

  

While it may be cost-effective for large industrial sites to contract for a custom IES 

control systems, this would most likely not hold true for smaller industrial and 

commercial sites.  A generic solution for these sites that achieves near-optimal 

dispatch is desirable.  The range of sites, however, is enormous, as sites can be 

characterized on multiple dimensions, including: 

• IES system components, 

• magnitude of site loads, 

• variation of site loads over hours, days, and months, 

• volumetric electricity and natural gas prices, 

• demand charges, 

• electricity tariff structure, 
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• curtailment opportunities and cost, 

• rescheduling opportunities and cost, 

• site energy objectives (e.g. minimization of cost, fuel consumption and/or 

emissions), and 

• regulatory constraints on operation. 

 

Part 2 of this report introduces a technique for approximately solving the optimal IES 

dispatch problem and describes the development of a model capable of solving this 

problem for a wide range of sites.  Part 3 quantifies the benefits of improved dispatch 

for a case-study site. 
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3. PRIOR RESEARCH 

This dissertation has been inspired and guided by much prior research.  This chapter 

discusses prior research on utility-scale electricity system dispatch optimization, DG 

research on investment and dispatch optimization, demand response studies, and 

developments in operations research. 

 

3.1 Utility-scale Dispatch Optimization 

Dispatch optimization for vertically integrated utilities is a good comparison to the 

IES dispatch optimization problem.  The utility dispatch problem, in its entirety, is 

enormous.  Optimal or near-optimal control of the system requires decision making 

on the order of minutes, over a timespan of a year or more (to include maintenance 

scheduling and the rationing of scarce resources), with uncertainty in demand and in 

generator/transmission/distribution availability at every time-step.  To make the 

problem manageable, it is typically divided into three separate problems:  

• a planning problem for the day-to-day problem (over the course of months); 

• a unit commitment problem for the hour-to-hour problem (over the course of 

several days); and  

• a power flow problem for the minute-to-minute decisions (over the course of 

tens of minutes) and to ensure that transmission lines are not overloaded and 

to account for both real and reactive power demand. 

Using this multi-tiered dispatch strategy, the availability of units is determined 

through planning; the prioritization of dispatch of available units is determined 
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through unit commitment; and fine-tuning of the system is done through power flow 

optimization. 

 

After more than a century of electric utility presence, the unit commitment problem, 

subject to the practical constraints described in Appendix A, is still an open field of 

research.  Prior to the advent of modern computing power, heuristic approaches to the 

problem were developed in which priority lists of available units were generated, and 

generators were called on/off-line based on their placement on the priority list.  Over 

the years, the dominant approach to improved solutions to the unit commitment 

problem (both in research and in practice) has been to improve upon the methods for 

developing priority lists.  Momoh (2001) includes a chapter on the unit commitment 

problem, in which several ranking criteria for priority lists are described. 

 

Lagrangian techniques are the dominant approach to constrained optimization 

problems (Hillier and Lieberman 1995).  In this approach, constraints are converted 

into terms in the objective function and scaled by an unknown variable, i.e. the 

Lagrangian multiplier.  A dual problem is also developed, which is easier to solve and 

aids in the search for solutions to the primal problem.  Lagrangian techniques are, in 

general, a powerful approach to problems with a large number of variables.  

Momoh’s (2001) chapter on the unit commitment problem describes, in detail, a 

Lagrangian relaxation (i.e. integer constraints are relaxed at some points during the 

search) method for finding an optimal solution. 
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For discontinuous solution sets, additional methods are required to search amongst 

the candidate sub-sets.  The branch-and-bound techniques described in Hillier and 

Lieberman (1995) are a common approach, in which the optimization problem is 

divided into sub-problems by dividing and sub-dividing the set of feasible solutions 

and noting the optimal solution from the sub-set. 

  

Genetic algorithms (GAs) are a less analytic approach to optimal solution search in 

discontinuous space, which have also had success in combinatorially immense 

problems.  GAs mimic the natural mixing and occasional mutation of genes in 

heterozygous reproduction.  Through many rounds of reproduction, in which more 

favorable solutions are the dominant reproducers, natural selection is mimicked, and 

optimal solutions are approached.   

 

Valenzuela and Smith (2003) propose a hybrid optimization approach to the unit 

commitment problem.  First a (GA) is applied, with individual solutions guided and 

coaxed by additional rules.  Second, a Lagrangian relaxation method is used to search 

of for improved solutions from GA candidate solutions.  This research includes 

consideration of start-up and shut-down costs and time constraints, and examines the 

hourly dispatch problem over a 24-hour timespan.  This paper includes a brief review 

of the past three decades of approaches to the same class of unit commitment 

problems. 
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Appendix A includes a discussion of similarities and differences between the utility 

electric system and IES dispatch optimization problems. 

 

3.2 DG Investment Optimization 

With the recent advent of small (100s of kW to several MW) DG that is cost 

competitive with utility power purchase, much research has been done on the DG 

investment optimization problem.  Dispatch must be considered in the investment 

optimization problem, because the value of a given DG system will depend on how it 

is operated. 

  

The Distributed Energy Resources Customer Adoption Model (DER-CAM) is a DG 

investment optimization program developed at the Lawrence Berkeley National 

Laboratory (LBNL) (Bailey et al. 2003).  DER-CAM considers a site’s end-use 

energy loads (electricity, cooling, space-heating, water-heating, and natural-gas-only), 

electricity and natural gas tariff structure and prices; and DG investment opportunities 

(i.e. equipment type, cost, and performance characteristics).  This work assumes 

deterministic energy loads, and represents each month of the year-long optimization 

as three characteristic day-types: typical weekday, peak weekday, and weekend.  

Optimization includes dispatch at each hour of these characteristic days.  Demand 

charges are included in the tariff representation, although 100% reliability is assumed 

of DG equipment.  DER-CAM is written as a mixed-integer linear program (MILP).  
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Other DG investment optimization tools, such as the National Renewable Energy 

Laboratory’s (NREL) Hybrid Optimization Model for Electric Renewables 

(HOMER) (Lilienthal, Flowers, and Rossmann 1995), Natural Resources Canada’s 

(NRC) Renewable Energy Technologies Screening Tool (RETScreen International) 

(NRC 2007), and D-Gen Pro (InterEnergy Software 2002), have developed 

investment optimization tools that do enumerative searches through a user specified 

set of possible investment options.  Because these programs consider a smaller set of 

possible investment options, there is potential to consider the dispatch optimization in 

more detail5 than DER-CAM does. 

 

3.3 DG Dispatch Optimization 

The value of a DG investment is dependent on how the DG system is operated; 

therefore dispatch optimization is a necessary part of the investment optimization 

problem.  However, the enumeratively large set of candidate DG systems in the 

investment problem necessitates a simplification of the dispatch problem.  In the 

work of Bailey et al. (2003) this simplification is achieved by only considering 36 

characteristic days in a year and by assuming deterministic loads and 100% DG 

equipment reliability.  Other investment optimization research has considered only a 

handful of candidate systems.  This is the typical approach of DG developers.  By 

exhaustively considering each system, a more detailed dispatch optimization is 

possible. 
                                                 
5 For example, simulations can use 365 days/year instead of 36 or consider multiple 
years instead of a single year. 
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Chalermkraivuth and Ilic (2001) detail the cost function of distributed generation to 

developers and consumers under several different financial agreement scenarios.  

This work is intended for developers to assess the value of a particular system.  This 

work is one of the few to acknowledge the imperfect reliability of distributed 

generation, and therefore considers expected values, corrected for the risk aversion of 

investors, of an energy system under a given scenario.  Outages are assumed to be 

path independent, with equal probability of occurrence at all time-steps.  While 

operation schemes and stochastic generator outage are considered in determining the 

present value of a system, demand charges are not accounted for.  This simplifies the 

dispatch problem considerably: each time-step can be examined independently, and 

total annual or lifetime costs are just the sum of costs at each time-step.  However, 

accuracy is sacrificed by misrepresenting the tariff. 

 

Regan, Sinnock, and Davis (2003) describe the initial stage of work done in 

developing a distributed generation dispatch controller suitable for a neighborhood.  

The controller would be capable of dispatching generation and the 

charging/discharging of a battery in an electricity market which allowed the DG 

system to supply power to the neighborhood and/or sell power to the grid.  Neural 

networks are trained to predict site demand with respect to weather and time of 

day/year.  Conveniently, residential customers are not subject to demand charges, yet 

in some cases can get time-of-use rates. 
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Curtiss and Kreider (2003) discuss a few control strategies for the dispatch of 

distributed generation.  In threshold control a threshold demand level is selected at 

the beginning of each month, and on-site generation is dispatched whenever site 

demand exceeds the threshold.  This has the effect of mitigating demand charges by 

keeping demand below the threshold.  This paper does not suggest a method for 

selecting an optimal threshold level, although it does illustrate the variation in savings 

over a range of thresholds for a particular year.  Other simple control strategies 

described are  

• buyback control in which on-site generation is dispatched to run at all times, 

and excess electricity is either 1) sold at the real-time wholesale price to the 

utility or 2) fed to the utility grid in exchange for credits that offset site utility 

consumption at other times6 (this is know as “net metering”).   

• cooling/heating priority control in which DG is dispatched such that 

recovered heat exactly meets heating and/or cooling (via absorption cooling) 

demand.  This method ensures optimal system efficiency, as all recoverable 

heat is utilized. 

Finally, the paper describes optimal control in which an entire month of time-steps is 

considered, and a plan developed for the dispatch of the DG system at each time-step, 

taking into account time-of-use volumetric electricity ($/kWh) rates, demand charges, 

and volumetric natural gas prices.  This optimization does not consider the part-load 

                                                 
6 Each utility has its own rules regarding acceptance of DG electricity into the utility 
grid.  Typically, for small DG owners, resale and net metering are not an option, with 
exceptions made for PV and sometimes for methane fueled generation in agricultural 
and landfill sites. 
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efficiency of equipment, imperfect reliability, or stochastic variation in loads.  This is 

similar in detail to what DER-CAM considers, where deterministic loads and 

equipment availability enable a relatively straightforward (yet unrealistic) planning 

optimization. 

 

Coffey and Kutrowski (2006) propose a threshold control strategy for CHP dispatch 

optimization in the presence of demand charges.  The paper assumes deterministic 

loads and 100% reliable CHP.  Prior to the start of each month, monthly CHP system 

operation (and resulting costs) are simulated under varying threshold levels.  The 

threshold level with least cost results is selected.  For several Ontario, Canada 

buildings examined, the authors illustrate that using threshold control, rather than 

control based solely on volumetric price ($/kWh) comparison, can lower the payback 

period of CHP system investment by two to three years.  This is one of the few papers 

to identify the dependency of DG system value on control strategy, particularly under 

the influence of demand charges.  This paper discusses excessive start-stop cycles as 

a practical concern of analytic dispatch optimization strategies. 

 

3.4 Demand Response 

Initially, demand response (DR) programs developed by vertically integrated utilities 

focused mostly on the largest, industrial customers.  Here DR was part of integrated 

resource planning, i.e. if some load could be avoided, some capacity and 

infrastructure could be avoided.  In deregulated markets, when electricity suppliers 
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are scarce, DR can help maintain stability 1) physically on the grid and 2) 

economically in the spot-market when electricity supplies are scarce.  Tariff 

structures and incentive programs are being developed to encourage smaller industrial 

and commercial customers to curtail or reschedule load during critical grid events. 

 

Several of the tariffs and incentive programs have been implemented in places such 

as California and New York.  The most popular tariff structures for DR are 1) real-

time pricing (RTP), in which the day-ahead hourly electricity prices are passed 

directly to customers and 2) critical peak pricing (CPP), in which electricity prices are 

raised dramatically during a limited number of critical event periods in exchange for 

reduced prices at other times.  Other programs offer payments to customers who 

agree to curtail a set percentage of their load when called upon, or agree to have 

certain loads automatically curtailed by the utility. Goldman, Kintner-Meyer, and 

Heffner (2002) and Goldman et al. (2004) assess the effectiveness of several of these 

programs.  Key results of these studies include: 

• Approximately 85% of DR is load curtailment, rather than rescheduling; 

• Lighting and air conditioning are the most common DR loads, but elevators, 

process loads, and plug-loads are also common; and 

• Most customers handle DR manually; additional savings would be possible 

with automated DR. 
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Much research at LBNL has focused on the monitoring and automation of energy 

systems in buildings.  Included in this research has been the assessment and design of 

automated DR systems capable of automatically curtailing previously specified loads 

in response to price signals (such as from a RTP or CPP tariff) (Motegi, Piette, and 

Kinney 2003, Piette et al. 2004, and Watson et al. 2004).  This research has 

demonstrated feasible automated DR curtailment capabilities of at least 5-15% in 

typical commercial and industrial buildings. 

 

The format of curtailment in most of these studies is a few to 10 or 20 events per 

year, each event lasting three or four hours.  While these structures and incentives are 

designed to directly or indirectly call upon DR when supplies are scarce, the standard 

demand charge that most commercial and industrial customers in the U.S. are subject 

to also incents some DR.  One application of the research described in this 

dissertation has been a valuation of DR under standard demand charges (Firestone, 

Stadler, and Marnay 2006). 

 

3.5 Model-Based Controls for Building Energy Systems 

Coffey (2006) discusses the development of a dispatch optimization platform for 

building energy systems.  This approach uses a building energy model (BEM) to 

simulate the building at each time-step under varying candidate dispatch decisions.  

This report focuses on the information architecture, i.e. setting up the BEM and 

having it communicate with an optimization module.  The author writes uses a 
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genetic algorithm (GA) to solve the problem, yet acknowledges that more 

sophisticated, hybrid approaches may produce optimal results more quickly (which is 

essential for real-time controllers).  The current state of this author’s research is to 

optimize dispatch to automatic window-blind controls, where the decision on how 

much to open window blinds is a tradeoff between reducing lighting loads and 

increasing cooling loads.  Further research from the author will consider integrating 

window blind control with control of HVAC equipment and other building energy 

equipment.  This research is similar to the IES dispatch optimization research in that 

modern computing power and optimization algorithms are exploited to make analytic 

dispatch optimization for integrated systems quickly enough to be considered a real-

time approach.  In both, dispatch optimization of the current steps requires a dispatch 

strategy for future time-steps.   

 

From review of current research in DG investment optimization and in IES dispatch 

optimization, several possible improvements are apparent, all of which are important 

because of the significance of demand charges.  The first improvement is to include 

an accurate representation of demand charges.  The second is to consider stochastic 

variation of site loads and IES equipment availability because of their impact on 

demand charges.  The third is to consider the integrated dispatch of various IES 

components.  Firestone and Marnay (2005a) pose this optimization problem and 

discusses the data and information processing requirements of an energy manager 

entity capable of providing optimal dispatch control or advice.  This dissertation 

research concerns the development of this energy manager algorithm. 
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3.6 DG Case Studies 

During the process of developing DER-CAM, case studies were performed by the 

LBNL DER team, including the author of this dissertation (Bailey et al. 2003 and 

Firestone et al. 2003).  The intent of the case-studies was to validate DER-CAM by 

comparing investment solutions posed by DER-CAM with those chosen by sites.  

One significant realization from these case-studies and later ones by the LBNL DER 

team was building managers’ frustration over the discrepancy in performance of their 

system and cost results with those expected prior to installation. Much of this was 

because of demand charges: initial maintenance schedules were often made to include 

maintenance on DG equipment during business hours (when the maintenance crew 

was most available), which eliminated demand charge savings potential.  

Furthermore, frequent unplanned outages - however brief – had a similar effect.  

Some managers mentioned that they did not consider how changes in natural gas 

prices from month to month would affect system economics; often they realized 

several months too late that they should have changed their operation schedule in 

response to changes in energy prices. Given the inevitable spikes in demand during 

unscheduled outages, some building managers wondered how worthwhile it would be 

to curtail or reschedule some of their loads.  The experiences and ponderings of these 

building managers were the inspiration for this dissertation research. 
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3.7 Operations Research 

In the past 60 years, the field of operations research has developed the theory and 

algorithms necessary to solve, or nearly solve optimization problems.  The text by 

Hillier and Lieberman (1995) is a standard introductory reference to this field.  

Modern computing power and commercially available solvers now enable researchers 

with applied optimization problems to rely heavily on commercially available solvers, 

allowing these researchers to instead focus on model identification and representation 

of their model in a format compatible with these solvers.   

 

The IES dispatch optimization is characterized as a multi-stage stochastic integer 

optimization problem.  These types of problems are extremely difficult to solve 

exactly; recent advances in optimization are to solve two-stage stochastic integer 

optimizations where nondeterminism is represented during the first stage as a set of 

possible scenarios for the second stage, one of which is realized in the second stage 

(Gupta et al. 2005, Dhamdhere, Ravi, and Singh 2005, Ravi and Sinha 2004).  While 

this representation of an uncertain future as a finite set of possible scenarios will be 

useful in this IES dispatch optimization work, it is clear that an analytic solution to 

our severely multi-stage problem is beyond the frontier of operations research. 

 

A common approach to multi-stage optimization is dynamic programming7, in which 

contingent optimal solutions for consecutive stages – from last to first – are 

                                                 
7 See Hillier and Lieberman (1995) for an overview of this approach. 
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determined.  A key requirement of this approach is that the objective function be 

additive at each stage, allowing the problem to be discretized into many separate, 

smaller problems.  The optimal sum of sub-problem solutions is then the full-problem 

solution.  Unfortunately, the presence of demand charges in IES dispatch 

optimization eliminates the possibility of using dynamic programming.  However, 

even if a clever representation or approximation of demand charges was developed 

for use in a dynamic program, the IES dispatch problem contains too many stages, 

and too many dispatch variables at each stage, to conduct a fairly accurate search.   

 

The dispatch optimization problem for integrated energy systems necessarily contains 

binary and integer variables.  Fortunately, the problem can be decently approximated 

as a linear program, which is described in Chapter 6.  Thus, the problem is a mixed 

integer linear program (MILP), for which CPLEX is the most popular and powerful 

commercial solver currently available.  CPLEX uses a variety of techniques - 

including Lagrangian relaxation and branch-and-bounch techniques - to search the set 

of feasible, discrete solutions and find optimal continuous variable solutions within 

candidate discrete solutions8.  CPLEX is the solver used for this research, under the 

General Algebraic Modeling System (GAMS) platform. 

 

                                                 
8 An example of this for an IES consisting of several heterogeneous generators with 
minimum load constraints would be determining which generators to turn on (from a 
set of discrete combinations) and then determining which level to run each generator 
at (over the continuous variable operating levels). 
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3.8 Going Forward  

The development of a solution to the IES dispatch optimization problem has benefited 

from the prior research described in this chapter.  The electric utilities, particularly 

under the vertically integrated paradigm that was dominant until recently, deal with a 

similar optimization of constrained, least-cost energy provision to customers.  The 

division of that problem into several different time-scales suggests a similar approach 

for IES dispatch optimization, especially given the similarity of the unit commitment 

and planning tiers of the utility problem with the IES problem.  Modeling of 

generator costs and constraints in the unit commitment problem provides a starting 

point for modeling generators and other equipment in the IES problem. 

 

Prior research into distributed generation investment and dispatch optimization are 

particularly useful for this research.  The development DER-CAM has illustrated the 

feasibility of modeling DG dispatch problems as MILPs and the utility of CPLEX as 

a solver for such problems.  DER-CAM also provides a technique for representing 

demand charges – a fundamentally non-linear term – in a linear program (see Section 

6.3 for a description of this technique).  Other studies have introduced unplanned DG 

outages in cost calculations.  Case studies have highlighted the key factors that are 

often missed in estimating energy costs for sites with DG systems, such as financing, 

contractual agreements between sites and third-party owner/operators of DG systems, 

and utility interconnection requirements. 

 



41 
 
 
 

The field of operations research has provided the analytic power useful for solving 

large optimization problems.  Problems such as the IES dispatch can be posed and 

classified, which then suggests a solution approaches.  For large problems for which 

exact solutions have not been developed, combinations of analytic solutions and 

search techniques have been developed and commercialized for common 

optimization program formats, such as MILPs.  Techniques for expressing a variety 

of equality and inequality constraints as sets of linear constraints are particularly 

useful.  Also useful in this research is the technique of representing nondeterminism 

as a finite set of deterministic, possible scenarios for multi-stage stochastic 

optimization problems. 

  

Much less studied has been DSM.  Many economists argue that short-run elastic 

demand is necessary for efficient free market for electricity (Borenstein and Bushnell 

2000).  Research on this topic has mostly focused on developing tariffs that 

encourage DSM and developing the information infrastructure necessary to send 

proper signals to electricity consumers.  DSM, though, has been proven to be valuable 

to informed customers, even in the absence of strong signals such as critical peak 

pricing (CPP) (Stadler et al. 2006 and Firestone, Stadler, and Marnay 2006).  This 

dissertation makes a new contribution by examining the interaction of DG with DSM, 

and, more generally examining the value of integrating the decision making of 

disparate energy options in a building. 
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PART 2: THE RT-OPTICOM CONCEPT AND APPLICATION TO IES 

The intent of this research is to develop a tool capable of aiding in the real-time 

optimal dispatch of IES.  The tool should be versatile enough to benefit a wide range 

of smaller9 commercial and industrial sites, for which DER might be cost-effective, 

but custom-built optimization algorithms might not.  This problem is computationally 

challenging because of  

• the combinatorial nature of decisions: Many decision variables in the 

problem are discrete in nature, primarily demand response decisions (i.e. at a 

given time-step, either to curtail/reschedule or not) and on-site generator 

on/off decisions10. 

• the large number of inter-related time-steps: Demand charges, which are a 

function of a maximum monthly demand, rather than cumulative 

consumption, require an entire month of planning for decisions made at the 

beginning of the month.  Annual system minimum efficiency constraints 

likewise require long-term planning.   

• the uncertainty involved in the problem: loads, generator availability, and 

energy prices (for real-time pricing of critical peak pricing schemes) are all 

uncertain, yet significant.   

 

                                                 
9 “Smaller” sites are defined as those with peak electric loads less than 2 MW 
10 Generators typically have a minimum load that they can operate at; at each time-
step, one decision to make is whether the generator will run or not. 



43 
 
 
 

Looking at a handful of independent, discrete dispatch decisions at each of hundreds 

to thousands of time-steps leads to an enormous number of discontinuous solution 

sets, far too many to search exhaustively.  Even for a deterministic forecast of the 

future, dispatch planning for the entire month is required to determine the optimal 

dispatch for the current time-step.  As is typical of MILPs, this problem is non-

deterministic polynomial-time (NP) hard: the number of discrete feasible solutions 

increases exponentially with time.  The practical implication of this is that solutions 

to the problem will require exponentially more computation time and memory as 

larger timespans are considered.  Appendix A quantifies the large number of feasible 

discrete solutions to a typical IES dispatch optimization problem.  To complicate the 

IES dispatch problem, there are several sources of uncertainty; therefore planning 

must consist of a strategy (i.e. a range of dispatch plans, contingent of stochastic 

parameter values), rather than a single monthly dispatch plan. 

  

On top of the large number of discrete solutions, there are continuous variables within 

each discrete solution set to solve for.  Continuous variables at each time-step include 

generator (if the generator is on) setpoint, absorption chiller setpoint (if electric 

chilling is also an option), and storage charging/discharging.  

 

The challenge in developing an IES dispatch optimization tool, then, is to reduce the 

IES dispatch problem to a size tractable by contemporary optimization software, and 

yet accurate enough to provide benefit to a variety of users.  The key reductions 
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utilized in this research are 1) approximating uncertainty as a finite number of 

scenarios and 2) approximating the model as a mixed integer linear program (MILP). 

  

Chapter 4 introduces the Real-time Optimal Control Model (RT-OPTICOM).  RT-

OPTICOM approximates a multistage stochastic optimization problem as one with a 

finite number of deterministic scenarios capable of being solved by a current personal 

computer in a practical amount of time.  Chapter 5 presents the IES model in the 

language of RT-OPTICOM.  Chapter 6 describes how the model was approximated 

as a MILP, which commercial solvers can feasibly solve. 
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4. THE REAL-TIME OPTIMAL CONTROL MODEL (RT-OPTICOM) 

CONCEPT 

When confronted with operation and planning optimization problems, exhaustive 

considerations for possible futures are often infeasible because of the large number of 

possible futures.  A common approach to decision making under uncertainly is to 

consider a finite number of possible futures (i.e. scenarios) believed to span the range 

of possibility.  Then, the results of a particular dispatch strategy can be evaluated for 

each of the deterministic scenarios considered and a meaningful performance metric 

assessed (e.g. mean and standard deviation of monthly energy cost).   

 

Typical strategies considered for CHP are  

• base loading: generators are run at 100% of rated capacity at all hours; 

• peak shaving: generators are run at 100% of rated capacity during on-peak 

hours; 

• load-following: generators follow the site load; 

• heat load-following: generators are run such that the recovered heat from the 

generators is equal to the heat load of the site; and 

• demand limiting (threshold control): utility purchase is restricted to a 

maximum demand level determined by the site; any time site loads approach 

this ceiling, the generators are dispatched to reduce site purchases. 
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These heuristic approaches are easy to implement and within the means of attention 

that building managers can pay to the IES.  However, as suggested in Chapter 1, they 

are most likely not optimal for a given site because: 

• they ignore most of the set of feasible solutions; 

• setpoints for switching between control strategies in response to energy prices 

are not identified (or even considered in most cases); and  

• DSM opportunities are not considered and only the demand limiting strategy 

suggests when to deploy limited DSM opportunities. 

 

The true dispatch optimization problem is a multi-stage, stochastic problem.  A 

common approach to this type of problem is to consider a lattice or tree of possible 

scenarios for which dynamic programming techniques can provide solutions.  

Unfortunately, the dispatch problem is far too large for this type of approach: Where 

dynamic programming can handle problems with one stochastic variable, 

approximated by a few discrete possible values over a handful of time-steps, the 

dispatch optimization problem addresses several stochastic variables (energy loads, 

CHP availability, energy prices) over hundred of time-steps (there are 720 one-hour 

time-steps over the course of a 30 day month).  Examining the branches of such a 

lattice would require examination of SDT discrete branches, where S is the number of 

stochastic variables, D is the number of discrete values used to approximate the 

possible values of the stochastic variables, and T is the number of time-steps.  For 
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each branch, an optimal plan would be required.  Clearly, this approach is not feasible 

for an IES dispatch optimization problem. 

 

What the dynamic programming approach misses for the IES dispatch problem is the 

redundancy of many branches.  Because of the large number of time-steps, many of 

these branches will be similar in their stochastic parameter statistics (e.g. magnitude 

and frequency of peak loads, chance of DG outage).  The approach proposed in this 

research is to use a set of S randomly generated scenarios to represent the stochastic 

forecast.  S need not be large to approximate the needed stochastic forecast because 

of the redundancies among the entire set of possible scenarios.  Using the scenarios 

(rather than a statistical description) in the optimization is a general approach; any 

forecasting model can be used to generate the scenarios.  Scenarios can even consist 

of prior site data, which may be the most accurate forecast of future scenarios. 

 

The true stochastic optimization problem contains branching sets of scenarios, 

whereas the finite-scenario optimization problem contains only single-strands of 

scenarios.  Figure 2 illustrates this.  Because of this discrepancy, certain additional 

constraints must be added to the finite-scenario problem.  These constraints must 

ensure that solutions that would be unrealistic for the real, nondeterministic system 

are not attempted.  The most obvious example of this is when a significant but 

unlikely event happens at the end of a timespan in a scenario.  If this event is 

deterministically known, the optimal behavior of the system in time-steps prior to the 
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event is different than if it is only known that there is some probability of this 

occurrence.  

 

t=1 t=2 t=3 t=1 t=2 t=3

stochastic 
scenarios

deterministic 
scenarios

 

Figure 2. discrepancy between stochastic and deterministic scenarios 
 

For economic optimization, this issue arises with demand charges.  In a particular 

scenario, it may be deterministically known that a CHP outage will occur on the last 

day of the month, thus making demand charge mitigation via on-site electricity 

generation futile.  In this case, the optimal dispatch may be to not run the CHP system 

at all during the month.  However, this is not realistic because for the true, non-

deterministic system, there is only a probability of such an event, and hedging 

behavior is necessary. 

 

This, then, provides the qualitative description of the approach to real-time optimal 

dispatch.  The following section (Section 4.1) formally describes this approach, the 

Real-time Optimal Control Model (RT-OPTICOM). 
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4.1 RT-OPTICOM Formalization  

The first step of the dispatch optimization process is forecast generation, which is 

done external to the optimization, to allow for various forecast models to be used 

interchangeably.  Chapter 7 describes the forecast models used in this research.  The 

product of these forecasts is sets of stochastic parameter values for each of the S 

scenarios considered at each time-step, t, of the timespan, T, considered.  Parameters 

for an IES application would include energy loads, energy prices, and equipment 

availability.  These forecasts can be updated during the course of the timespan as 

more information becomes available.  For each parameter value, the optimization 

must consider either the actual value if known, or the forecasted value. 

 

Table 1 through Table 3 define the indices, parameters, and variables used in this 

formulation. 

Table 1. indices used in RT-OPTICOM problem formulation 
Index Description Membership 

dd dispatch decision {curtailment, generator-dispatch1, genearator-

dispatch2, …,generator dispatchG, etc.} 

gen generator {1,2,…,G} 

scen scenario {1,2,…,S} 

sp stochastic parameter {electric-load, cooling-load, heat-load, 

generator-availability1, generator-
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availability2,…, generator-availabilityG, 

electricity-price, solar insolation, etc.} 

t time-step {1,2,…,T} 

 

Table 2. parameters used in RT-OPTICOM problem formulation 
Parameter Full Name Description 

AS(sp,t) Actual Scenario parameter values for the actual scenario, 

i.e. what has actually happened in the past 

CurrentTime Current Time the current time-step 

G Generators Number of generators 

HistD(dd,t) Historic Dispatch dispatch decisions for all past time-steps 

S Scenarios number of scenarios 

SPV(scen,sp,t) Stochastic 

Parameter Values 

stochastic parameter values for each 

scenario used in optimization problem  

FV(scen,sp,t) Forecast Values the set of stochastic parameter values 

generated from the forecast model for all 

scenarios 

T Time-steps number of time-steps 

 

Table 3. variables used in RT-OPTICOM problem formulation 
Variable Full Name Description 

D(scen,dd,t) Dispatch dispatch decision for each variable in each scenario 

at each time-step 
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4.1.1 Stochastic Parameter Assignment 

For all time-steps prior to and including the current time-step, stochastic parameter 

values are all known and are equal to the actual scenario parameter values.  

 

me CurrentTi tscen,sp,tspAStspscenSPV ≤∀∀=      ),(),,(  (1)

 

For all future time-steps, the stochastic parameter values are the forecasted stochastic 

values generated for each scenario. 

  

eCurrentTimtscen, sp, tspscenFVtspscenSPV >∀∀=      ),,(),,(  (2)

 

4.1.2 Dispatch Constraints 

For all time-steps prior to the current time-step, dispatch is known and is the 

historical dispatch of the system. 

eCurrentTimtddscentddHistDtddscenD <∀∀= ,,      ),(),,(  (3)

 

For the current time-step, dispatch for each scenario must be equal, i.e. as there is 

only one actual scenario, there is only one actual dispatch. 

 

eCurrentTimtddsceni,jtddjDtddiD =∀∈∀= ,,     ),,(),,(  (4)
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For all time-steps beyond the current time-step, dispatch may vary by scenario. The 

set of dispatch decisions for all future time-steps for all scenarios represents a 

dispatch strategy. 

 

4.1.3 Deterministic Correction Constraints 

One major inaccuracy in considering a portfolio of deterministic scenarios must be 

addressed:  Demand charges are based on the maximum electricity purchase over the 

timespan; there is only probabilistic knowledge of generator availability and 

maximum site demand over the course of the month, and this cannot be translated 

directly into a deterministic scenario.   

 

This is best illustrated by example: consider a site with a constant load, F, and a 

generator that can meet the entire site load.  For this example, the volumetric cost of 

producing electricity on-site is larger than the cost of purchasing it from the utility.  

However, high demand charges tip the scale in favor of on-site generation, provided 

the generator is 100% reliable.  This, of course, is not the case, and if the generator 

has less than a certain probability of being available, PAvl, it will not be cost-effective 

to run the generator. 

 

Assume that the site has two dispatch strategy options:  
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1. Run the generators until an outage occurs (in an attempt to avoid the demand 

charge), and then do not run the generator for the rest of the timespan if an 

outage occurs (the demand charge has been incurred, and it is then cheaper to 

purchase utility electricity). 

2. Do not run the generator. 

 

The dispatch optimization problem is then to determine at what level of demand 

charge, DCh, relative to volumetric costs, UVol, of utility electricity and of on-site 

generation, GVol, should on-site generation be initiated. 

 

Table 4 lists the parameters used in this example. 

 

Table 4. parameters used in Section 4.1.3 
Parameter Description 

DCh utility demand charge ($/kW maximum demand) 

F site demand 

GVol  generator volumetric cost ($/kW time-step) 

PAvl probability of generator being out a given time-

step  

T number of time-steps 

UVol utility volumetric cost ($/kW time-step) 
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To determine this break-even value of DCh, the expected value of both dispatch 

strategies is derived.  For strategy 1), Table 5 lists all of the possible DG outage 

scenarios, their probability of occurrence, the actual energy costs under this control 

strategy, and the cost computed using deterministic scenarios.  The expected monthly 

energy cost is then the sum of the product of probability and cost for all scenarios.   

 

Table 5. cost of outage - stochastic and deterministic scenarios 
scenario probability of  

occurrence 

stochastic cost for this 

scenario 

deterministic cost 

for this scenario 

outage at t = 1 1-PAvl F*U*VolT + F*DCh F*UVol*T  

+ F*DCh  

(DG is not 

dispatched) 

outage at t = 2 PAvl(1-PAvl) F*GVol + F*UVol(T-

1)  

+ F*DCh = 

F*Uvol*T + F*DCh  

+ F*(GVol-Uvol) 

F*UVol*T  

+ F*DCh  

(DG is not 

dispatched) 

outage at t PAvlt-1(1-PAvl) F*GVol(t-1)  

+ F*UVol(T-t+1)  

+ F*DCh = 

F*Uvol*T + F*DCh  

F*UVol*T  

+ F*DCh  

(DG is not 

dispatched) 
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+ F(t-1)(GVol-UVol) 

no outages PAvlT F*GVol*T F*GVol*T  

(DG is 

dispatched) 

 

From this table, we see that if we consider deterministic scenarios, we will not run the 

generator in any scenario where there is an outage at any time-step in the future.  This 

is not realistic, as there is only a probabilistic knowledge of future outages.  

Therefore, the deterministic approach leads to expected costs that are too low, 

because extra-realistic information is made available.  Using the expected cost from 

the deterministic scenarios will lead to an expected value that is too small, suggesting 

a break-even demand charge lower than the true break-even demand charge. 

 

The solution to this discrepancy is to add an additional constraint to the IES dispatch 

optimization problem that will cancel out the unjustified advantage of extra-realistic 

information.  This constraint is to put a ceiling on utility demand purchase and to 

constrain solutions to stay below that ceiling in all scenarios whenever possible.  In 

practice, this is similar to threshold control. 

 

Tables Table 6, Table 7, and Table 8 describe the indices, parameters, and variables 

used to describe the mathematics of this ceiling approach. 

Table 6. indices used in the ceiling approach formulation 
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Index Description Membership 

scen scenario {1,2,…,S} 

t timestep {1,2,…,T} 

 

Table 7. parameters used in the ceiling approach formulation 
Parameter Description 

CurrentHour current one-hour time-step 

ElectricLoad(scen,t) total site electric load, inlcuding cooling 

MinimumElectricDemand(scen,t) minimum possible electric demand to utility 

PossibleLoadReduction(scen,t) sum of available on-site generation capacity, 

curtailment potential, and absorption chiller 

cooling offset 

 

Table 8. variables used in the ceiling approach formulation 
Variable Description 

Ceiling selected ceiling level (kW): utility purchase 

should not go above this if possible 

CeilingFunction(scen,t) function describing the the maximum electricity 

purchase (kW) allowed under the ceiling 

constraint 

UtilityElectricityPurchase(scen,t) electricity purchased (kW) from the utility 
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The first thing to determine is the minimum possible electric demand at each time-

step and in each scenario, i.e. the minimum possible utility electricity purchase. 

scen,t          
n(scen,t)adReductioPossibleLoad(scen,t)ElectricLo  

                                    d(scen,t)ctricDemanMinimumEle
∀

−
=

 (5)

  

where ElectricLoad is the total site electric load (including cooling) and 

PossibleLoadReduction is the sum of available on-site generation capacity, 

curtailment potential, and absorption chiller cooling offset. 

 

Next, the maximum utility purchase level must be selected, and that, if possible, the 

site can not purchase more that this ceiling amount.  Importantly, this ceiling level 

must be the same for all scenarios.  If the ceiling level cannot be avoided (e.g. during 

generator outage) than the minimum possible purchase is done and a new ceiling 

level is set at the current utility demand. Generating a ceiling function for each 

scenario for a given ceiling facilitates the expression: 

 

rCurrentHou tscen,    

t)d(scen,ctricDemanMinimumEle
1),t,ction(scenCeilingFun

Ceiling,
max

                                 t))n,nction(sce(CeilingFu

>∀∀

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

=

 
(6)

   

The utility electricity purchase is constrained to be at or below the ceiling function at 

all times.   
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rCurrentHou tscen,
 n,t))nction(sce(CeilingFu

                           n,t)rchase(scectricityPuUtilityEle
>∀∀

≤
 

(7)

  

The demand charge assessed in the optimization is then equal to the demand rate 

times the greater of the selected ceiling and the actual demand.  Selecting a ceiling 

too low reduces the set of allowable dispatch and forces uneconomic dispatch; 

selecting a ceiling too high will incur unnecessarily high demand charges.  Thus, 

there is proper incentive to select the correct ceiling level. 

 

scen                     n,t))rchase(scectricityPuUtilityEle(Ceiling,max
                                                                         mand(scen)AssessedDe

t

∀
=

 
(8)
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5. APPLICATION OF RT-OPTICOM CONCEPT TO AN IES FOR 

COMMERCIAL/INDUSTRIAL BUILDINGS 

The IES dispatch optimization problem can now be formulated in the RT-OPTICOM 

format, as described in Chapter 4.  Table 9 through Table 11 describe the indices, 

parameters, and variables used in the problem formulation throughout Chapters 5 and 

6. 

Table 9. indices used in RT-OPTICOM IES formulation 
symbol description set 

d days {1,…,D} 

dd dispatch decisions {generation level, curtail} 

gen generator {1,…,G} 

scen stochastic scenarios {1,…,S} 

sp stochastic parameter {electric load, generation availability, solar 

insolation} 

t time-steps {1,…,T} 

t-mid subset of mid-peak time-

steps 

t-off subset of off-peak time-

steps 

t-on subs set of on peak hours 

tou time of use {on-peak, mid-peak, off-peak} 
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Table 10. parameters used in RT-OPTICOM IES formulation 
parameter description 

AbsCapacity capacity (kW) of the absorption chiller 

AbsCOP the coefficient of performance of the absorption 

chiller 

CeilingFunctioni(scen,t) the maximum permissible level of utility 

electricity purchase (kW) under ceiling level 

Ceilingi 

Ceilingi level of utility electricity purchase that system 

must remain below if possible 

CurrentHour the current time-step; for this project, hourly 

time-steps were used 

CurtDuration permissible duration (time-steps) of curtailment 

CurtFreq permissible number of curtailment episodes per 

month 

CurtMag permissible magnitude (kW) of curtailment 

D number of days per month 

DemandRate(tou) time-of-use specific demand rate ($/kW) 

DemandRateFacility facility related demand rate ($/kW), active over 

all hours 

DGCapacity(gen) electric capacity (kW) of DG unit 

DGFixedgen fixed maintenance cost ($/month) of DG 
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DGMinCapacity(gen) minimum capacity (kW) of a DG unit when it is 

running 

DGVarCostgen variable maintenance cost ($/kWh) of DG 

Efficiency(gen,dispatch level) part-load electrical efficiency of generator at a 

particular dispatch level 

EFixed monthly fixed cost ($) for electricity service 

ElectCOP the coefficient of performance of the electric 

chiller 

ElectricityRate(tou) volumetric rate ($/kWh) 

G number of generators 

HeatToElectRatio(gen) ratio of heat output (kW) to electrical output 

(kW) from a generator 

MinCHPEffic minimum allowable CHP efficiency 

MinEfficPenaltyPrice fictitious price of energy ($/kWh) for the 

variable MinEfficPenalty 

MinimumElectricDemand the lowest possible level of utility electricity 

purchase 

NGFixed monthly fixed cost ($) for natural gas service 

NGRateForDG natural gas rate ($/kWh) for DG 

NGRateForHeat  natural gas rate ($/kWh) for heating 

PVCapacity rated capacity of photovoltaics 

S number of scenarios 
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SolarThermalCapacity thermal capacity (kW) of the solar thermal 

collector 

SPV(scen,sp,t) stochastic parameter values used for 

optimization problem 

T number of time-steps per month 

time-step length (minutes) of time-steps considered 

UsefulToFuelHeatRatio conversion efficiency of combusting natural gas 

for heat 

UsefulToRecoveredHeatRatio heat exchanger conversion efficiency of turning 

generator waste heat into useful heat 

α linear coefficient in the equation for natural gas 

consumption as a function of generation level 

β constant term in the equation for natural gas 

consumption as a function of generation level 

 

Table 11. variables used in RT-OPTICOM IES formulation 
variable description 

AbsOffset(scen,t) cooling load (kWh) offset by the absorption 

chiller 

AssessedDemand(scen) maximum monthly demand (kW) used for cost 

purposes 

CeilingFunction(scen,t) the selected ceiling function from the set of 
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CeilingFunctioni 

CHPEfficiency(scen) monthly CHP efficiency 

Cost(scen) total monthly cost ($) of electricity, natural gas, 

and DG maintenance 

CurtailAmount(scen,t)  curtailed load (kW) 

D(scen,dd,t) dispatch decision 

DGCost(scen) maintenance costs ($) for regular DG servicing 

DGHeat(scen,t) heat provided (kWh) from DG 

ElectForCool(scen,t) electricity (kWh) used for cooling 

ElectForElect(scen,t) electricity (kWh) used for non-cooling electric 

loads 

ElectricCost(scen) monthly cost ($) of electricity 

EPurch(scen,t) electricity purchase (kWh) at each time-step 

ExCost the expected monthly energy cost, including the 

fictitious minimum efficiency costs 

flagi binary variable equal to unity for the argument of 

the one ceiling level, Ceilingi, that is selected  

HeatForCool(scen,t) heat (kWh) used by the absorption chiller 

HeatForHeat(scen,t) heat (kWh) used for heating loads 

MinEfficPenalty(scen) fictitious amount of useful energy (kWh) the CHP 

system would need to meet the minimum 

allowable efficiency constraint 
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MinEfficPenaltyCost(scen) fictitious cost ($) of not meeting the minimum 

CHP efficiency constraint 

NGCost(scen) monthly cost ($) of natural gas 

NGforDG(scen,t) natural gas (kWh) consumed for CHP 

NGforDGPerGen(scen,gen,t) natural gas (kWh) consumed per generator at each 

time-step 

NGforHeat(scen,t) natural gas consumed (kWh) for heating  

NGHeat(scen,t) heat provided (kWh) by combusting natural gas 

PVOutput(scen,t) electrical output (kWh) from the photovoltaics 

SolarHeat(scen,t) thermal output (kWh) from the solar thermal 

collector 

TotalDGElect(scen) total electricity generated by CHP (kWh) 

TotalDGUsedHeat(scen) total used waste heat from CHP (kWh) 

 

5.1 Cost 

Electric costs are the sum of volumetric purchase, time of use demand charges, and 

fixed monthly service fees.  
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Natural gas costs are the sum of volumetric purchase (separate prices for general and 

DG service) and fixed monthly service fees. 

scen            NGFixed
eatNGRateForH*t)scen,NGforHeat(

GNGRateForD*t)en,NGforDG(sc
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(10)

 

DG maintenance costs are the sum of variable ($/kWh) and fixed ($/month) costs. 

scen  
DGFixed

DGVarCost*t),"levelgeneration"D(scen,
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Total cost for each scenario is then the sum of electricity, natural gas and DG 

maintenance costs. 

scen      
n)DGCost(scen)NGCost(scest(scen)ElectricCo

                                                                          Cost(scen)
∀

++
=

 (12)



66 
 
 
 

  

5.2 Capacity 

On-site generation is only allowed when the DG system is available, and must be less 

than or equal to the capacity of the system. Availability at each time-step and for each 

scenario (SPV(scen, “generation-availability”,t)) is a binary variable equal to zero if 

the generator is unavailable and one if it is. 

 

The decision to run each generator, gen, is a binary decision variable, D(scen, 

“DGdispatchgen”,t). 

 

tgen,scen,
  (gen)DGCapacity*t),"DGdispatch"D(scen,*

t),"tyavailabiligeneration"SPV(scen,
                              t),"levelgeneration"D(scen,

gen

gen

gen

∀−
≤−

 
(13)

  

If a generator is dispatched, generation must be above the minimum capacity of the 

generator. 

 

tgen,scen,
  ity(gen)DGMinCapac*t),"DGdispatch"D(scen,*

t),"tyavailabiligeneration"SPV(scen,
                                    t),"levelgeneration"D(scen,

gen

gen

gen

∀−
≥−

 
(14)

  

The absorption chiller is also constrained to operate at the rated capacity or below.  
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tscen,    
yAbsCapacit*t),ty"availabiliAbsChiller"SPV(scen,
                                                t),level"AbsChiller"D(scen,

∀
−

≤−  
(15)

  

Minimum chiller levers are not considered, nor are multiple chillers.  In future work, 

these details could be easily implemented in the fashion of the generator constraints. 

 

The output from PV is constrained by the capacity of the PV system and the current 

solar insolation level.  Note that the solar insolation parameter is expressed as the 

fraction of solar insolation used to rate solar electric and thermal equipment (1000 

W/m2).  The inequality in Eq. (16) avoids an unallowable net exporting situation in 

case the PV output is greater than the site load. 

 

tscen,     
t),"insolation-solar"SPV(scen,*PVCapacity

                                                        t)cen,PVOutput(s
∀

≤  
(16)

  

Outages of the PV system are not considered, although could be implemented in the 

fashion of generator outages, or could be incorporated in the stochastic value of 

SPV(scen, “solar-insolation”, t) (i.e. set to zero to represent an outage). 

 

The output from solar thermal collectors is constrained by the capacity of the solar 

thermal system and the current solar insolation level.  The inequality in Eq.(17) 

avoids an unallowable net exporting situation in case the output is greater than the site 

load. 
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tscen,     
t),"insolation-solar"SPV(scen,*alCapacitySolarTherm

                                                                          t)scen,SolarHeat(
∀

≤  
(17)

  

5.3 Curtailment 

The number of curtailment episodes per month is constrained.  

 

∑ ∀≤
t

scenCurtFreqtcurtailscenD         ),"",(  
(18)

  

Each curtailment episode is constrained to a fixed duration and magnitude.  Note that 

this equation also prevents overlapping curtailment amounts. 

 

onCurtDuratii ,0tscen,    
t),curtail""D(scen,*CurtMag

        i)tunt(scen,CurtailAmo
≤≤∀

=+  
(19)

  

5.4 Energy Balance 

Electricity loads must be met instantaneously by the sum of electricity purchase, on-

site generation (including PV generation), and electric chiller load offset by heat-

driven absorption chiller, and curtailment.  Electric loads are separated into chiller 

and non-chiller loads.  All curtailment is assigned to the non-chiller loads for the sake 

of convenience.   

 



69 
 
 
 

tscen,    

t)unt(scen,CurtailAmot)scen,AbsOffset(

t)cen,PVOutput(st),"levelgeneration"D(scen,t)n,EPurch(sce
                                                                  t),load"electric"SPV(scen,

gen
gen

∀

++

+−+
=−

∑  
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The electric (non-cooling) load must be met by non-cooling electricity consumption 

and curtailment. 

 

scen,t     
)unt(scen,tCurtailAmo)ect(scen,tElectForEl
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+
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The electric cooling load must be met by cooling electricity and cooling-load offset 

provided by the absorption chiller. 

 

tscen,      
t)scen,AbsOffset(t)ol(scen,ElectForCo
                        t),d"CoolingLoa"SPV(scen,

∀
+
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Electricity consumption must be balanced by electricity purchase, on-site generation, 

and PV output. 

 

tscen,    

 t)cen,PVOutput(s
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Heating requirements are divided into heat needed for heating and heat needed for 

absorption chilling.  Heating requirements must be met by DG recovered heat, natural 

gas combustion, and solar heat output. 

 

scen,t   
scen,t)SolarHeat(n,t)NGHeat(scen,t)DGHeat(sce

                          t(scen,t)HeatForHeal(scen,t)HeatForCoo
∀

++
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(24)

  

The absorption cooling offset is equal to the heat provided to the chiller, multiplied 

by the coefficient of performance (COP) of the absorption chiller, divided by the COP 

of the electric chiller.  COP is defined as the ratio of useful heat removal to energy 

provided to the chiller. 

 

tscen,   
ElectCOP

AbsCOP*t)l(scen,HeatForCoot)scen,AbsOffset( ∀=     (25)

  

Heat provided by natural gas combustion is equal to the heat consumed for this 

purpose, scaled down by the ratio of useful to provided energy (i.e. the efficiency of 

fuel to useful heat conversion). 

scen,t     
oelHeatRatiUsefulToFu*scen,t)NGforHeat(

                                                  n,t)NGHeat(sce
∀

=
 

(26)
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Useful heat from DG is the product of DG electricity generation, the ratio of heat to 

electricity from the DG unit, and the ratio of useful to recovered heat (i.e. the heat 

exchanger conversion efficiency). 

 

scen,t      

tRatiocoveredHeaUsefulToRe*
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Heating loads must be met on a daily basis.  It is assumed that tank storage is 

adequate to support daily asynchrony in thermal supply and demand. 

 

∑∑
∈∈

∀=−
dtdt

d     t)t(scen,HeatForHeat),load"heat"SPV(scen,  
(28)

 

 

5.5 CHP Efficiency 

Maintaining a minimum CHP system efficiency is common regulatory constraint for 

systems in order to obtain necessary operating permits or to receive government 

subsidies.  System efficiency is typically defined as the ratio of electricity and useful 

heat provided by the system to fuel energy provided to the system.  While this is 

typically an annual constraint, the current RT-OPTICOM model operates over only 

one month.  While a year-long optimization using the formulation described here 

would be infeasibly large, a planning optimization – as described in Section 3.1 – that 
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operates over an entire year to set system efficiency targets for each month would be 

useful. 

 

Electricity generation is summed over the entire timespan.  Consumption is converted 

from kW in each time-step, to kWh per time-step by multiplying by the ratio of 

minutes per time-step to minutes per hour. 

 

scen     
60

timestep*t),"generateelectric"D(scen,

                                                        ct(scen)TotalDGEle

t
gen

gen

∀−

=

∑∑  
(29)

  

Useful heat is likewise summed. 

 

∑∑ ∀=
t gen

scen     n,t)DGHeat(sce)dHeat(scenTotalDGUse  
(30)

  

Natural gas consumed per generator per time-step is equal to the dispatched 

generation level divided by the electrical conversion efficiency of the generator, 

multiplied by the fraction of an hour per time-step.  The conversion efficiency is 

dependent on the level of operation of the generator.  Note that this equation is non-

linear.  Chapter 6 describes how this non-linearity is addressed in the linear model 

developed for this research. 
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Total natural gas consumption for DG is the sum of consumption over all time-steps 

and all generators. 

 

∑∑ ∀=
t gen

scen     t)gen,Gen(scen,NGforDGPeren)NGforDG(sc  
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Efficiency is then defined as 
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and the CHP efficiency is constrained. 

 

scen     cMinCHPEffincy(scen)CHPEfficie ∀≥  
(34)

  

It is possible that none of the forecasted scenarios will preclude dispatch that will 

actually lead to a minimum efficiency violation.  For example, none of the forecasted 

scenarios might predict an outage at the end of the month, during which the optimal 

strategy (based on the forecasted scenarios) was to run the CHP system in a highly 

efficient (i.e. much heat recovery) manner in order to boost the system efficiency up 
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to the minimum level.  To address this, at the end of the month, the site can purchase 

a phantom amount of useful energy for a stiff penalty price.  Making the penalty price 

high ensures that the optimal strategy will not rely on such un-realities, yet provides a 

feasible solution in case the actual scenario varies significantly from forecasted 

scenarios.  Eq. (35) describes this and is used in place of Eq. (33). 

scen
en)NGforDG(sc

)nalty(scenMinEfficPe)dHeat(scenTotalDGUsect(scen)TotalDGEle
                                                                                         (scen)*ncyCHPEfficie

∀++
=

 
(35)

 

The penalty cost is then defined as 

scen     
naltyPriceMinEfficPe*)nalty(scenMinEfficPe

                             scen)naltyCost(MinEfficPe
∀

=  
(36)

  

5.6 Objective Function 

The total site expected energy cost is the average cost from each scenario, including 

the phantom cost for minimum CHP efficiency violation. 

S

scennaltyCostMinEfficPescenCost
ExCost scen

)()( +
=
∑

 (37)

  

The objective is then to minimize this expected cost.  The optimal dispatch for the 

current time-step is contained in the solution to the minimized expected cost. 

 

ost(D))argmin(ExCt)dd,D(scen, =  
(38)
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6. ADJUSTMENTS TO MODEL FOR MIXED INTEGER LINEAR 

PROGRAM 

Fast, powerful commercial solvers for MILPs are readily available.  Provided the IES 

dispatch problem can be described as a reasonably sized MILP, optimal dispatch can 

be solved for in a reasonable amount of time11.  Several of the equations in Chapter 5 

must be modified to a linear form in order to pose the IES dispatch optimization 

problem as a MILP. 

 

6.1 Ceiling Level Selection 

Determining the ceiling function (i.e. the maximum permissible level of utility 

electricity purchase Eq. (6) ) requires the use of the maximum function, a non-linear 

function of the ceiling level, which is a decision variable.  To avoid this, ceiling 

functions are generated for a set of possible ceiling levels prior to execution of 

optimization. 
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11 In this case “reasonable” is less than the length of each time-step for 
implementation (10 to 60 minutes).  However, for studies such as those included in 
this report, which rely on year-long simulations that make use of the optimization at 
each time-step, a much faster solution is required. 
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A selection flag (flagi) is associated with each predetermined ceiling value (Ceilingi), 

and is considered as a binary decision variable.  Only one ceiling value can be 

selected; the sum of flag values must be one. 

 

∑ =
i

iflag 1 
(40)

  

The actual, selected ceiling function is then the sum of flag values times ceiling 

values. 

 

( ) tscentscenctionCeilingFunflagtscenctionCeilingFun
i

ii ,     ),(*)),(( ∀=∑  
(41)

  

Finally, Eq. (7) is a valid linear expression with the only decision variables being 

UtilityElectricityPurchase(scen,t) on the left-hand side of the constraint and flagi on 

the right-hand side. 

 

Eq. (39) through (41) describe the ceiling functions for the all-hours demand.  There 

is actually a separate ceiling level selected for each billing time-of-use.  For the sake 

of brevity, this detail is not included in the equations in this section. 

 



77 
 
 
 

6.2 DG Efficiency 

The expression for NG consumption by CHP equipment, Eq. (31) is non-linear.  In 

order to be a linear expression, NG consumption, as a function of generation level, 

must be of the form of Eq. (42).   

( ) tgenscen
60

timestepβ,t)"levelgeneration"αD(scen,

                                            gen,t)Gen(scen,NGforDGPer

gen
,,∀

+−

=
 

(42)

  

Figure 3 illustrates typical efficiency curves for reciprocating engines and 

microturbines.  Figure 4 converts these graphs into plots of generation level versus 

total fuel consumption (normalized by the capacity of the generator).  These plots are 

essentially linear, and the selection of α and β does not compromise any accuracy in 

the model12.  This analysis is done for each piece of equipment modeled to determine 

the unique α and β values. 

                                                 
12 Many fuel cells have concave, non-monotonic efficiency curves (i.e. the maximum 
efficiency is not at 100% load).  The method described here for expressing part-load 
efficiency would not be valid for fuel cells. 
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Figure 4. typical part load fuel 
consumption 

 

6.3 Demand Charges 

Demand charges, as expressed in Eq. (8) and (9), are a function of the maximum 

utility electricity purchase over the course of the month.  This is not a linear function.  

Maximum functions can often be replaced by a series of greater-than constraints.  In 

this case, Eq. (8) is replaced by 

scen     flag*Ceilingmand(scen)AssessedDe ii ∀≥  
(43)

 and 

tscentscenEPurchscenmandAssessedDe ,     )),()( ∀≥  
(44)

  

AssessedDemand is associated with cost in the objective function; therefore there is 

incentive to set this variable as low as possible.  However, Eq. (43) and (44) and 

prevent the assessed demand variable from being set any lower than is technically 
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possible.  The result is that the assessed demand is forced to be exactly what it 

actually is.  
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PART 3: RT-OPTICOM APPLICATION: THE UNITED STATES POSTAL 

SERVICE PROCESSING AND DISTRIBUTION CENTERS 

The validation of this tool will be in the process of answering several previously 

unanswered questions: 

• To what extent are the heuristic control strategies employed for CHP systems 

sub-optimal, i.e. to what extent could more intelligent controls improve site 

objectives? 

• What is the value of an integrated approach to site energy dispatch decisions? 

• For dispatch decisions, what is the trade-off between cost minimization and 

carbon emissions minimization? 

 

The United States Postal Service Processing and Distribution Centers (P&DCs) were 

selected as a case study for this research.  These light-industrial sites serve as regional 

interfaces between post offices and the postal transport network, sorting and routing 

millions of pieces of mail per day using energy intensive machinery.  P&DCs are 

fairly similar across regions; their energy-situations vary by climate-driven thermal 

loads, local energy prices, and emissions from electricity production, but not by 

schedule or machinery load.   

 

RT-OPTICOM is used to study P&DCs from several regions, and several tariff 

structures in each region, illustrating the usefulness of such a general model while 
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answering the questions posed here.  Chapter  7 describes the P&DCs and the data 

collection and modeling used for this study.  Chapter 8 describes the experiments 

conducted and presents their results.  Chapter 9 draws conclusions from these results. 
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7. SITE DESCRIPTION, DATA COLLECTION, AND MODELING 

The United States Postal Service (USPS) operates nearly 300 Processing and 

Distribution Centers (P&DCs) across the United States.  P&DCs serve as the 

interface between post offices and the postal transport network.  These sites process 

millions of pieces of mail collected from the region each day, using a sophisticated 

array of machines to align pieces of mail, optically scan addresses, and sort mail by 

region.  Similarly, incoming mail from other regions is automatically arranged by 

post office, and in most cases arranged in delivery-route-order of individual mail 

carriers.  The machinery is energy-intensive, with sites typically having peak electric 

loads of approximately 1-3 MW.  The tremendous amount of heat given off by the 

machinery makes for large cooling loads, even on days of mild temperature.  The 

relatively flat energy profile and significant space conditioning loads make P&DCs 

good candidates for DER. 

 

P&DCs offer a rare opportunity for industrial building energy research because they 

are federal, rather than private, buildings.  Most private buildings contacted by the 

author for this project would not release detailed energy consumption data, and in 

general considered most information about their buildings proprietary. This lack of 

access to actual energy consumption data limits the scope of much building energy 

research.  P&DCs, on the other hand, are not limited by competition concerns, but 

only by security concerns.  As well, the USPS has regional offices actively pursuing 
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energy and energy-cost savings13, which encourage research that might benefit their 

sites.   

 

7.1 Site Description  

For this research, detailed energy consumption data from the USPS Margaret L. 

Sellers P&DC in San Diego, California was used to develop models of P&DCs in 

four energy-distinct14 regions of the United States.  The 50,000 m2 facility receives, 

sorts, and routes all outgoing mail in the San Diego region, as well as receiving and 

routing all incoming mail to the region.  In all, it handles approximately 12 million 

pieces of mail daily.  The site has a night-time peak electricity load of approximately 

2 MW.  The site’s loads are dominated by the large, numerous mail-handling 

machines, which in turn necessitate a significant cooling load.  The year-round 

moderate climate and consistent machine loads result in a year-round cooling 

demand.  Figure 5 shows an aerial view of the site.  Figure 6 shows machinery at the 

similar Redlands, CA P&DC. 

 

 

                                                 
13 Executive Order 13123, issued by President Clinton in June 1999, mandates federal 
buildings to reduce energy consumption per square foot by 30 percent by 2005 and by 
35 percent by 2010, relative to a 1985 baseline. The Energy Policy Act of 2005 
further  mandates that a 2003 baseline be used and reductions of 2 percent per year be 
achieved in each year from 2006 to 2015. 
14 The term “energy-distinct” is used here to distinguish regions with different 
climates, energy prices, and emissions from grid electricity. 
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Figure 5. aerial view of the San Diego 
P&DC 

 
 
Figure 6. inside the Redlands, CA P&DC 

 

A DER system was recently installed at the site.  The system consists of a 1.5 MW 

natural gas fired reciprocating engine coupled to a 1 MW (300 ton) absorption chiller.  

The chiller offsets the sites electric compression chiller load by 250 kW at rated 

capacity.  Additionally, 12 kW of PV are installed at the site.  Photographs of DG 

equipment (Figure 7 through Figure 10) and the site rooftop (Figure 11) are shown 

below.  Note the white roof and numerous sky-lights in Figure 11. 

 

 

Figure 7. generator housing at the San Diego P&DC 
   



85 
 
 
 

 

 

Figure 8. General Electric Jenbacher 1.5 
MW reciprocating engine installed at the 
San Diego P&DC 

 

Figure 9. cooling tower for chillers at 
the San Diego P&DC 

 

 
Figure 10. one of two photovoltaic arrays 
(~6 kW) at the San Diego P&DC 

 

Figure 11. rooftop at the San Diego 
P&DC 

 

The CHP equipment is owned and operated by a third party.  Electricity and heat 

from the CHP system are provided from the third party to the site at lower cost than 

San Diego Gas and Electric (SDG&E), the local utility, provides.  The CHP system 

uses a load-following control i.e., the generator is run as high as possible at all times.  

One objective of this research is to examine economic efficiency of this load-
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following control strategy by comparing energy costs from a load-following strategy 

to those from an optimal dispatch control strategy. 

 

An additional objective is to examine the results and character of optimal control 

under other tariff structures.  Critical peak pricing (CPP) tariffs are already an 

optional tariff from the utility.  Debate over real-time pricing (RTP) tariffs continues 

and could possibly be offered or imposed in the near future. 

 

P&DC sites across the United States have similar machines, building design, and 

operating schedules.  The most significant differences in energy consumption at 

similarly sized P&DC sites across the United States are due to climactic differences.  

The San Diego site was studied in detail to understand the non-cooling electric loads 

– which would not vary by location – and to correlate space conditioning loads to 

weather and electric loads.  This information was then used to develop building 

energy simulation models of P&DCs in four United States cities: San Diego, CA, 

Baltimore, MD, Boston, MA, and Houston, TX. 

 

7.2 Data Collection and Modeling 

Experiments for this study examined the years 2004 to 2006, for which actual energy 

prices, temperature, and solar insolation were collected and used.  Temperature and 

solar insolation data from 1961 to 1970 were also collected and used to develop the 

stochastic scenarios. 
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7.2.1 Site Energy Consumption 

Disaggregated electric loads (non-cooling and cooling) were desired, because non-

cooling loads are assumed to be independent of P&DC location and climate, and 

cooling loads can be correlated to non-cooling loads and weather data.  Disaggregated 

load data were not directly available; however, total electric load data from the San 

Diego site were obtained, and the building energy simulation software eQUEST 

(James J. Hirsch and Associates 2007) was used to develop a model of a California 

P&DC, starting with the eQUEST default values for a climate-controlled storage 

facility, and adjusting occupancy, load (machine, lighting, office equipment), HVAC, 

and building shell data to best describe the P&DC.  The model was calibrated so that 

total electric load data (average daily profile and monthly total consumption) matched 

the total electric load data provided by the site15.  This process is described below and 

is illustrated in Figure 12.  This model was then adjusted to the three other cities (by 

increasing the insulation in Boston and Baltimore models) and used to determine 

energy loads for the hypothetical P&DCs in these cities, including heating and 

cooling loads. 

 

The following cooling load model was assumed:  

                                                 
15 Days in which electricity purchase dipped below 1500 kW in any hour were not 
used in this analysis: it was assumed that the generator and absorption chiller were 
running during these hours, and no disaggregated data on generator output was 
available. 



88 
 
 
 

µ,t)Daylight(mβrees(m,t)CoolingDegβm,t)TotalLoad(ββ        
d(m,t)CoolingLoa

C3C2C1C0 ++++
=

 
(45)

 

where 

• m is the month {1,2,…,12} 

• t is the hour of the month {1,2,…[number of hours in the month]} 

• CoolingLoad is the amount of electricity required to provide the desired 

amount of air cooling 

• TotalLoad is the total electric load reported by the eQUEST model 

• CoolingDegrees is the number of degrees (Fahrenheit) above 65°F that the 

outdoor air temperature is, or zero if the temperature is below 65°F 

• Daylight is a binary variable set to one if t is a daylight hour, zero if not {0,1} 

 

An ordinary least squares (OLS) regression was performed to determine the βC 

values.  This model was then used to determine the cooling load from the actual site 

data, given the actual total electric consumption for the site and the outdoor 

temperatures.  Finally, for the actual site total electric loads and corresponding 

temperature data, 1) the actual site cooling loads were determined from Equation (46) 

and 2) non-cooling loads were determined as the difference between total electric 

loads and cooling loads.  This was done for every hourly data point. 

 

The following non-cooling load model was assumed: 
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(t)HourlyRandd(t))DailyRand(*dt(t))h(t),ingLoad(m,AvgNonCool     
Load(m,t)NonCooling

+
=

 
(46)

 

where 

• m is the month {1,2,…,12} 

• t is the hour of the month {1,2,…[number of hours in the month]} 

• h(t) is the hour of the day of hour t {1,2,…,24} 

• dt(t) is the day-type of the day that hour t is in {weekday, Sunday} 

• d(t) is the day of the month that hour t is in {1,2,…,[number of days in the 

month]} 

• NonCoolingLoad is the non-cooling electric load determined by Equation 

(46) 

• DailyRand is normally distributed random variable with an mean value of 1 

• HourlyRand is a normally distributed random variable with a mean value of 0 

 

This model assumes that energy consumption follows a fairly regular daily pattern 

(AvgNonCoolingLoad) because the site’s operations and use of equipment do not vary 

significantly.  DailyRand is used to scale consumption up or down for particular days 

to model the variability in volume of mail handled from day to day within a month; in 

reality, this variation is largely explained by typical commercial practices (e.g. what 

day of the week companies tend to send out particular types of mail) and proximity to 

holidays such as Christmas and Valentine’s Day and other high mail-volume events.  
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HourlyRand is used to introduce volatility to the smoothed (averaged) profile, to 

account for random variations in operations from hour to hour. 

 

Using the assumption that the sum of HourlyRand values for each day was equal to 

zero, the value of DailyRand was determined for each day as the ratio of actual daily 

non-cooling consumption (kWh) to average daily non-cooling consumption.  Then, 

Equation (46) was used to determine the HourlyRand value for each hour.  For each 

month, the mean, variance, minimum, and maximum values of DailyRand and 

HourlyRand were determined. 

 

Non-cooling electric loads for the experiments in this project were randomly 

generated using the AvgNonCoolingLoad data previously determined and randomly 

generated values of DailyRand (a different value for each day) and HourlyRand (a 

different value for each hour).  DailyRand and HourlyRand were normally distributed 

pseudo-random numbers generated in Matlab, using the mean and variance 

parameters determined above.  Random values were truncated at the minimum and 

maximum values determined above. 

 

For consistency, the same non-cooling electric load data were used for all four sites.  

Cooling loads for the four sites were determined from Equation (45) using the 

randomly generated non-cooling loads, and the city-specific temperature.  

 

The following heating load model was assumed: 
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µ,t)Daylight(mβrees(m,t)HeatingDegβm,t)TotalLoad(ββ      
d(m,t)HeatingLoa

H3H2H10 ++++
=

 
(47)

 

where 

• m is the month {1,2,…,12} 

• t is the hour of the month {1,2,…[number of hours in the month]} 

• TotalLoad is the total electric load reported by the eQUEST model 

• HeatingDegrees is the number of degrees (Fahrenheit) below 65°F that the 

outdoor air temperature, or zero if the temperature is above 65°F 

• Daylight is a binary variable set to one if t is a daylight hour, zero if not {0,1} 

 

An OLS regression was performed on the eQUEST data for each of the four sites to 

determine the βH values.  The randomly generated non-cooling loads, coupled with 

the actual temperature data for each city were then used to generate the heating loads. 

 

This procedure was used to randomly generate complete site load data for three actual 

years (2004 to 2006) and ten years of stochastic scenario data (using weather data 

from 1961 to 1970). 

 

Figure 12 illustrates the information flow, starting from P&DC site detail and the 

eQUEST default model and leading to the cooling and heating load model 

parameters.  The feedback loop on the top left of the figure was used to calibrate the 
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eQUEST San Diego P&DC model to the San Diego P&DC actual electric load data.  

This calibrated eQUEST model was then used at the base from which to model 

hypothetical P&DC sites in the other cities considered.  Figure 13 illustrates the 

information flow from San Diego P&DC total electric load data and temperature data 

to non-cooling model parameters.  By removing temperature dependent electricity 

loads (i.e. air conditioning), the remaining non-cooling load model was valid for all 

four cities. 
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Figure 12. schematic of cooling and heating load model parameter determination 
 

San Diego site total electric 
load data (2002-2006) San Diego 

cooling model
cooling = f(non-

cooling, 
temperature, 

time)
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non-cooling 

electric = 
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Figure 13. schematic of non-cooling electric load model parameters 
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7.2.2 Solar Insolation Data 

Hourly solar insolation data for the ten stochastic scenario model years (1961 to 

1970) were obtained from the Renewable Resources Data Center at NREL (RReDC 

2007).  Data for the actual years considered (2004 to 2006) could not be found – 

average daily profiles from the 1961 to 1970 data were used instead.  For a site with 

more sizeable solar energy harvesting, this averaging would not be appropriate.  

However, for this particular site, the 12 kW photovoltaic system provides, at most, 

about 0.5% of the site’s electric load.  Including the stochastic solar insolation in the 

model is mostly a placeholder for future studies targeted at renewables, for which the 

only modification to this work would be to update the solar data for the actual years 

considered. 

 

7.2.3 Temperature Data 

Daily maximum and minimum temperature data for 1961 to 1970 and 2004 to 2006 

were obtained from the Weather Underground online weather query service (Weather 

Underground, 2007).  Hourly temperatures were estimated assuming a sinusoidal 

daily temperature pattern with maximum temperature at 4 p.m. and minimum 

temperature at 4 a.m.  
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7.2.4 Electricity Tariff Data 

7.2.4.1 Time of Use 

Electricity tariff data were collected from the utilities serving the four cities studied.  

The general service primary voltage time-of-use tariff for customers with peak loads 

of 2.5 MW was obtained for each city:  

• Baltimore - Baltimore Gas and Electric Company, Schedule P: primary 

voltage, demand greater than 1500 kW (BGE 2007a) 

• Boston - NSTAR Electric, Rate G-3: primary voltage (NSTAR 2007) 

• Houston – Reliant Energy Retail Services, Large General Service,  (PUCT 

2007) 

• San Diego - San Diego Gas and Electric Company, Schedule AL-TOU-DER, 

(SDG&E 2007a) 

 

Tariffs are generalized into the following information 

• summer months 

• winter months 

• on-, mid-, and off- peak hours for summer and winter months 

• fixed costs ($/month) 

• TOU volumetric costs ($/kWh), variable by time of use and by month 

• TOU demand charges ($/kW), variable by time of use and by month 

• non-coincident demand charges ($/kW), variable by month 



95 
 
 
 

 

The state-specific relative change in average electricity cost ($/kWh) to industrial 

customers from year to year, as reported by the Energy Information Agency (EIA 

2007a) was used to scale the volumetric and demand charge portions of data for years 

in which actual tariff data was not available16.  TOU rates for 2004 for all four cities 

are shown in Table 12 through Table 15. 

 

Table 12. electricity rates for Baltimore, 
2004 
2004 Electricity Rates - Baltimore

summer winter
Fixed ($/month) fee
Volumetric ($/kWh) rates

on-peak 0.087 0.071
mid-peak 0.069 0.062
off-peak 0.060 0.051

Demand ($/kW) rates
all-hours 1.85 1.85
on-peak - -

mid-peak - -
off-peak - -

750

Table 13. electricity rates for Boston, 
2004 
2004 Electricity Rates - Boston

summer winter
Fixed ($/month) fee
Volumetric ($/kWh) rates

on-peak 0.078 - 0.086 0.066 - 0.083
mid-peak 0.078 - 0.086 0.066 - 0.083
off-peak 0.078 - 0.086 0.066 - 0.083

Demand ($/kW) rates
all-hours - -
on-peak 16.12 11.55

mid-peak - -
off-peak - -

237

 

Table 14. electricity rates for Houston, 
2004 
2004 Electricity Rates - Houston

summer winter
Fixed ($/month) fee
Volumetric ($/kWh) rates

on-peak 0.067 0.040
mid-peak 0.067 0.040
off-peak 0.067 0.040

Demand ($/kW) rates
all-hours 11.06 5.03
on-peak - -

mid-peak - -
off-peak - -

480

Table 15. electricity rates for San Diego, 
2004 
2004 Electricity Rates - San Diego

summer winter
Fixed ($/month) fee
Volumetric ($/kWh) rates

on-peak 0.104 0.104
mid-peak 0.078 0.078
off-peak 0.066 0.066

Demand ($/kW) rates
all-hours 10.16 10.16
on-peak 4.41 3.48

mid-peak - -
off-peak - -

194

 

                                                 
16 For example, if on-peak demand charges were $10.00/kW in the 2006 tariffs and 
the EIA reported that the average electricity cost was 2% less in 2005 than in 2006, 
then the 2005 on-peak demand charge would be $9.80. 
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7.2.4.2 Critical Peak Pricing 

Southern California Edison (SCE), the neighboring utility to the north of SDG&E, 

offers an optional general service CPP tariff (SCE 2007).  Hypothetical CPP tariffs 

for all four cities were modeled as TOU tariffs, with the volumetric prices adjusted by 

a different multiple for winter hours, non-event summer on-, mid-, and off-peak 

hours, and event summer hours (12:00 PM to 3:00 PM as critical moderate peak and 

3:00 PM to 6:00 PM as critical high peak).  These multiples were determined by 

comparing the SCE TOU and CPP tariffs; the resulting multiples are reported in 

Table 16.  Note that on- and mid-peak volumetric rates are discounted during non-

critical times by a factor of 0.9 and on-peak volumetric rates are increased by a factor 

2.3 during critical moderate peak periods and a factor of 5.9 during critical high peak 

periods. 

 

Table 16. ratio of CPP to TOU volumetric prices for SCE 2005 
2005 ratio of CPP to TOU volumetric prices

ratio
noncritical on-peak hours 0.9
noncritical m id-peak hours 0.9
noncritical off-peak hours 1
critical moderate peak*** 2.3
critical high peak**** 5.9
*there are a maximum of six critical episodes per month
**there are a maximum of 12 critical episodes per year
***moderate peak is from 12:00 PM to 3:00 PM
**** high peak is from 3:00PM to 6:00 PM  

7.2.4.3 Real-time Prices 

City specific hourly averaged real-time clearing price for 2004 to 2006 were collected 

from the following sources. 
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• Baltimore – PJM Interconnection clearing prices, compiled by Suez Energy 

Resources, NA (2007) 

• Boston  - ISO-NE (2007) 

• Houston – ERCOT (2007) 

• San Diego – CAISO (2007)  

 

For each city, a mean-reverting Brownian motion model, as described in Deng 

(2000), was fit to this data.  The mean prices at each hour of the year, required for this 

technique were the expected price for the given month, hour of the day, day-type 

(weekday or weekend), cooling degrees (degrees above 65°F), and heating degrees 

(degrees below 65°F). This process is described in 0.  For stochastic scenario years 

(1961 to 1970) these mean-reversion models were used to generate stochastic price 

scenarios for the actual years 1961-1970. 

  

Hypothetical RTP tariffs were constructed by using spot-market clearing prices, TOU 

fixed and demand charges, and adding a cost-neutral distribution adder ($/kWh) to 

the clearing price.  This follows the model of the mandatory RTP tariff for large 

customers (peak demand >2 MW) that the Niagara Mohawk utility in upstate New 

York imposes (National Grid 2007), in which distribution costs (volumetric and 

demand based) are added to the day-ahead forecast of zonal clearing prices.  The 

principal of rate-neutrality, by which a utility’s revenue for a typical customer is 

independent of the tariff structure (e.g. the utility would expect the same revenue 
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from the same customer under either TOU or RTP tariff) was used to determine the 

appropriate volumetric distribution adders to the clearing prices for the four cities 

considered through the following process:  

1. determine the electricity purchase for 2004 to 2006 with no-DG 

2. determine site electricity costs for 2004 to 2006 with no-DG under the 

TOU tariff 

3. determine the site electricity costs for 2004 to 2006 with no-DG under the 

RTP tariff and a $0.00/kWh distribution adder value 

4. determine the average $/kWh price of electricity for the TOU and RTP 

cases 

5. set the distribution adder value to the difference between the average price 

under TOU and RTP cases 

 

7.2.5 Natural Gas Prices 

Current natural gas prices (during 2006) were collected from the local utilities17 (BGE 

2007b, Keyspan Energy 2007, SDG&E 2007b).  Data from the U.S. Energy 

Information Agency (EIA 2007b) for city gate natural gas prices in each state were 

added to current distribution costs to estimate historic natural gas prices.  For each 

month long simulation/optimization, the price of natural gas was assumed to be 

constant and deterministic.  Natural gas prices can be volatile; Figure 14 plots these 

prices for January 2004 through December 2006, along with the average California 
                                                 
17 EIA end-use industrial prices were used for Houston, because local delivery costs 
could not be found.  
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retail industrial electricity price, as reported by the EIA.  The ratio of electricity to 

natural gas price is also plotted, to illustrate the volatility of this ratio, or spark 

spread, which has ranged from 1.96 to 4.31 in three years. Given that DG converts 

natural gas to electricity, optimal dispatch must be responsive to the relative 

fluctuations in these two commodities’ prices. 
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Figure 14. electricity and natural gas prices for January 2004 to August 2006 and the 
ratio of electricity to natural gas price 
 

7.2.6 Carbon Emissions 

Region-specific carbon emissions rates were obtained from The Climate Trust (2005).  

Regions are the 27 U.S. sub-regions defined by the National Energy Reliability 

Council (NERC).  Emissions rates are reported as a grid intensity factor: the evenly 

weighted average of the marginal grid carbon emissions and the marginal build 
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(average emissions of newly built marginal plants).  This is a proxy for the true 

marginal emissions factors, which are difficult to determine.  Table 17 states these 

factors for the four regions of interest in this research. 

 

Table 17. grid carbon intensity factors 

city NERC sub-
region

(metric tons 
CO2/MWh) (kg C / kWh)

Baltimore MACC 0.617 0.168
Boston NEWE 0.545 0.149
Houston ERCT 0.548 0.149
San Diego CALI 0.493 0.134

grid intensity factor

 

        source: The Climate Trust (2005) 

 

7.2.7 Generator Availability 

A Markov process is used to model generator availability, as demonstrated by 

Borgonovo, Marseguerra, and Zio (2000).  At each time-step that the equipment is 

available, there is a less than unity probability, po, that the equipment will be 

available at the next time-step.  Likewise, if equipment is unavailable at the current 

time-step, there is a less than unity probability, px, that the equipment will remain 

unavailable at the next time-step.  The subscripts o and x refer to the “available” and 

“unavailable” states, respectively. This describes a hybrid system in which, at each 

time-step, equipment is in one of two states – available or unavailable – with some 

probability of switching to the other state.  The model will result in some brief 

outages (to represent grid line faults that that the system protectively turns off during) 
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and some longer outages (to represent equipment failures that require manual 

servicing).  

 

.Figure 15 illustrates the Markov model.  po and px can be derived from commonly 

cited parameters: expected availability (portion of hours generator is available), A, 

and expected outage length, Ex.  These expressions are show in Equations (48) and 

(49). 

State 1: 
generator 
available

State 2: 
generator 
unavailable

P(State1   State2) =  1-poP(State1   State2) =  1-po

P(State2   State1) =  1-pxP(State2   State1) =  1-px  

Figure 15. two-state Markov model of generator availability 
 

x

x
x E

Ep
+

=
1

 
(48)

 

x
o AEA

AExp
+−

=
1

 
(49)

 

This model predicts sustained generator outages of varying lengths, which reflects 

field experience, where unexpected outages can vary in length (from a few minutes to 

a few weeks) depending on the type of outage and maintenance availability 

circumstances. 
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More detailed Markov models could be developed in which there are separate 

“unavailable” states for different categories of failures.  Such categories might 

include  

• Grid fault: The generator trips off because of a fault on the grid (voltage or 

frequency variations); This is technically not a “failure” because the generator 

is designed to do this, and can typically be restarted soon after the fault.  This 

type of outage typically last minutes to hours. 

• Component failure, replacement on-hand: The generator fails because a 

part or group of parts fails.  A service technician visits the site and replaces 

the component(s).  This type of outage typically lasts hour to days, depending 

on the specifications of the service contract, and technician availability and 

proximity. 

• Component failure, replacement must be ordered: The generator fails 

because of component failure and the service technician must order 

replacement parts.  This type of outage typically last days to weeks. 

 

Until more detailed information about generator availability is available for this 

specific site, a model more detailed than the two-state model is not warranted.  

 

Stochastic availability histories for the actual years studied (2004 to 2006) and the 

stochastic scenario years (1961 – 1970) were generate using the two-state Markov 
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model by generating uniformly distributed pseudo-random numbers in Matlab at 

successive time-steps to determine when state switches occurred. 
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8. RT-OPTICOM EXPERIMENTS 

Three experiments were conducted using RT-OPTICOM and P&DC data sets.  These 

experiments were intended to demonstrate to capabilities of RT-OPTICOM and begin 

to explore some pertinent open questions concerning DG and demand response.  The 

three experiments were 

1. a valuation of optimal DG control under various tariff structures 

2. a valuation of demand side management options with and without DG 

3. a co-optimization of cost and carbon emissions using DG 

All experiments were conducted on all four cities and under all three tariff structures 

to provide insight into the effects of energy-situation on results. 

 

8.1 Optimal Control Valuation 

One of the early questions that motivated this research project was of what value a 

sophisticated dispatch optimization – relative to standard heuristic controls - would be 

for a DG system.  To explore this question, simulation of the P&DC sites for each 

month from January 2004 to December 2006 was conducted under four control 

strategies 

• no-DG – The generator and absorption chiller are not run, showing site 

behavior prior to DG installation. 

• load-following – The generator is run as much as possible, mimicking the 

site’s current strategy. 
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• heat-following – The generator is dispatched to run at a level for which all 

recovered heat will be useful to the absorption chiller and space-heating. 

• optimal dispatch – The full optimization program is used to make dispatch 

decisions. 

 

For the optimal dispatch strategy, the stochastic scenarios, as described in Chapter 4, 

were based on actual data from 1961-1970. 

The simulations were repeated for each of the three tariff structures (TOU, CPP, and 

RTP).  All input data were consistent across tariff structure and control strategy.  The 

availability data and non-cooling electric loads used for the actual years (2004 

through 2006) and the stochastic scenarios (represented by years 1961 to 1970) were 

the same across location, tariff, and control strategy.  Cooling and heating loads for 

each location were determined by the non-cooling loads and the local weather 

(Section 7.2.1).  Actual clearing prices for each location were used for the actual 

years, and the location and weather dependent stochastic model of clearing prices was 

used to generate the clearing price stochastic scenarios (Section 7.2.4.3).  These 

clearing prices were then used to determine the CPP episode days – the six highest 

priced weekdays in each of the summer months.  Actual solar insolation data for each 

of the stochastic scenario years were used, and historic average data were used for the 

actual years (Section 7.2.2).   

Table 18 summarizes the input required for each 36 month simulation.  
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Table 18. input required for each simulation 
specific to…

input data location
tariff 

structure
control 
strategy

non-cooling loads
cooling loads x
heating loads x
grid carbon intensity x
tariff seasons and time-
of-use hours x
electricity prices x x
natural gas prices x
control strategy x  

 

8.1.1 Monthly Energy Costs 

Monthly energy costs (electricity and natural gas) for the site are plotted in Figure 16 

through Figure 19.  Each figure plots these prices under each control strategy for each 

of the three tariff structures.  

 

8.1.1.1 Baltimore 

Figure 16 plots the monthly energy prices for Baltimore.  For 2004 through 2005 

(months 1 through 24) under TOU and CPP tariffs, there is not a significant 

difference in monthly energy cost from any of the control strategies until the natural 

gas price spike of winter 2005.  Here, the optimal strategy approximates the no-DG 

strategy.  Later, in 2006, as natural gas prices subside and electricity prices increase, 

the optimal strategy approximates the load-following strategy.  Note that the heat and 

load-following strategies have similar results because much of the waste-heat is 

useful – the two strategies converge when all of the waste-heat is useful.  Under RTP 



107 
 
 
 

tariff, however, the optimal control strategy is clearly lower cost than any of the other 

control strategies.  This intuitive result shows that when pricing becomes more 

complex, heuristic control strategies become less effective. 
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Figure 16. Baltimore - monthly energy costs under all tariffs and control strategies 
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8.1.1.2 Boston 

Figure 17 plots the monthly energy prices for Boston.  Here again, the optimal 

solution for the TOU and CPP tariffs is approximately a selection between one of the 

three heuristic strategies.  During most of 2004 and 2005, the optimal control strategy 

was approximately no-DG, whereas in 2006, the optimal control strategy was 

approximately to heat- or load-follow.  As in Baltimore, under RTP tariff, optimal 

control provides lower cost in many months than any of the heuristic strategies. 
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Figure 17. Boston - monthly energy costs under all tariffs and control strategies 
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8.1.1.3 Houston 

Figure 18 plots the monthly energy prices for Houston.  As in Baltimore and Boston, 

optimal control under TOU and CPP tariffs is approximately a decision between no-

DG and load-following or heat-following.  Here there is a clear seasonal pattern: 

during summer months using as much DG as possible is cost-effective, whereas 

during winter months, using DG is about as cost-effective as not using DG.  The RTP 

results are similar to the TOU and CPP results. 

5 10 15 20 25 30 35
0

100

200

300

month

en
er

gy
 c

os
t (

k$
)

TOU

5 10 15 20 25 30 35
0

100

200

300

month

en
er

gy
 c

os
t (

k$
)

CPP

5 10 15 20 25 30 35
0

100

200

300

month

en
er

gy
 c

os
t (

k$
)

RTP

no DG load−follow heat−follow optimal

no DG load−follow heat−follow optimal

no DG load−follow heat−follow optimal

 

Figure 18. Houston - monthly energy costs under all tariffs and control strategies 
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8.1.1.4 San Diego 

Figure 19 plots the monthly energy prices for San Diego.  In almost all months, under 

all tariffs, the optimal control strategy is approximately load-following.  However, 

during the natural gas price spike of winter 2005, under TOU and CPP tariffs, turning 

off the DG was the optimal control strategy. 
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Figure 19. San Diego - monthly energy costs under all tariffs and control strategies 
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8.1.2 Annual Energy Costs 

Figure 20 through Figure 27 summarize the average annual energy costs and energy 

cost savings (over no-DG dispatch) over the three years considered under each of the 

three tariff structures.  For a site considering DG, these values could be used to 

determine if the investment in DG is economic, given the cost of a proposed DG 

system.  For a site with DG, these results could be used to determine if the investment 

in sophisticated cost-minimizing controls is economic.  Note that in all cities, under 

all tariffs, heat-following is a more cost-effective control strategy than load-

following.  Results for individual years (2004 through 2006) are provided in 

Appendix D. 

 

For reference, the turnkey capitol cost of a 1.5 MW engine and 1 MW (300 ton) 

absorption chiller like those installed at the San Diego P&DC is approximately 

$3,000,000 to $4,000,000 (using data from US-EPA 2007 and Firestone 2004)18.  

Assuming a 5% discount rate and 20 year lifetime, this is an annualized cost of 

$230,000 to $310,000/year.  Annual savings greater than this suggest profitable 

circumstances.  Where subsidies for CHP systems are available, DG may be 

profitable at lower levels of annual savings.  At these estimated annualized costs, only 

the San Diego site would be an economically attractive site for CHP. 

 

                                                 
18 No financial details of the actual San Diego installation were revealed to the author.  
These cost estimates are based on publicly available reviews of CHP cost and 
performance.  
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Figure 20. Baltimore – average annual 
energy costs under all control strategies 
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Figure 21. Baltimore– average annual 
savings over no-DG case under all other 
control strategies 
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Figure 22. Boston – average annual 
energy costs under all control strategies 
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Figure 23. Boston– average annual 
savings over no-DG case under all other 
control strategies 
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Figure 24. Houston – average annual 
energy costs under all control strategies 
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Figure 25. Houston– average annual 
savings over no-DG case under all other 
control strategies 
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Figure 26. San Diego – average annual 
energy costs under all control strategies 
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Figure 27. San Diego– average annual 
savings over no-DG case under all other 
control strategies 

 

Table 19, a summary of Figure 20 through Figure 27, answers the first question of 

this chapter – what the value of intelligent controls is —  by reporting the difference 

in annual energy costs between an optimally controlled system and a heat-following 

system.  For Baltimore and Boston, under TOU and CPP tariffs, intelligent control is 

worth approximately $70,000 to $90,000/year.  As seen in Figure 16 and Figure 17, 

much of this value could be captured by simply identifying which months to operate 

the system, and which not – strongly a function of electricity prices, natural gas 
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prices, and the use for waste heat.  Interestingly, in Baltimore and Boston, a DG 

system would have no value if it were strictly controlled by load-following (Figure 21 

and Figure 23).  For these cities, the value of intelligent control under RTP tariff 

increases to $134,000/year and $118,000/year respectively.  Price responsiveness 

under RTP cannot be approximated by a time-based schedule, as it can under TOU 

and CPP tariffs.  Given the value of intelligent control in Baltimore and Boston, it 

would almost certainly be cost-effective to install intelligent controls at these sites, 

although much of the value of such controls could be achieved through a control 

scheme much simpler than RT-OPTICOM.   

 

The value of intelligent control in Houston is not as compelling - $19,000, $28,000 

and $57,000 per year under the TOU, CPP, and RTP tariffs, respectively.  However, 

at these values, control intelligence is possibly still worthwhile.  In San Diego, 

however, heat- and load-following strategies capture almost all of the benefit of DG, 

and intelligent control adds only a few thousand dollars per year in benefits. 

Table 19. the value of optimal control: average annual difference in energy costs 
(k$/a) between optimally controlled and heat-following systems 

TOU CPP RTP
Baltimore 77 87 134
Boston 71 75 118
Houston 19 28 57
San Diego 3 6 9  
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8.1.3 Supply of Electricity 

Figure 28 through Figure 75 show how electricity demand is met by utility purchase 

and site equipment for the months of January 2004, July 2004, and November 2005.  

January 2004 and July 2004 were selected as typical winter and summer months 

respectively.  November 2005 was selected because natural gas prices were unusually 

high, making DG dispatch less (entirely in some cases) economic.  In each set of four 

figures, the first three illustrate where electricity is supplied from in the first full week 

(Monday – Sunday) of the month.   

 

The fourth figure plots the offset of utility electricity purchase (from DG and cooling 

offsets from absorption cooling) using optimal control under each of the three tariffs.  

The hours are ordered from hour of lowest RTP to highest RTP – note that the RTP 

prices are only seen by the optimization under the RTP tariff (directly) and the CPP 

tariff (indirectly through critical episodes).  In these figures the real-time price is 

plotted on the right vertical axis and the electricity offset under the three tariffs is 

plotted on the left vertical axis.  A 20-hour rolling average is used to smooth the RTP-

ordered consumption plots.  Under RTP, the site is responding to the fluctuations in 

price, producing significant demand elasticity 

 

Commentary is provided underneath each set of four figures to mention the factors 

contributing to the optimal dispatch patterns, such as the relative prices of electricity 

and natural gas and the climate-driven use of waste heat for heating or cooling.
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8.1.3.1 Baltimore 
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Figure 28. Baltimore – TOU – January 
2004 – electricity supply for the first 
week of the month 
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Figure 29. Baltimore – CPP – January 
2004 – electricity supply for the first 
week of the month 
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Figure 30. Baltimore – RTP – January 
2004 – electricity supply for the first 
week of the month 
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Figure 31. Baltimore – January 2004 – 
electricity purchase by hour, ordered 
from least to highest RTP 

 

In January 2004 in Baltimore, TOU and CPP electricity prices were low enough to 

make most DG dispatch uneconomic.  However, the actual clearing prices were high 

enough in more than half of the hours (see Figure 31) to incent DG operation under 

RTP. 
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Figure 32. Baltimore – TOU – July 2004 
– electricity supply for the first week of 
the month 
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Figure 33. Baltimore – CPP – July 2004 
– electricity supply for the first week of 
the month 
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Figure 34. Baltimore – RTP – July 2004 
– electricity supply for the first week of 
the month 
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Figure 35. Baltimore – July 2004 – 
electricity purchase by hour, ordered 
from least to highest RTP 

 

In July 2004 in Baltimore, TOU and CPP electricity prices were only high enough to 

make DG dispatch economic during on-peak hours (weekday, late morning to 

evening).  Economics are aided by the electricity load offset provided by absorption 

cooling.  The actual clearing prices on Tuesday never got high enough to incent DG 

dispatch under RTP, while they did get high enough over the weekend (Figure 34). 
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Figure 36. Baltimore – TOU – November 
2005 – electricity supply for the first 
week of the month 
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Figure 37. Baltimore – CPP – 
November 2005– electricity supply for 
the first week of the month 
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Figure 38. Baltimore – RTP – November 
2005 – electricity supply for the first 
week of the month 
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Figure 39. Baltimore – November 2005 
– electricity purchase by hour, ordered 
from least to highest RTP 

 

In November 2005 in Baltimore, high natural gas prices made DG dispatch un-

economic under all tariffs, except for a small number of high RTP hours under RTP 

(Figure 39). 
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8.1.3.2 Boston 
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Figure 40. Boston – TOU – January 2004 
– electricity supply for the first week of 
the month 
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Figure 41. Boston – CPP – January 2004 
– electricity supply for the first week of 
the month 
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Figure 42. Boston – RTP – January 2004 
– electricity supply for the first week of 
the month 

0 100 200 300 400 500 600 700
0

500

1000

1500

2000

2500

el
ec

tr
ic

ity
 o

ffs
et

 (
kW

)

RTP−price−ordered hour

Boston

0 100 200 300 400 500 600 700
0

0.05

0.1

0.15

0.2

0.25

R
T

P
 p

ric
e 

($
/k

W
h)

RTP TOU CPP RTP price

 

Figure 43. Boston – January 2004 – 
electricity purchase by hour, ordered 
from least to highest RTP 

 

In January 2004 in Boston, TOU and CPP electricity prices were low enough to make 

most DG dispatch uneconomic.  However, the actual clearing prices were high 

enough in more than half of the hours (see Figure 40) to incent DG operation under 

RTP. 

 



120 
 
 
 

0

500

1000

1500

2000

2500

1 25 49 73 97 121 145
hour

el
ec

tri
c 

su
pp

ly
 (k

W
)

DG abs. cooling offset purchase

 

Figure 44. Boston – TOU – July 2004 – 
electricity supply for the first week of the 
month 
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Figure 45. Boston – CPP – July 2004 – 
electricity supply for the first week of the 
month 
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Figure 46. Boston – RTP – July 2004 – 
electricity supply for the first week of the 
month 
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Figure 47. Boston – July 2004 – 
electricity purchase by hour, ordered 
from least to highest RTP 

 

In July 2004 in Boston, TOU and CPP electricity prices were high enough to make 

DG dispatch economic when loads were largest (Monday – Saturday) to the extent 

that waste heat could be utilized for absorption cooling – note that in Figure 44 and 

Figure 45 the generators are not operated at their maximum capacity (1500 kW). The 

actual clearing prices (Figure 46) incent less hours of DG dispatch, but at higher 

levels. 
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Figure 48. Boston – TOU – November 
2005 – electricity supply for the first 
week of the month 
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Figure 49. Boston – CPP – November 
2005– electricity supply for the first week 
of the month 
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Figure 50. Boston – RTP – November 
2005 – electricity supply for the first 
week of the month 
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Figure 51. Boston – November 2005 – 
electricity purchase by hour, ordered 
from least to highest RTP 

 

In November 2005 in Boston, as in Baltimore, high natural gas prices make DG 

dispatch uneconomic under all tariffs, except for a small number of high RTP hours 

under RTP (Figure 51). 
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8.1.3.3 Houston 
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Figure 52. Houston – TOU – January 
2004 – electricity supply for the first 
week of the month 
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Figure 53. Houston – CPP – January 
2004 – electricity supply for the first 
week of the month 
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Figure 54. Houston – RTP – January 
2004 – electricity supply for the first 
week of the month 
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Figure 55. Houston – January 2004 – 
electricity purchase by hour, ordered 
from least to highest RTP 

 

 

In January 2004 in Houston, TOU and CPP electricity prices were low enough to 

make most DG dispatch uneconomic.  However, the actual clearing prices were high 

enough in almost half of the hours (see Figure 55) to incent DG operation under RTP. 
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Figure 56. Houston – TOU – July 2004 – 
electricity supply for the first week of the 
month 
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Figure 57. Houston – CPP – July 2004 – 
electricity supply for the first week of the 
month 
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Figure 58. Houston – RTP – July 2004 – 
electricity supply for the first week of the 
month 
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Figure 59. Houston – July 2004 – 
electricity purchase by hour, ordered 
from least to highest RTP 

 

In July 2004 in Houston, TOU and CPP electricity prices were high enough to make 

DG dispatch economic at all hours (Figure 56 and Figure 57), aided by the absorption 

chilling benefit of the waste heat.  Under the RTP tariff, the generator was either run 

at rated capacity (1500 kW) or not at all (Figure 58).  This illustrates the bang-bang 

nature of optimal dispatch when all waste heat is useful and generation is most 

efficient at full load. 
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Figure 60. Houston – TOU – November 
2005 – electricity supply for the first 
week of the month 
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Figure 61. Houston – CPP – November 
2005– electricity supply for the first week 
of the month 
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Figure 62. Houston – RTP – November 
2005 – electricity supply for the first 
week of the month 
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Figure 63. Houston – November 2005 – 
electricity purchase by hour, ordered 
from least to highest RTP 

 

In November 2005 in Houston, as in Baltimore and Boston, high natural gas prices 

made DG dispatch uneconomic under all tariffs, except for a small number of high 

RTP hours under RTP (Figure 63). 
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8.1.3.4 San Diego 
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Figure 64. San Diego – TOU – January 
2004 – electricity supply for the first 
week of the month 
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Figure 65. San Diego – CPP – January 
2004 – electricity supply for the first 
week of the month 
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Figure 66. San Diego – RTP – January 
2004 – electricity supply for the first 
week of the month 
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Figure 67. San Diego – January 2004 – 
electricity purchase by hour, ordered 
from least to highest RTP 

 

In January 2004 in San Diego, TOU and CPP electricity prices were high enough to 

make DG dispatch economic at all hours (Figure 64 and Figure 65), aided by the 

absorption chilling benefit of the waste heat.  The absence of generation starting near 

hour 40 in these figures is because of a stochastic generator outage.  Under the RTP 

tariff, the generator was typically either run at rated capacity (1500 kW) or not at all 
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(Figure 66).  When real-time prices were moderate, making generation and utility 

purchase comparable in cost, the generator was run in a heat-following pattern.  
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Figure 68. San Diego – TOU – July 2004 
– electricity supply for the first week of 
the month 
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Figure 69. San Diego – CPP – July 2004 
– electricity supply for the first week of 
the month 
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Figure 70. San Diego – RTP – July 2004 
– electricity supply for the first week of 
the month 
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Figure 71. San Diego – July 2004 – 
electricity purchase by hour, ordered 
from least to highest RTP 

 

In July 2004 in San Diego, TOU and CPP electricity prices were high enough to make 

DG dispatch economic at all hours (Figure 64 and Figure 65), aided by significant 

absorption chilling benefit of the waste heat.  Under the RTP tariff, the generator was 

typically either run at rated capacity (1500 kW) or not at all (Figure 66).  Under RTP, 

the generator was dispatched more in July 2004 (Figure 70) than in January 2004 

(Figure 66) because of the larger use for waste heat for absorption chilling.  The San 
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Diego P&DC has no significant heat load, even during the winter, because of the mild 

climate. 
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Figure 72. San Diego – TOU – November 
2005 – electricity supply for the first week 
of the month 
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Figure 73. San Diego – CPP – November 
2005– electricity supply for the first week 
of the month 

0

500

1000

1500

2000

2500

1 25 49 73 97 121 145
hour

el
ec

tri
c 

su
pp

ly
 (k

W
)

DG abs. cooling offset purchase

 

Figure 74. San Diego – RTP – November 
2005 – electricity supply for the first week 
of the month 
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Figure 75. San Diego – November 2005 – 
electricity purchase by hour, ordered from 
least to highest RTP 

 

In November 2005 in San Diego high natural gas prices made DG dispatch economic 

under TOU and CPP tariffs.  However, DG dispatch was economic under RTP tariff 

in almost half of the hours of the month. 
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8.1.4 Optimal Control Valuation - Observations 

It becomes clear by inspection of Figure 28 through Figure 75 that optimal dispatch 

under TOU tariffs is nearly identical to optimal dispatch under CPP tariffs for all four 

cities.  This is because DG tends to be running during critical episodes, regardless of 

a price signal, because episodes occur during times (summer, on-peak) in which 

electricity is already relatively highly priced.  This suggests that, from a regulator or 

utility’s perspective, CPP tariffs would incent no different behavior from DG 

customers than non-DG customers, i.e. DG customers would have no additional surge 

in curtailment. 

  

Furthermore, dispatch patterns under TOU and CPP tariffs are fairly simple and 

approximate the heuristic control strategies examined here: no-DG, load-follow (in 

this case running all of the time) and heat-following.  An additional pattern not 

examined in this research is load- (or heat-) following during on-peak hours only.  

Developing an algorithm to determine which heuristic control strategy would be most 

effective at each month might be a cost-effective alternative to full optimal control for 

TOU or CPP customers. 

 

RTP tariffs lead to more demanding near-optimal control – namely control that 

continuously responds to prices.  Control would be more complicated, and involve 

significant hedging strategies, if limits on the number of generator starts and stops (or 

minimum run time constraints) were imposed. 
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8.2 Demand Side Management Valuation 

The second experiment conducted was a valuation of demand side management 

(DSM) programs.  Unplanned DG outages often cause DG site utility consumption to 

be much peakier than that of their non-DG counterparts.  It was hypothesized by the 

author that DSM programs could be more valuable to DG sites than non-DG sites 

because this peakiness, and thus demand charges, could be mitigated.  This synergy 

between DG and DSM was demonstrated by Firestone, Stadler, and Marnay (2006b).   

 

Figure 76 illustrates this phenomenon.  The graph on the left is a load duration curve 

of on-peak hours for a site with no-DG.  The red dashed line indicates 80% of peak 

demand; the intersection of the 80% line with the duration curve is used to identify 

the number of hours of DSM required to successfully reduce monthly demand by 

20%.  Approximately 90 hours of curtailment would be required for this demand 

reduction.  The middle graph plots utility electricity consumption for the same site, 

this time with DG and subject to random DG outages. Hours are ordered the same as 

in the left graph.  Peaks in the middle graph indicate hours of DG outage.  The graph 

on the right shows the load duration curve for the site with DG.  In this example, DG 

successfully mitigates almost the full 20% of demand cost.  Nearly 25% more 

demand could be mitigated if DSM could be used for the few hours of the month 

when the DG is unavailable.  This figure shows how many fewer hours of DSM may 
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be required to achieve equivalent (or greater) demand charge mitigation if DG is 

present. 
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Figure 76. duration curves that demonstrate the peakier nature of DG customers’ 
utility purchase 
 

For this experiment, a DSM program of 1-hour curtailments was considered, with two 

program parameters: 1) number of allowable curtailments per month, and 2) the 

magnitude of curtailment.  For each of the four sites, under each of the three tariff 

structures, for the 2006 data, site simulation using RT-OPTICOM for dispatch 

optimization was conducted for the following cases: 

• no-DG or DSM dispatch 

• DG dispatch only 

• DSM dispatch only 

• DG and DSM dispatch 

For all cases with DSM dispatch, RT-OPTICOM runs with all combinations of 

curtailable hours {5, 10, 15, 20, 25} and curtailable magnitude (kW) {50, 100, 150, 
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200, 250} were considered.  The results from these cases were then used to determine 

the value of DSM programs with and without DG systems.  Figure 77 through Figure 

88 show contour plots of both 1) the annual site energy costs under varying DSM 

programs and 2) the annual value of the DSM program, i.e. the difference between 

the annual energy cost without DSM and with DSM, ceteris paribus.  
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Figure 77 and Figure 78 show the annual energy costs and DSM values for the four 

cities under TOU tariff and no-DG dispatch. 
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Figure 77. TOU – no-DG – annual energy cost (M$) under varying DSM programs in 
2006 
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Figure 78. TOU – no-DG – annual value (k$) of varying DSM programs in 2006 
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Figure 79 and Figure 80 show the annual energy costs and DSM values for the four 

cities under TOU tariff and DG dispatch. 
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Figure 79. TOU – with-DG – annual energy cost (M$) under varying DSM programs 
in 2006 
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Figure 80. TOU – with-DG – annual value (k$) of varying DSM programs in 2006 
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Figure 81 and Figure 82 show the annual energy costs and DSM values for the four 

cities under CPP tariff and without DG dispatch. 
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Figure 81. CPP – no-DG – annual energy cost (M$) under varying DSM programs in 
2006 
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Figure 82. CPP – no-DG – annual value (k$) of varying DSM programs in 2006 
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Figure 83 and Figure 84 show the annual energy costs and DSM values for the four 

cities under CPP tariff and with DG dispatch. 
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Figure 83. CPP – with-DG – annual energy cost (M$) under varying DSM programs 
in 2006 
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Figure 84. CPP – with-DG – annual value (k$) of varying DSM programs in 2006 
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Figure 85 and Figure 86 show the annual energy costs and DSM values for the four 

cities under RTP tariff and without DG dispatch. 
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Figure 85. RTP – no-DG – annual energy cost (M$) under varying DSM programs in 
2006 
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Figure 86. RTP – no-DG – annual value (k$) of varying DSM programs in 2006 
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Figure 87 and Figure 88 show the annual energy costs and DSM values for the four 

cities under RTP tariff and with DG dispatch 
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Figure 87. RTP – with-DG – annual energy cost (M$) under varying DSM programs 
in 2006 
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Figure 88. RTP – with-DG – annual value (k$) of varying DSM programs in 2006  
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Table 20 summarizes the DSM value for each combination of tariff, city, and 

presence/absence of DG dispatch at two levels: 1) 10 hours/month of 100 kW 

curtailment and 2) 25 hours/month of 250 kW curtailment.  Peak loads at the sites are 

approximately 2 MW.  Without DG, DSM is most valuable under CPP tariffs, where 

curtailment episodes coincide with critical episodes.  When DG is included in the 

dispatch, DSM generally becomes more valuable for a small curtailment program (10 

hours per month at 100 kW).  However, the results are not conclusive for a larger 

curtailment program (25 hours per month at 250 kW); DSM becomes less valuable in 

two of the four cities (Baltimore and San Diego), more valuable in the other two 

(Boston and Houston).  This result illustrates the complexity of determining DSM 

value, which is dependent on the particular DSM program, the size and structure of 

demand charges and the energy purchase duration curve.  The duration curve is in 

turn dependent on generator availability and climate-driven thermal loads.  The 

results of this experiment show the hypothesized synergy between DG and DSM for 

small DSM programs, but are inconclusive for larger programs. 
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Table 20. DSM program value (k$/year) for a 10hour/month, 100 kW/episode 
program and a 25 hour/month, 250 kW/episode program in 2006 

without DG with DG without DG with DG
Baltimore TOU 2 2 10 10

CPP 3 4 18 14
RTP 2 2 14 8

Boston TOU 13 23 37 53
CPP 15 18 42 48
RTP 16 28 40 50

Houston TOU 1 1 5 5
CPP 2 2 10 13
RTP 2 1 10 7

San Diego TOU 4 14 14 25
CPP 5 5 21 15
RTP 5 7 16 11

10 one-hour curtailments per 
month

100 kW maximum curtailment

25 one-hour curtailments per 
month

250 kW maximum curtailment

 

 

8.3 Cost-Carbon Co-optimization 

The final experiment was to examine the trade-off between site-attributable carbon 

emissions and energy costs under optimal control and the three different tariffs.  Site-

attributable carbon emissions are the sum of emission from grid electricity and on-site 

natural gas consumption.  One constraint in RT-OPTICOM is a ceiling on the amount 

of site-attributable carbon emissions in each month.  For this experiment, for the 

months of January 2004 to December 2006, the simulation under optimal control and 

each of the three tariffs was rerun for a series of carbon constraint levels.  For utility 

electricity, regional average marginal emissions factors from The Climate Trust 

(2005) were used (see Section 7.2.6). 
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The set of costs and carbon emissions levels from these runs were then analyzed to 

obtain an estimate of the cost/carbon trade-off under each tariff structure.  The results 

are plotted in Figure 89 through Figure 96, with carbon emissions on the horizontal 

axis and the corresponding minimum possible annual energy cost on the vertical axis.  

For each city, these values are plotted in average annual dollars and tons of carbon 

(graphs on the left) and as percentages of the lowest possible level of cost and carbon 

(graphs on the right).  All points on these figures are determined by running the RT-

OPTICOM model for each city/month/tariff combination at many different levels of 

carbon constraint and then solving a separate optimization problem which finds the 

least-cost combination of monthly results for a given total level of carbon emissions.  

These least cost values could not be obtained in practice because they assume perfect 

foresight in natural gas prices for the three years and general trends in electricity 

prices; however they do provide an estimate of the cost/carbon trade-off.   

 

Figure 89 and Figure 90 plot the results for Baltimore.  The approximately right 

angles in Figure 89 under all tariffs illustrate that there is very little room in dispatch 

decision-making for trade-off between cost and carbon.  Figure 90 shows these fronts 

in more detail, and in terms of percentage of best-cost and best-carbon values.  For 

TOU and CPP tariffs, least-cost solutions result in about 10% more carbon than least-

carbon dispatch (bottom right corner of the graph), whereas least-carbon dispatch 

costs the site about 10% more than least cost dispatch.  Under RTP tariffs, this angle 

is more rounded, showing more room for trade-off. 

 



141 
 
 
 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 0.5 1 1.5 2 2.5
carbon (kt/a)

co
st

 (M
$/

a)
TOU
CPP
RTP

 

Figure 89.  Baltimore - cost-carbon 
Pareto front 
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Figure 90.  Baltimore - cost-carbon 
Pareto front, as percentage of best cost 
and best carbon solutions 

 

 

Figure 91 and Figure 92 show these results for Boston.  The angles are even sharper 

than in the Baltimore case, implying even less room for trade-off between cost and 

carbon. 
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Figure 91.  Boston - cost-carbon Pareto 
front 
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Figure 92.  Boston - cost-carbon Pareto 
front, as percentage of best cost and best 
carbon solutions 

 

Figure 93 and Figure 94 show these results for Houston.  They are qualitatively very 

similar to those from Boston.  
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Figure 93.  Houston - cost-carbon Pareto 
front 
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Figure 94.  Houston - cost-carbon Pareto 
front, as percentage of best cost and best 
carbon solutions 

 

Figure 95 and Figure 96 show these results for San Diego.  Here, the Pareto fronts are 

right angles: least-cost dispatch is least-carbon dispatch. 
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Figure 95.  San Diego - cost-carbon 
Pareto front 
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Figure 96.  San Diego - cost-carbon 
Pareto front, as percentage of best cost 
and best carbon solutions 

 

The results of this experiment show that, for the P&DC sites considered, there is little 

or no difference between least-cost and least-carbon dispatch of the installed system.  

If greenhouse gas reductions are of interest to these sites, the crucial stage of the 

decision making is the design of the IES. 
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9. EXPERIMENT CONCLUSIONS 

The case study and experiments described in Chapters 7 and 8 demonstrate the 

usefulness of RT-OPTICOM in answering questions about dispatch optimization and 

resulting site energy cost and emissions implications.  This chapter discusses these 

results.  Note that these results are specific to sites with energy consumption patterns 

similar to those of the P&DCs. 

 

9.1 Optimal Control Valuation 

This experiment compared energy costs that resulted from several control strategies: 

three heuristic control strategies (no-DG, load-following, heat-following), and 

optimal control. The results demonstrate that, quite often, optimal control can be 

reasonably approximated by a monthly selection between one of the three heuristic 

control strategies.  This is particularly noticeable in the results under TOU and CPP 

tariffs.  Under RTP tariffs, optimal control becomes more valuable, as scheduling 

alone is an inadequate approach to stochastic, volatile energy prices. 

 

Table 21 summarizes these cost results.  The maximum value of DG is defined as the 

difference between average annual energy costs under no-DG and under optimal 

control strategies.  The optimal control value is defined as the difference between 

average annual energy costs under heat-following (consistently the most valuable 

heuristic control strategy) and under optimal control.  This value as a percentage of 

the maximum value is also reported.  Figure 97 shows this information graphically, 



144 
 
 
 

where it becomes clear that optimal control 1) has the most value in the two cities 

where DG has the least value (Baltimore and Boston), 2) has marginal value in the 

city where DG has intermediate value (Houston), and 3) has almost no value in the 

city where DG is most valuable (San Diego).  In other words, the value of optimal 

control is generally inversely proportional to the overall value (with or without 

optimal control) of DG.  The reason for this is that, in areas like San Diego or 

Houston, where dispatching DG is economic in most months, there is little need for a 

sophisticated controller.  However, in areas like Baltimore or Boston, where 

dispatching DG is only economic in certain months, an intelligent controller provides 

value by identifying uneconomic DG dispatch. 

 

Table 21. summary of average annual 
optimal control valuation 

Baltimore Boston Houston San Diego

TOU
maximum value of DG 

(k$/year) 200 184 265 415

optimal control value 
(k$/year) 77 71 19 3

optimal control value 
(% of maximum value) 38% 38% 7% 1%

CPP
maximum value of DG 

(k$/year) 217 194 281 419

optimal control value 
(k$/year) 87 75 28 6

optimal control value 
(% of maximum value) 40% 39% 10% 1%

RTP
maximum value of DG 

(k$/year) 335 317 358 453

optimal control value 
(k$/year) 134 118 57 9

optimal control value 
(% of maximum value) 40% 37% 16% 2%
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Figure 97. average annual value of DG 

 

Given the conventional wisdom that two of the most attractive U.S. markets for DG 

are California and the Northeast, it is surprising that Houston proves to be a more 

economic location for DG at P&DCs than Boston.  The conventional wisdom is based 

on the relatively high electricity prices in the Northeast.  While Houston electricity 
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prices are lower than those in Boston, Houston natural gas prices are also lower.  

Furthermore, the Houston-site, like the San Diego site, has a larger, more consistent 

cooling load than the Boston-site.  P&DCs in general do not have large heating loads 

because of the significant heat put off by the mail sorting machinery.  Often, it is 

heating loads that make DG in the Northeast attractive.  The sub-par heating loads in 

Boston and the added value of absorption cooling in Houston tip the scales in favor of 

the Houston-site.   

 

Figure 98 and Figure 99 show an a valuation of DG output based on the average 

industrial prices of electricity and natural gas in 2004 (Figure 98) and 2005 (Figure 

99), reported by the EIA (2007a and 2007b).  The value of generating one kWh of 

electricity is plotted if 1) only the electricity is used, 2) the waste heat is also used for 

heating, and 3) the waste heat is also used for cooling.  Also plotted is the cost to 

produce this one kWh of electricity, assuming 35% electrical efficiency and a 

$0.01/kWh maintenance costs.  Bars that are below the “cost to produce” line indicate 

situations where DG dispatch is uneconomic.  Note that in both of these years 

Baltimore and Boston prices predict DG dispatch to be uneconomic, Houston prices 

predict DG dispatch to be economic when waste heat is useful, and San Diego prices 

predict DG dispatch to be highly economic, even when waste heat is not useful.  Of 

course these graphs do not tell the full story; these are average annual energy prices – 

the results of this research project demonstrate that there are many times when DG 

dispatch is economic in Baltimore and Boston.  Also, these graphs do not reflect tariff 

structure – Boston, for example, has high demand charges, which can increase the 
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value of distributed generation.  Regardless, these graphs are an accurate predictor of 

the relative worth of DG in different locations. 
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Figure 98. value of DG energy offsets in 
2004 
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Figure 99. value of DG energy offsets in 
2005 

 

The results of this experiment demonstrate the potential price-responsiveness of DG 

under RTP tariffs.  This behavior can improve price stability and grid stability to the 

extent that prices reflect supply security. 

  

9.2 DSM Valuation 

This experiment determined the value of a range of DSM programs 1) with DG as 

part of an integrated system and 2) without DG.  Earlier work has supported the 

hypothesis that DSM and DG formed a synergistic relationship when their dispatch 

was integrated. The results of this research confirm this hypothesis for smaller 

curtailment programs but were inconclusive for larger curtailment programs.  These 

results are particularly sensitive to the availability model that is used for DG, and the 

reliability of the particular DG units.  Table 22 restates  
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Table 20 in summarizing the value of DSM programs of 1) 10 hours per month, 100 

kW per episode and 2) 25 hours per month, 250 kW per episode.   

 

Table 22. DSM program value (k$/year) for a 10hour/month, 100 kW/episode 
program and a 25 hour/month, 250 kW/episode program in 2006 

without DG with DG without DG with DG
Baltimore TOU 2 2 10 10

CPP 3 4 18 14
RTP 2 2 14 8

Boston TOU 13 23 37 53
CPP 15 18 42 48
RTP 16 28 40 50

Houston TOU 1 1 5 5
CPP 2 2 10 13
RTP 2 1 10 7

San Diego TOU 4 14 14 25
CPP 5 5 21 15
RTP 5 7 16 11

10 one-hour curtailments per 
month

100 kW maximum curtailment

25 one-hour curtailments per 
month

250 kW maximum curtailment

 

 

 

9.3 Cost-Carbon Co-optimization 

This experiment examined the trade-off between cost-minimization and carbon-

minimization.  For all of the sites considered, under all tariffs, the largest room for 

trade-off was roughly an 8% increase in cost for an 8% decrease in carbon-emissions; 

in most cases the room for trade-off was less than 5%.  This suggests that carbon-

emissions implications are almost entirely decided at the design stage of a project, not 

in the dispatch.   
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For fossil-baed CHP, carbon-savings are typically aligned with cost-savings.  Figure 

100 follows the style of Figure 98 and Figure 99 in comparing implications from 

conventional utility purchase to implications from on-site generation, this time 

comparing carbon emissions rather than cost.  The horizontal black lines show how 

much carbon is emitted from one kWh of on-site electricity production.  The yellow 

bars show how much carbon is attributed to the one kWh of grid-provided electricity 

that is offset.  The red and blue bars show the additional carbon offset from utilized 

waste-heat, which offsets natural gas for heating or electricity for cooling.  By 

comparing Figure 100 to Figure 98 and Figure 99, Baltimore is seen to have the least 

compelling economic case for DG, yet the most compelling carbon case for DG.  This 

explains why the largest room for cost/carbon trade-off is seen in Baltimore.  In cases 

where the disparity between economic case and carbon case are greater, real-time 

intelligence could be beneficial in balancing cost and carbon objectives. 
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Figure 100. carbon value of energy offsets 
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PART 4:  CONCLUSIONS AND FUTURE WORK 

Part 1 of this report described the IES dispatch optimization problem.  Part 2 posed an 

algorithm for approximately solving it.  Part 3 described several experiments 

conducted on a case-study building type to demonstrate the capabilities of the 

algorithm and the nature of optimal dispatch solutions. 

 

Part 4, the final part of this dissertation, briefy summarizes the project and provides 

some concluding remarks.  Chapter 10 summarizes the project.  Chapter 11 discusses 

practical implementations of the RT-OPTICOM IES program, and Chapter 12 

describes future work of immediate interest. 
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10. SUMMARY OF PROJECT AND CONCLUSIONS 

This project sought to quantify the economic savings possible from improved controls 

of integrated energy systems (IES).  To accomplish this, a technique for obtaining 

near-optimal solutions to stochastic problems that are too complicated to solve 

analytically or using conventional operations research methods was required.  This 

technique was developed, and applied to the specific IES problem.  Finally, case 

studies using the resulting program were conducted to answer several pertinent 

questions about distributed generation (DG) dispatch and the integrated combination 

of DG and demand side management (DSM).   

 

10.1 The Real-time Optimal Control Model and Integrated Energy System 

Application 

The IES dispatch optimization problem is a multi-stage problem (hundreds of stages) 

with several stochastic parameters.  Vertically-integrated utilities have tackled similar 

(and much more complicated) problems by developing heuristic approaches (often 

tailored to specific systems), thus making a tractable problem.  This research takes a 

different approach, developing a general method for solving the multi-stage problems 

with multiple stochastic parameters.  The Real-time Optimal Control Model (RT-

OPTICOM) accomplishes this.   

 

RT-OPTICOM is then applied to the building IES problem by describing the details 

of the system: energy costs, energy balances, engineering constraints, regulatory 
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constraints, and curtailment opportunities.   This IES application was written as a 

mixed integer linear program for which commercial programming platforms and 

robust solvers are readily available. 

 

10.2 Case Study Experiments 

The United States Postal Services regional Processing and Distribution Centers 

(P&DCs) were used as case study sites.  The San Diego, California P&DC recently 

installed a CHP system to provide electricity and thermally-activated cooling for their 

mail-handling and administrative activities.  Data on the site’s energy consumption 

and operational practices were collected through conversation with key players and a 

site visit.  This information was used to develop a building energy simulation model 

of the P&DC, which was used to tease out weather-related loads.  Finally, this model 

was then applied to hypothetical P&DCs in Baltimore, Maryland, Boston, 

Massachusetts, and Houston, Texas. Weather and energy price data were collected for 

the four cities considered. 

 

At this point, an algorithm for solving real-time IES dispatch optimization problems 

and input data necessary for case studies were at hand.  Three experiments were then 

conducted to begin to answer some of the motivating questions for this research.  

Experiments covered the four cities, three years of varying energy prices, and three 

tariff structures.  
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10.2.1 Optimal Control Valuation 

In this experiment, the site energy cost – the sum of electricity purchase, natural gas 

purchase, and CHP maintenance costs – were evaluated under several control 

strategies: no-DG, load-following, heat-following, and optimal control.  The first 

three control strategies are heuristic, or “rule-of-thumb” strategies and do not require 

optimization.  The fourth control strategy uses RT-OPTICOM for solutions.  The 

optimal control strategy succeeds in being the lowest cost strategy in all 36 months, 

for all cities and all under all tariffs, validating (to some extent) the algorithm.  Under 

time-of-use (TOU) and critical peak pricing (CPP) tariffs, the optimal control for a 

given month typically resembles one of the three heuristic control strategies.  Optimal 

control under real-time pricing (RTP) is more complicated. 

 

That optimal solutions resemble heuristic solutions for TOU and CPP tariffs suggests 

that heuristic control strategies can effectively capture most of the benefit of CHP.  

However, what many strategies lack is the automated intelligence to switch between 

heuristic strategies, i.e. to account for changes in load forecasts, energy prices, 

equipment availability in determining the best heuristic strategy for a given time.  

Assuming that optimal control provides the full economic benefit of CHP, the best 

heuristic control strategy (heat-following) provides only about 60% of the economic 

benefit in the marginally profitable cases of Baltimore and Boston P&DCs.  Much of 

the additional 40% of economic benefit would be achieved by a heuristic control 

strategy that switches between no-DG, load-following, and heat-following as 
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conditions changed.  In situations where the CHP system is not owned by the site, the 

control strategy may be contractually constrained – this experiment demonstrates the 

economic inefficiency of such contracts. 

  

Optimal control under real-time pricing is more complicated, involving hedging 

behavior that accounts for forecasted energy prices and loads and the use for waste-

heat.  The results show a complicated pattern of switching the generator on and off.  

More realistic solutions that limit the number of on/off switching (to keep reliability 

and maintenance costs acceptable) would be even more complicated, although would 

require only slight modification to the RT-OPTICOM program.  In some years, 

heuristic controls under RTP tariffs showed no economic benefit over not running DG 

at all.  RTP is a reality in some locales and becoming a reality in more – developing 

the business case for CHP under these conditions will require more intelligent 

controls than those common today.  The promise of RTP and intelligently controlled 

DG is a price elasticity much greater than that of typical (demand-only) customers; 

this contributes to improved price and grid stability. 

 

10.2.2 Demand Side Management Valuation 

In this experiment, the value of being able to curtail loads in limited quantities and 

frequencies is explored.  For small curtailment programs (~5% of load 10 hours per 

month), there is a synergy between DG and demand side management (DSM).  For 

larger programs (~15% of load 25 hours per month), this synergy is not statistically 
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significant.  The demand charges in current tariffs incent strategic curtailment, even 

in the absence of demand response programs19 and intelligent controls are capable of 

optimizing curtailments.  However, the value of small curtailment programs in most 

cases does not exceed 1% of annual energy costs, suggesting limited potential for this 

capability.  Most significant savings (2% of total costs in some cases) were seen in 

Boston, where demand charges were highest.  Large curtailment programs were more 

valuable, but still not compelling.  What typical tariffs do not reflect is the benefit to 

the whole customer base that curtailment during high-priced times provides: everyone 

benefits from lower clearing prices.  These small values of DSM suggest that demand 

response programs, which provide additional incentives for curtailment, are necessary 

to make curtailment financially compelling and at the same time make decision 

making about curtailment more straightforward. 

 

10.2.3 Cost-Carbon Co-optimization 

This experiment illustrated that the energy-situations in three of the four cities did not 

create a compelling trade-off between cost-minimization and carbon-minimization.  

The energy-situation in Baltimore, however, which has the largest disparity between 

economic case and carbon case for CHP, did create a moderately compelling trade-

off: approximately 8% increase in cost would be incurred in going from a least-cost 

dispatch to a least-carbon dispatch, in which case carbon emissions would be reduced 

                                                 
19 Demand response programs provide incentives in excess of cost savings under 
typical tariffs to customers who manually or automatically curtail loads at the request 
of the utility or independent system operator. 
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by about 8%.  While greenhouse gas emissions from energy consumption remains an 

externality (i.e. not explicitly priced) of site value, intelligence could be useful in 

achieving co-optimization of cost and carbon in situations where there is a large 

disparity between least-cost and least-carbon dispatch.   
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11. PRACTICAL IMPLEMENTATION 

This work presents a tractable approach to the IES dispatch optimization problem and 

demonstrates its usefulness through simulation.  RT-OPTICOM could be useful in 

simulation for many other purposes.  This algorithm could also be used to control an 

actual IES.  This chapter briefly describes some of these uses. 

 

11.1 RT-OPTICOM in Simulation 

As demonstrated in this work, RT-OPTICOM can be used to determine the value of a 

specified IES with and without optimal control.  These valuations can help designers 

determine 1) optimal sizing of IES equipment, 2) near-optimal heuristic dispatch 

strategies, and 3) the worth of implementing optimal control.  If optimal control is not 

implemented, RT-OPTICOM simulations could be done periodically by an analyst in 

order to update and fine-tune the heuristic strategies based on changes in energy 

prices, site loads, equipment performance, regulatory constraints and incentives, and 

changing site objectives. 

 

Using RT-OPTICOM to develop near-optimal heuristic control strategies for simple 

IES would be particularly useful.  As demonstrated in the optimal control valuation 

experiment (Section 8.1), for sites with only DG, much of the benefit of optimal 

control could be achieved simply by identifying which heuristic control strategy is 

best for the current month.  A set of heuristic control strategies that included no-DG, 

load-following, heat-following, and time-of-use variants of these strategies would be 
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ample for many situations.  From the author’s experience speaking with building 

managers, simply demonstrating the impact of strategy switching in response to 

changes in energy prices would be quite useful.  Additional research is required to 

ensure that improved heuristics are robust to the myriad energy consumption patterns, 

tariff structures, and energy price regimes that DG is in or might be in. 

 

RT-OPTICOM can be used as a screening tool to identify building types and 

locations that are best suited to IES.  For simple systems such as CHP, renewables, 

and/or energy storage, extent software tools such as those described in Section 3.3 

might be better suited, because they consider both the dispatch and investment 

optimization simultaneously.  However, these programs might not capture the detail 

necessary for more complicated situations such as complex tariff structures, 

curtailment and/or rescheduling opportunities, significant uncertainty in price, load, 

or equipment availability, real-time pricing, or combined cost and environmental 

objectives.  For these situations, RT-OPTICOM provides new potential for problem 

solving. 

 

11.2 RT-OPTICOM in the Field 

For more complicated IES, RT-OPTICOM could be used to directly control system 

equipment.  Building managers typically do not have the resources required to 

continuously monitor energy conditions and adjust dispatch accordingly.  However, 

more complicated IES tend to already be connected to an energy management system 
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– typically software, housed on a personal computer - that monitors energy 

consumption and HVAC operations.  A real-time optimization program such as RT-

OPTICOM could be tied into the energy management software or run in parallel on a 

neighboring personal computer, regularly providing suggestions or commands. 

 

For smaller sites, the added cost of implementing an automated, real-time controller 

might not outweigh the benefits provided by optimal control.  However, these 

implementations costs would not increase significantly with building (or load) size, 

and might be cost-effective for larger sites. 
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12. FUTURE WORK 

This section briefly discusses RT-OPTICOM IES algorithm improvements and 

research applications of immediate interest. 

 

12.1 Algorithm Improvement 

12.1.1 On/off Constraints 

Looking at the results in Section 8.1.3, one obvious improvement to the algorithm is a 

constraint on the number of starts and stops dispatched to a generator.  The results 

here show that there are often many starts and stops per day when exposed to real-

time prices.  This behavior would most likely cause increased maintenance costs, 

lower generator availability, and a shorter generator lifetime than anticipated.  An 

additional constraint, posed as a minimum allowable run time once a generator is 

turned on, could address this issue.   

 

Typically, frequent on/off switching suggests that there is not much difference in the 

objective function between the two solutions – it is anticipated that constraints on 

on/off switching would improve the practicality of dispatch solutions more than it 

would effect the objective function.  This additional constraint would, however, 

increase computation time because the decisions made in one time-step would be 

more closely coupled to those in adjacent time-steps. 
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12.1.2 Storage and Intermittent Resources 

An interesting application for RT-OPTICOM would be to examine IES comprised of 

wind or solar power and electrical storage.  Rising fossil fuel prices, public 

incentives, and improvements in storage technologies are renewable sources more 

economic.  The intermittency and non-coincidence of renewable power with site 

loads can justify the use of electrical storage.  The significantly stochastic nature of 

the renewable power would require significant hedging behavior on the part of the 

storage device, something that a spreadsheet analysis of the IES would not be able to 

capture.  RT-OPTICOM could be used to assess the value of storage for renewable 

systems, and thus to optimally size the storage.  In order to facilitate this, electrical 

storage would need to be added to the RT-OPTICOM IES model and a stochastic 

wind model would need to be obtained or developed. 

 

12.2 Research Applications 

12.2.1 Near-optimal Heuristic Control   

As discussed earlier, for simple IES situations, near-optimal heuristics could provide 

much of the benefit of optimal control, at less cost and complication.  An automated 

approach to analyzing RT-OPTICOM IES results and identifying heuristic control 

regimes could be developed, along with a method for assessing energy-situation 

inputs to determine which heuristic regime to dispatch the system in. 
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12.2.2 Scoping Studies of Building Types, Locations, and IES Designs 

The implications of the results of this research are quite limited because they only 

consider one building type and one (simple) IES design.  The RT-OPTICOM IES 

model could be used for more scoping studies of any of the parameters in the 

problem, especially building type, regional location, IES design, but also energy 

prices, tariff structure, DSM opportunities.  From the private perspective, these 

studies could be used to identify potential opportunities; for the public perspective, 

these studies could be used to inform policy where IES was of public interest. 
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Appendix A. UTILITY ELECTRICITY SYSTEM DISPATCH 

OPTIMIZATION AND COMPARISON TO INTEGRATED ENERGY 

SYSTEMS 

 

Vertically integrated electric utilities face a very similar optimization problem as 

integrated systems (IES) for buildings.  Utilities have many power plants and 

individual generators that they can dispatch at a given time to meet the immediate 

power demands of their customers.  Similarly, a site with IES has several energy 

resources (i.e. generators, storage, demand side management (DSM) opportunities) 

that must be dispatched to meet the power demand of the site.  Often, there is the 

opportunity to buy balancing energy from the utility and, in some cases, to sell excess 

energy as well.  Although of much different magnitudes, electricity production 

equipment for both electric utilities and IES are subject to ramping rates, minimum 

down-time constraints, variable maintenance costs, fixed-batch energy supplies (e.g. 

hydropower or limited supplies of NG or other fuel), and emissions restrictions.  Both 

problems must deal with uncertainty in load and in equipment availability, and real-

time dispatch optimization for both problems requires future planning.  

 

The utility dispatch problem, in its entirety, is enormous.  Optimal or near-optimal 

control of the system requires decision making on the order of minutes, over a 

timespan of a year or more (to include maintenance scheduling and the rationing of 

scarce resources), with uncertainty in demand and in 
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generator/transmission/distribution availability at every time-step.  To make the 

problem manageable, it is typically divided into three separate problems:  

• a planning problem for the day-to-day problem (over the course of months); 

• a unit commitment problem for the hour-to-hour problem (over the course of 

several days); and  

• a power flow problem for the minute-to-minute decisions (over the course of 

tens of minutes), to ensure that transmission lines are not overloaded, and to 

account for both real and reactive power demand. 

Using this multi-tiered dispatch strategy, the availability of units is determined 

through planning; the prioritization of dispatch of available units is determined 

through unit commitment; and fine-tuning of the system is done through power flow 

optimization. 

 

IES systems typically do not have much of a power flow problem to solve or monitor: 

Utility systems have a networked grid of generation and transmission equipment, 

leading to many control variables and safety checks (such as over-current on 

transmission lines) to apply, even after a particular set of generators is selected to 

operate.  IES systems, however, are typically fixed, configured radially rather than in 

a network, and sized for the maximum possible power-flow. 

 

IES systems do have problems similar to the unit commitment and planning problems 

of utility electricity systems.  IES systems may need to plan over an annual timescale 
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to meet minimum system efficiency requirements (an annual average) or maximum 

emissions caps and/or to best utilize scarce resources (such as a fixed volume fuel 

contract).  Planning for the IES problem is less complicated than for the utility scale 

problem, though, because fewer dispatchable units are involved. 

 

The unit commitment problem, however, is the stage of the utility electricity system 

dispatch optimization that is most similar to the IES dispatch optimization problem.  

Both require decisions on the order of an hour, and planning over many days.  Both 

are made difficult by their combinatorial enormity because of the integer nature of 

dispatch decisions to individual units, the varying cost and performance 

characteristics of various units, operational constraints on various units, and planning 

required over many time-steps. 

 

Differences Between Unit Commitment And IES Dispatch Optimization 

 

While unit commitment research and practice is helpful in developing the IES 

dispatch optimization problem, there are significant differences between the two 

which necessitate a different approach to a solution for each. 

 

The presence of demand charges for IES is one such difference from the unit 

commitment problem.  Electric utilities are subject primarily to the fixed and 

volumetric costs of production.  Planning is mostly required because of the ramping 

rates and minimum down-time constraints, which can each be on the order of hours to 
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days.  This explains the several-day timespan considered in unit commitment 

problems.  While IES equipment may be more rapidly dispatchable (the smaller size 

of generators necessitates start-up times of only a few minutes or less), demand 

charges, when significant, require planning over the entire month in order to 

determine optimal dispatch at the beginning of the month20,21.  Thus, while the IES 

problem has an order of magnitude fewer plants/equipment to dispatch (typically only 

a few), the combinatorial problem is similar to that of the unit commitment problem 

because planning is required over an order of magnitude more time-steps. 

 

The energy balance constraint for the two classes of problems is another significant 

difference: while the unit commitment problem only requires that electric power 

provided equals electric power supplied, the IES problem requires that several types 

of energy be balanced and over different timescales; electric end-use loads must be 

met instantaneously while heating and cooling loads must be met on the order of 

minutes (or more if significant thermal storage is present).  Furthermore, the supplies 

for these end-uses are not independent: electricity production may include 

recoverable thermal power as a byproduct, and cooling loads might be met by 

electric-driven compression chillers, natural-gas fired compression or absorption 

chillers, and/or thermally activated absorption chillers or desiccant dehumidifiers. 

 
                                                 
20 Note that the necessary timespan decreases as the end of the month approaches. 
21 As mentioned earlier, IES annual constraints, such as minimum system efficiency, 
or emissions caps, require planning over an entire year.  This long-range, low-detail 
planning is similar, although less complex, to the planning stage of utility electricity 
dispatch optimization. 
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A further complication for the IES problem is uncertainty in electric loads and 

generator availability.  Uncertainty in load of an aggregation of customers (i.e. the 

utility territory) is relatively small (on the order of a few percent) and fairly 

predictable by weather and time of day/year for a given region.  However, the load 

uncertainty of a single customer is much larger, where seemingly randomly occurring 

demand spikes or heavy consumption days may be 150% or more of the predicted 

load.  Unplanned outages are much more common in IES generators than in utility 

scale power plants because there is typically not a maintenance staff to nurse the IES 

generator; routine maintenance happens on the order of months to annually.   

 

For utility scale unit commitment, uncertainty in the size of electric demand and 

generator availability is handled by including reserves: generation units that can be 

dispatched on short notice in the event of either demand in excess of forecast or 

generator outage.  By selecting an appropriately large reserve margin, solutions to the 

unit commitment problem based on the assumption of deterministic loads and 100% 

generator/transmission reliability are adequate.  Because demand charges can be 

significant and yet minimum possible monthly utility demand is unknown22, hedging 

behavior is necessary for the IES system, whereas the utility electricity system can 

afford to view their problem deterministically. 

 

                                                 
22 The minimum possible monthly demand at a site is 

( ))()(max)( tSiteSupplytSiteLoadmonthandMinimumDem
montht

−=
∈

 

 yet neither the load nor supply are deterministically know. 
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Another difference between the two problems is how the energy balance between 

source and load are balanced: for the utility scale problem, load, for the most part, is 

not controlled: reserves are dispatched if power is needed in excess of planned 

resource.  The IES system energy balance consists of both source and more 

significant load control.  Dispatchable sources include on-site generation, utility 

purchase, and storage.  Dispatchable loads are those that are curtailable or 

reschedulable. 

 

A simplification of the IES problem over the unit commitment problem is that IES 

need not consider the line-overload checks, reliability and security checks, 

real/reactive power, and line loss details that necessitate the first tier of the utility 

problem (power flow modeling to optimize decisions for timespans on the order of 

minutes).  Also, the unit-commitment problem must consider units with very 

constrained and very different operational characteristics, e.g. nuclear, coal, gas 

turbine, and wind turbine.  Often, regulatory constraints restrict DG equipment from 

providing reactive power, sites with significant reactive power requirements typically 

have dynamic capacitor banks on-site to reduce the reactive power demand, and IES 

do not have multiple path opportunities, so that line losses are a fixed energy cost. 

 

While combinatorially similar in magnitude, the presence of demand charges, 

relevant uncertainty, a complicated set of energy balance constraints, and 

heterogeneous dispatch options to meet energy demand all make the IES dispatch 

problem different than the utility dispatch problem.  However, the identification and 
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mathematical description of generator operation and constraints in the unit 

commitment problem is useful in developing the IES dispatch optimization problem. 
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Appendix B. QUANTIFICATION OF DISCRETE FEASIBLE SOLUTIONS 

TO THE IES DISPATCH PROBLEM 

 

This appendix describes a counting exercise to illustrate the combinatorial enormity 

of integrated energy system dispatch problems. 

 

Generator Dispatch 

 

Because of the minimum load constraints on generators, a binary decision is 

necessary for  dispatch (generator on or off).  Over the course of N time-steps in the 

timespan of consideration (e.g. for the IES dispatch optimization problem, typically 

one month timespan in one hour time-steps = 720 time-steps in a 30 day month), a 

dispatch decision is made at each time-step.  If there are no constraints on minimum 

run time, then there are N independent binary decisions for each of G generators.  

There are then 2GN feasible generator solutions. 

 

Curtailment Dispatch 

 

To approximate the number of feasible curtailment schedules, consider a timespan 

(e.g. one month for our dispatch optimization problem), broken into N time-steps.  

Consider a site that will tolerate C curtailment episodes, each of duration, D 

(expressed in number of time-steps).  Assume that the site incurs no cost for 

curtailing, so that in each month the optimal solution will be to use all C curtailment 
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episodes.  How many feasible curtailment schedules are there?  A straightforward 

way to approach this counting exercise is to consider the gaps in between each 

episode, plus those prior to the first curtailment and subsequent to the last episode.  

There are C + 1 gaps, and their total value must add up to the time no curtailment is 

going on, i.e. N – CD.  If we call this sum A, then the following expression is the 

feasible number of curtailment schedules: 

∑∑ ∑
= = =+

+

=
A

1i

i

1i

i

1i
1

1C

1C

C

2

1

irtSolnsFeasibleCu L  (50)

 

A second order approximation of this expression is:  

( ) ( ) )O(A
!1C

A
2
1

!1C
ArtSolnsFeasibleCu 1C

C1C
−

+

+
−

+
+

=  (51)

 

Note that if a site is not constrained to use all of its curtailment episodes, even more 

solutions are possible. 

 

Total Feasible Discrete Solution Sets 

 

The total number of discrete feasible solution sets is then the product of feasible 

solution sets for generator dispatch and for curtailment dispatch. 
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Table 23 shows the approximate number of feasible solution sets for several basic 

scenarios, assuming one-hour time-steps over the course of a 30 day month.  Clearly, 

the number of feasible solution sets for even the smallest IES problem is too large for 

enumerative searches. 

Table 23. approximate number of feasible solution sets for month long optimization 
with hourly time-steps 
Number of Generators 1 3 0 1 

Number of Allowable 

Curtailment Episodes 

(episodes/month) 

0 0 5 5 

Duration of Curtailment 

Episodes  (time-

steps/episode) 

N/A N/A 1 1 

Number of Feasible 

Solution Sets 
2720=6x10216 22160=2x10650 247=2x1014 2767=1x10231
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Appendix C. STOCHASTIC MODEL OF REAL-TIME ELECTRICITY 

PRICES 

 

For this research, a stochastic model of electricity spot market clearing prices that 

could be calibrated to historic clearing prices was required.  A standard model for 

stochastic commodity prices (especially extremely perishable commodities, such as 

electricity) is mean-reverting Brownian motion.  In other words, prices are subject to 

random volatility over time which can be approximated as Brownian motion (i.e. a 

Wiener process) with a tendency for prices to return to their long term expected level.  

Equation (53) describes this model. 

( )( ) σdWdtPrice(t)θκdPrice(t) +−=  (53)

where 

• Price is the current electricity clearing price 

• κ is the mean reversion coefficient 

• θ is the long term mean electricity clearing price 

• σ is the volatility rate 

• t is the current time 

• W is a Wiener process, i.e. Wt2 – Wt1 ~Ν(0,t2-t1) 

 

This is a simplified version of the model described in Deng (2000): a mean reversion 

model that includes a term for influencing factor (such as natural gas price in the case 

of electricity price modeling), random jumps (to mimic price spikes), and time-
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varying volatility.  The more complete Deng model was beyond the scope of this first 

cut at the research topic.  However, the inclusion of price-spikes in future work would 

be useful, especially for larger sites where the ratio of cost-savings-potential to 

controls/intelligence costs is greater.  

 

As a substitute for including an influencing factor, θ was a temperature-adjusted 

historic average clearing price for the particular time of day, day-type (weekday or 

weekend) and month, using the model described in Equation (54).  This modification 

accounts for daily, seasonal, and climactic trends in prices that are not stochastic.   

µβββθ +++= CDHD hdtmhdtmhdtmhdtm 2,,,1,,,0,,,,,  
(54)

where 

• m is the month {1,2,…,12} 

• dt is the day-type {weekday,weekend} 

• h is the hour {1,2,…,24}  

• θ is the temperature-adjusted historic average clearning price 

• HD are the heating degrees (maximum(0, 65 - temperature)) at the current 

hour 

• CD are the cooling degrees (maximum(0, temperature - 65)) at the current 

hour 

• β are the linear coefficients of the variables 
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For this research, a discrete mean reversion model was derived from Equation (53). 

( )( ) σ∆W∆tPrice(t)1)θ(tκPrice(t)-1)Price(t +−+=+  (55)

Where ∆t is a one hour time-step, and thus ∆W ~Ν(0,1).   

 

This model assumes that real-time clearing prices are independent of the site’s 

purchase behavior.  This assumption is valid because the site’s demand (~2 MW) is 

miniscule relative to the system (10’s of GW).  However, if a significant portion of 

loads on the system contained price responsive DG, a more sophisticated model of 

clearing prices dependent on demand would be necessary. 

 

For each of the four cities, the following procedure was used to determine the θ ,κ, 

and σ: 

1. Historic clearing price data from 2004 to 2006 were collected from the 

following sources: 

a. Baltimore – PJM Baltimore Gas and Electric zone, Suez Energy 

Resources NA (2007) 

b. Boston – ISO-NE Northeast Massachusetts and Boston zone, ISO-NE 

(2007) 

c. Houston – ERCOT Houston zone, ERCOT (2007) 

d. San Diego – CAISO zone SP-15, CAISO (2007) 

2. Historic temperature data from 1961 to 1970 and from 2004 to 2006 were 

collected from Weather Underground (2007). 
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3. An ordinary least squares (OLS) regression on Equation (54) was performed 

for each hour of each day-type (weekday, weekend) of each month, using the 

2004 – 2006 clearing price and temperature data. 

4. An ordinary least squares regression of the historic data on Equation (55) was 

performed to obtain κ and σ; κ being the beta coefficient of θ(t+1) – Price(t), 

and σ being the standard deviation of the error term.  The minimum and 

maximum values of the error term were also noted. 

In order to develop the stochastic scenarios, temperature data from the years 1961-

1970 were used.  Successive hourly clearing prices were stochastically generated 

using Equation (55).  Values of ∆W were drawn randomly from a normal distribution 

with mean of zero and variance of one.  Values of σ ∆W were truncated at the 

maximum and minimum values of the error term from the results of the regression on 

Equation (55).  Negative clearing prices were adjusted to zero. 
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Appendix D. ANNUAL ENERGY COSTS AND SAVINGS OVER NO-DG 

CASE 

Figure 101 - Figure 124 are more detailed results from Section 8.1.2.   They show the 

annual energy costs and savings over no-DG case for all cities (Baltimore, Boston, 

Houston, and San Diego) in all years (2004 – 2006) under all tariffs (TOU, CPP, and 

RTP) and all control strategies (no-DG, load-follow, heat-follow, and optimal). 
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Figure 101. Baltimore – TOU – annual 
energy costs under all control strategies 
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Figure 102. Baltimore – TOU – annual 
savings over no-DG case under all other 
control strategies 
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Figure 103. Baltimore – CPP – annual 
energy costs under all control strategies 
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Figure 104. Baltimore – CPP – annual 
savings over no-DG case under all other 
control strategies 
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Figure 105. Baltimore – RTP – annual 
energy costs under all control strategies 
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Figure 106. Baltimore – RTP – annual 
savings over no-DG case under all other 
control strategies 
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Figure 107. Boston – TOU – annual 
energy costs under all control strategies 

-300
-200
-100

0
100
200
300
400
500

2004 2005 2006

year

an
nu

al
 s

av
in

gs
 o

ve
r n

o-
D

G
   

   
  (

k$
)

load-follow heat-follow optimal

Figure 108. Boston – TOU – annual 
savings over no-DG case under all other 
control strategies 
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Figure 109. Boston – CPP – annual 
energy costs under all control strategies 
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Figure 110. Boston – CPP – annual 
savings over no-DG case under all other 
control strategies 
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Figure 111. Boston – RTP – annual 
energy costs under all control strategies 
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Figure 112. Boston – RTP – annual 
savings over no-DG case under all other 
control strategies 
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Figure 113. Houston – TOU – annual 
energy costs under all control strategies 
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Figure 114. Houston – TOU – annual 
savings over no-DG case under all other 
control strategies 
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Figure 115. Houston – CPP – annual 
energy costs under all control strategies 
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Figure 116. Houston – CPP – annual 
savings over no-DG case under all other 
control strategies 
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Figure 117. Houston – RTP – annual 
energy costs under all control strategies 
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Figure 118. Houston – RTP – annual 
savings over no-DG case under all other 
control strategies 

 

0

0.5

1

1.5

2

2.5

2004 2005 2006
year

an
nu

al
 c

os
t (

M
$)

no DG load-follow heat-follow optimal

 

Figure 119. San Diego – TOU – annual 
energy costs under all control strategies 
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Figure 120. San Diego – TOU – annual 
savings over no-DG case under all other 
control strategies 
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Figure 121. San Diego – CPP – annual 
energy costs under all control strategies 
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Figure 122. San Diego – CPP – annual 
savings over no-DG case under all other 
control strategies 
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Figure 123. San Diego – RTP – annual 
energy costs under all control strategies 
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Figure 124. San Diego – RTP – annual 
savings over no-DG case under all other 
control strategies 
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Appendix E. PROGRAMMING PLATFORM 

 

The RT-OPTICOM program was written as a mixed integer linear program (MILP) in 

the General Algebraic Modeling System (GAMS).  GAMS is a commercial 

programming platform for optimization problems.  The CPLEX solver is used to 

solve the program.  CPLEX is widely regarded as a particularly fast, robust MILP 

solver. 

 

Matlab was used to automate the process of writing the data sections of GAMS code 

for the various RT-OPTICOM runs, and to collect and process the results after 

GAMS execution.  The results in this paper represent more than 15,000 individual 

executions of the RT-OPTICOM program.  Matlab was also used to process much of 

the data that were eventually turned into input for RT-OPTICOM.  The Matlab and 

GAMS code developed by Ferris (2005) enabled Matlab to be used as the interface to 

GAMS – initiating the execution of individual RT-OPTICOM runs and storing 

results. 

 

Microsoft Excel was used for the remainder of data processing. 

 

The majority of RT-OPTICOM runs were done on two desktop computers, each 

containing an Intel Pentium 4 3.39 GHz CPU and 1.98 GB of RAM.  Estimation runs 

typically took from 15 seconds to 5 minutes.  Estimation runs only run for the first 

two hours of the month being simulated, and then use the average values from the 
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scenarios to predict cost, consumption, and emissions data.  Full runs, which include 

successive optimizations at each of the 720 hours of the month, took several minutes 

to several hours to run.  Full runs would be adequate for RT-OPTICOM if it were 

being used as a real-time controller, in which case a decision would only be required 

hourly.  However, for this research, requiring so many thousands of program runs, 

only the estimation runs could be used.  

 


