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1. ABSTRACT 
We analyzed the ASHRAE Global Thermal Comfort Database II to answer a fundamental but overlooked question in thermal 
comfort studies: how many and which subjective metrics should be used for the assessment of the occupants’ thermal experience. 
We found that the thermal sensation is the most frequently used metrics in Thermal Comfort Database II, followed by thermal 
preference, comfort and acceptability. The thermal sensation/thermal preference, thermal comfort/air movement acceptability and 
thermal comfort/thermal preference are the top three most dependent metrics pairs. A principal component analysis confirmed that 
the personal experience of thermal conditions in built environment is not a one-dimensional problem, but at least a two-
dimensional problem, and suggested thermal sensation and thermal comfort should be asked in right-now surveys as the first two 
Principal Component are majorly constructed by thermal sensation and thermal comfort. To further confirm the predictive 
power of thermal sensation and comfort, we used logistic regression and support vector machine to predict thermal acceptability 
and thermal preference with thermal sensation and comfort. The prediction accuracy is 87% for thermal acceptability and 64% for 
thermal preference. The prediction error might be due to occupants’ individual difference and people errors in answering survey. 
These findings could help the design of chamber experiments, field studies, and human-building interaction interfaces by shedding 
light on the choice of subjective thermal metrics to effectively and accurately collect information on occupants’ thermal 
experience. 
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Abbreviations 

 
ASHRAE The American Society of Heating, Refrigerating and Air-Conditioning Engineers 

DC Distance Correlation 

HVAC Heating, Ventilation, and Air Conditioning 
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LR Logistic Regression 

PC 

PC Principal Component 

PCA Principal Component Analysis 

PMV Predicted Mean Vote 

POE Post Occupancy Evaluation 

RF Random Forest 

SET Standard Effective Temperature 

SVM Support Vector Machine 

TA Thermal acceptability 

TC Thermal comfort 

TP Thermal preference 

TS Thermal sensation 
 
 

2. Introduction 
The building sector is a significant energy consumer and carbon emitter, consuming 40% of the total energy usage in the US and 
UK [1], [2], and is responsible for around one third of greenhouse gas emissions globally [3]. In buildings, a substantial proportion 
of energy is consumed to maintain comfortable and desirable indoor thermal environment. For instance, in commercial buildings, 
around 40% of energy is consumed by HVAC systems [4]. 

 
Despite the huge amount of energy consumed by building [1-4], high thermal discomfort is present. A recent field study on 3892 
respondents from 60 office buildings in the US found that: around 40% of respondents were dissatisfied with the thermal 
environment [5], way above the 20% target satisfaction rate specified in ASHRAE standard 55 [6]. As for the causes of the low 
satisfaction rate, the frequently identified overcooling or overheating problems in variant building types (airport terminals [7], [8], 
hospitals [9], and office buildings [10]) indicate actually we consume more energy than we need but still did not achieve our 
comfort target. 

 
Shifting our control goal from physical parameters to subjective responses might be a solution to improve thermal comfort without 
necessarily increasing energy consumption. For example, the occupancy responsive control that takes occupants’ subjective 
response into the control loop has attracted the interests of researchers, device manufactories, and building operators. Compared 
with the conventional way to maintain the indoor temperature and humidity within a fixed pre-set range regulated or suggested by 
building standards, the occupancy responsive control collect occupants’ real-time responses on the thermal environment and then 
adjust the control target settings accordingly. Integrating occupants’ thermal responses, such as hot/cold complaints [11], online 
thermal votes [12] and etc., has demonstrated the potential to enhance thermal comfort while save energy as much as 20% - 40% 
in office settings [13], [14]. 

 
 

2.1 Thermal comfort metrics 
The first question to use occupant feedback to control the building is which metric should be used to quantify the subjective 
responses, because it is impossible to manage something that you cannot measure. To be more specific, how many and which 
thermal comfort metrics should be used to collect occupants’ evaluations on the thermal environment. Thermal sensation, thermal 
comfort, thermal acceptability, thermal preference, thermal satisfaction are commonly used to assess different perspectives of the 
personal experience of thermal conditions in built environments [15]. 
 Thermal sensation metrics has been widely used in subjective thermal comfort studies [16]. Thermal sensation is considered 

to be “objective” compared with other metrics, due to its direct association with physical measurements (Temperature) and 
PMV models. The thermal neutrality is assumed to be the goal for built environment engineering. 

 Thermal comfort and thermal acceptability are frequently used both in chamber experiments and field studies. These two 

Pearson Correlation 



metrics are more “subjective” than thermal sensation. You might feel the thermal environment is comfortable or acceptable 
even if it is not neutral. Previous study confirmed that the thermal acceptability has a lower threshold than thermal comfort 
since you might not feel comfortable but can still accept the environment [17],[18]. 

 Thermal satisfaction is often used in Post Occupancy Evaluation (POE). Unlike other metrics more focus on the thermal 
experience of an individual, the thermal satisfaction (rate) is more frequently used to evaluate the overall thermal 
environment of a building. 

 Thermal preference directly measures how would you prefer to adjust the thermal environment if you had the control. 
Therefore, thermal preference has a wide application in personalized human-in-the-loop HVAC control systems [19]. 

Broadly speaking, the five metrics could be classified into two categories. Thermal  sensation and thermal preference are 
symmetrical index which could distinguish between cold and hot. However, thermal comfort, thermal satisfaction and thermal 
acceptability are asymmetrical and not able to provide any information to the HVAC system regarding the action that it should 
take (heating or cooling). 

 
Though the five metrics mentioned above are proposed for different research purposes, there is no doubt that the five subjective 
thermal comfort metrics mentioned above are correlated with each other. It might be unnecessary to ask all those five questions in 
either chamber experiments or field studies, because we do not want to collect redundant information at the risk of fatiguing 
subjects, especially in some cases that occupants are repeatedly and frequently asked to answer the survey. Therefore, a key 
research question is which metrics should be used to measure the personal thermal experience in built environments so that we 
could collect adequate information to assess the occupants’ thermal experience while not disturbing the occupants too much. 
Actually, this is a fundamental question in thermal comfort experiments, field tests and building thermal environment management, 
which has not been clearly answered. 

 
 

2.2 Methods for thermal comfort studies 
A major goal of thermal comfort studies is to find out how the ambient thermal environment would influence occupants’ thermal 
perception. To achieve this goal, different research methodologies have been utilized. The Predicted Mean Vote (PMV) and 
Standard Effective Temperature (SET) are built on the physics-based heat balance and transfer model. Additionally, regression 
techniques are also used to map the subjective thermal comfort metrics to the measured physical conditions at the same time. 
Linear/polynomial univariate/multivariate regression and logistics regression are the mathematical tools we commonly used to 
identify the relationship between physical environments and subjective perceptions. For instance, the Thermal Adaptive Model 
was built upon regression techniques. 

 
In addition to the above two conventional methods, more complicated machine learning approaches could also be used to map 
subjective responses to physical environment and to identify hidden trends. The machine learning techniques are actually more 
powerful than regression tools in capturing non-standard non-linear relations between independent and dependent variables. 
Random Forest [20], Support Vector Machine [21], Neural Network [22], Bayesian network [23], [24], [25], [26], Gaussian 
Process Classification [27], have been utilized in thermal comfort studies to predict thermal sensation [21], [23], thermal comfort 
[25], [22], thermal acceptability [27], and thermal preference [20], [24]. 

 
A key challenge hinders the application of machine learning approach is there are so many different algorithms and it is hard to 
decide which one should be chosen for a specific problem. Kim et al. [15] compared 6 widely used algorithm including 
Classification Tree, Gaussian Process Classification, Gradient Boosting Method, Support Vector Machine, Random Forest and 
Regularized Logistic Regression in the prediction of thermal preference. The prediction accuracy difference of the best (RF) and 
the worst (CTree) algorithm is only 10%. And the prediction accuracy difference of top three algorithms (RF, SVM, regLR) is 
within 1%. Actually, a pioneer research [28] in the field of machine learning has pointed out that different machine learning 
algorithms have marginal performance differences in terms of prediction accuracy once the algorithms are properly applied 
(choose the right algorithm for a specific problem, and properly tune the hyperparameters). What really matters is the sample size 
of the training set, especially in thermal comfort studies, the typical sample size of which is only on the scale between 100 and 
1000, less than enough for the training and testing of machine learning algorithms. 



 
2.3 ASHRAE Global Thermal Comfort Database II 
The ASHRAE Global Thermal Comfort Database II, as an international collaboration led by University of California at Berkeley 
and University of Sydney, aims to advance thermal comfort studies by integrating and harmonizing the abundant data from 
worldwide thermal comfort studies [29]. As a successor work of the ASHRAE Thermal Comfort Database I [30], Thermal 
Comfort Database II collected data from research published in the past two decades since the releasing of Database I in late 1990s. 

 
Several criteria on the data selection have been used for the development of the database [29], including: 1) data should come 
from field tests rather than chamber experiments; 2) both physical indoor climatic observations and ‘right-now-right-here’ 
subjective evaluations should be measured; 3) raw data rather than processed should be provided. 

 
Currently, 81846 data points from 52 field studies conducted in 160 buildings are included and open-sourced in Comfort Database. 
ASHRAE Global Thermal Comfort Database recorded 68 attributes, covering subjective thermal comfort vote, objective physical 
measurement, building characteristics, demographic information of subjects, and local climate/weather condition [29]. Those field 
studies were conducted in 28 countries globally, both developing and developed countries were included. This combined dataset, 
with the largest sample size in this field, provides a unique opportunity to leverage the emerging technique of machine learning to 
address some fundamental questions in the field of thermal comfort. As the dataset is fully open-sourced, the results could be 
reproduced by other researchers. 

 
 

2.4 Objectives 
This paper aims to explore a fundamental but overlooked question in thermal comfort studies: the dimensions of subjective 
thermal metrics, to be more specific, how could we measure the subjective thermal experience with as few questions as possible? 
An affirmative answer would indicate a chance to collect adequate information to assess the occupants’ thermal experience 
without asking all of the thermal sensation, comfort, acceptability and preference questions. This would be beneficial since we 
could ask fewer questions in the survey and avoid the risk of fatiguing the subjects. To achieve this research objective, the 
following three research questions are proposed: 

• What is the minimum number of questions should be asked to collect adequate information for the assessment of the 
occupants’ thermal experience? 

• Which subjective thermal comfort metrics need to be asked in thermal comfort surveys? 
• Could we use the collected thermal comfort metrics to predict the unasked/unknown ones? What is the accuracy of this 

prediction? 

 
To answer the above questions, a three-step work flow has been proposed, as shown in Figure 1. We first examined all the 52 
studies listed in ASHRAE Global Thermal Comfort Database to see which comfort metrics are most widely used and how this 
popularity varies in different times and in different building type setting (Section 2.1). Then we used the tools of correlation 
matrix (Section 2.2) and principal component analysis (PCA) (Section 2.3) to quantify the dimensions and to select the metrics. 
The idea is we want to keep those metrics that are not correlated and could explain the largest possible variance of observed 
thermal experiences. The final step is we want to validate the selected metrics by checking if we could use them to predict the 
unknown thermal metrics (Section 3). We tried two widely used machine learning algorithms - logistic regression and support 
vector machine (SVM) to do this validation. Then we would discuss the influence of anomalies (Section 4.1) and compare the 
logistic regression with SVM approach (Section 4.2) in Section 4. This paper will be concluded in Section 5. 

 
Findings of this paper could help the design of chamber experiments, field studies, and human-building interaction interfaces by 
shedding light on which thermal comfort metrics should be used in subjective thermal comfort surveys. 



 

 
 

(a) Usage of subjective thermal metrics in DBI and DBII 

Figure 1 Work flow of this study 

2. Metrics Selection 
 
2.1 Metrics used in thermal comfort studies 
Before deciding which subjective thermal metrics should be used, it is helpful to review which metrics are being used in current 
field studies. As shown in Figure1, six subjective thermal metrics, thermal sensation, thermal comfort, thermal acceptability, 
thermal preference, air movement acceptability, air movement preference are recorded in Thermal Comfort Database I and 
Thermal Comfort Database II. Another commonly used metrics, thermal satisfaction has not been included. Though PMV does not 
belong to the subjective metrics, it is presented in Figure 2 as a comparison. 



 

 

(b) Usage of subjective thermal metrics in different building types1 

Figure 2 Usage percentage of thermal comfort metrics 

 
Since Thermal Comfort Database I was released in 1998 while Thermal Comfort Database II was released very recently in 2018, 
exploring and comparing the popularity of subjective thermal metrics in Database I and Database II could give us a hint about the 
evolution of thermal comfort studies by comparing what thermal comfort researchers focusing on adaptive comfort research care 
about most now and two decades ago. It is obvious from Figure 2 that thermal sensation is the most widely used subjective 
thermal metrics, almost all thermal comfort field studies retrieved by Thermal Comfort Database I and Database II collected 
occupants’ thermal sensation. Thermal preference is the second most popular metrics; however, within this database becomes less 
popular now compared with 20 years ago. Around half of studies asked thermal comfort and thermal preference in their surveys. 
Thermal acceptability becomes 10% more popular compared with two decades ago. The two air movement metrics are less 
frequently used in field studies. 

 
It is interesting to find that the most marked change between Database II and Database I is the popularity of PMV. More than 80% 
of studies in Database I measured PMV. 20 years later, less than 40% studies in Database II collected PMV. 20 years ago, Fanger’s 
heat balance-based PMV-PPD model dominated thermal comfort studies. As a result, almost all thermal comfort field studies 
measured PMV [31]. However, Richard de Dear and Gail Brager proposed thermal adaptive model by analyzing the data of 
Database I, starting to shift the paradigm in thermal comfort studies [32], [33]. This paradigm shift was clearly reflected in the 
popularity of PMV in thermal comfort studies. 

 
Figure 2(b) compared the usage percentage of subjective thermal metrics in different building types. We found that more 
subjective thermal responses were collected in classrooms and office buildings than in residential, confirming the challenge of 
collecting data in residential buildings since residential are considered as private spaces and subjects are not as cooperative to 
answer the survey as when they are in office buildings. One strategy to collect more data from residential buildings is to reduce 
the number of questions and make the survey as short as possible, which is exactly the research purpose of this paper. 

 
 

2.2 Correlation Matrix 
The second step to choose which subjective comfort metrics should be included in the survey is to investigate the correlation 
between different metrics. If two metrics are linearly correlated, then one of them could be removed to simplify the survey. For the 
feature selection purpose, two index were used to quantify the correlation between metrics, the Pearson Correlation Coefficients 
and the Distance Correlation Coefficients, as shown in Figure 3(a) and Figure 3(b) respectively. The Pearson Correlation (PC) 
Coefficients vary from -1 to +1, with 0 meaning not correlated. The Distance Correlation (DC) Coefficients vary from 0 to 1, with 
0 indicating the two variables are independent. It should be noted that the Pearson Correlation Coefficients only measures the 

 
 

1  There are five building types included in ASHRAE Database I and Database II, Classroom, office, Residential, Senior Center, 
and others. Since there are only 2 studies investigated Senior Center, the Senior Center was reclassified into others in Figure 2(b). 



linear relationship between two variables. Therefore, a meaningful relationship can exist even if the Pearson Correlation 
Coefficients are close to zero, for instance, thermal sensation and thermal comfort in Figure 3(a). However, a non-zero (especially 
above 0.5 or below -0.5) Pearson Correlation Coefficients demonstrate a strong linear relation between two variables, indicating 
that we could only use one of these variables as predictor. In this regard, the air movement acceptability and preference would be 
excluded from further analysis for two reasons. First, air movement acceptability is highly linearly correlated with thermal 
comfort (0.518) and air movement preference is highly correlated with thermal sensation (0.338) and thermal preference (-0.370). 
Second, the missing rates of air movement acceptability and preference are high in the Comfort Database. Only a few researches 
collected these two metrics. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Pearson Correlation Coefficients (b)Distance Correlation Coefficients 
Figure 3 Usage percentage of thermal comfort metrics 

 
Both the Pearson and Distance Correlation Matrix indicates highest correlations between pairs of thermal sensation/thermal 
preference (PC: -0.64, DC: 0.57), thermal comfort/air movement acceptability (PC: 0.52, DC: 0.51), thermal comfort/thermal 
preference (PC: 0.48, DC: 0.47). The correlation coefficients between PMV and all the six subjective thermal metrics are 
surprisingly low (less than 0.2), confirming the importance of using the subjective thermal metrics, rather than the physical 
parameters alone, in the HVAC control. Since the physical parameters, such as PMV2, might not be able to reflect occupants’ 
experience of thermal conditions. 

 
 

2.3 Principal Component Analysis 
Principal Component Analysis (PCA) is a well-developed dimension reduction technique, which has extensive applications in 
fields such as video compression, feature selection etc. The key idea of PCA is to map high-dimensional observations/samples into 
another space with fewer dimensions but still could explain the largest possible variances of the observations. 

 
For the purpose of metrics selection, only four subjective thermal metrics (thermal sensation, comfort, acceptability and 
preference) were included in the PCA and the prediction task presented in the next Section. We removed he air movement 
preference and acceptability from the PCA for two reasons. First, Figure 3 has shown that the air movement preference has a high 
dependence with thermal sensation (PC: 0.34; DC: 0.32) and thermal preference (PC: -0.37; DC:0.35), while the air movement 
acceptability has a high dependence with thermal comfort (PC: 0.52; DC:0.51), and thermal acceptability (PC: 0.32; DC: 0.32). 
The high dependence means the information reflected by air movement preference and acceptability could be explained and 

 
 

2 PMV is calculated from six measured or estimated physical parameters - air temperature, radiation temperature, humidity, air 
speed, metabolic rate, and clothing. PMV might also be influenced by psychophysiology factors because psychophysiology 
factors, such as adaptive behaviors, might influence metabolic rate and clothing [34]. 



predicted by the other four metrics. The second reason is as shown in Figure 2, air movement acceptability and preference were 
not widely used in the current thermal comfort studies; and had a high missing rate in the current thermal comfort database. If air 
movement acceptability and preference were included in the PCA and prediction tasks, the sample size would be reduced by 40%. 
As we’ve discussed, a large sample size is critical for the application of machine learning approach. 

 
Table 1 presented the result of PCA. The first and second Principal components could explain 49.3% and 36.3% of the total 
variance respectively, indicating that it is possible to explain occupants’ experience of thermal conditions with two variables 
without worrying too much about the loss of useful information, since the first and second Principal Components alone could 
retain 85% of variance. Table 1 recorded how each Principal components is constituted from the original four attributes. We found 
that the first and second Principal Components are majorly spanned by the thermal sensation and thermal comfort, while PC3 and 
PC4 are majorly constructed from thermal preference and thermal acceptability respectively. 

 
Table 1 PCA results 

 

 Explained 
Variance 

Thermal sensation Thermal comfort Thermal 
acceptability 

Thermal preference 

PC13
 49.3% 0.63 -0.75 -0.12 -0.17 

PC2 36.3% -0.74 -0.65 -0.04 0.15 
PC3 10.6% 0.23 -0.02 -0.10 0.97 
PC4 4.8% -0.07 0.11 -0.99 -0.09 

 
As a brief summary of this Section, two conclusions could be drawn from the Principal Component Analysis, which answered the 
first two research questions proposed in Section 1.4. 

• At least 2 questions should be asked to collect adequate information for the assessment of the occupants’ thermal 
experience. If only one question is asked, then 50% of information would be missing. If two questions are asked, 85% of 
information could be retained. Our PCA confirmed Schweiker et al. (2016)’s finding that the personal experience of 
thermal conditions in built environment is not a one-dimensional problem [16], but at least a two-dimensional problem, 
one quantifies the physiological factor, and the other quantifies the psychological factor. 

• Thermal sensation and thermal comfort should be asked in order to collect as much information as possible if only two 
questions were asked, since the first and second Principal components are majorly constructed by the thermal sensation 
and thermal comfort, rather than thermal acceptability and thermal preference. We acknowledge that different thermal 
metrics have different uses, for instance the thermal preference might be very useful in occupant responsive control. The 
choice of metrics highly depends on the research purpose. But in general, the metrics of thermal sensation and thermal 
comfort are more recommended since these two metrics could provide more information than other metrics. 

As we’ve discussed in Section 1.1, subjective thermal metrics could be divided into two categories, symmetrical and asymmetrical. 
The symmetrical metrics could distinguish between cold and hot. While the asymmetrical metrics are not able to provide any 
information on whether the occupants’ thermal experience could be improved by increasing or decreasing the indoor temperature. 
The two metrics we chose - thermal sensation and thermal comfort - belongs to the symmetrical and asymmetrical metrics 
respectively. By collecting thermal sensation and thermal comfort together, we could know both the direction and the scale of the 
change they desire. 

 
 

3. Prediction with thermal sensation and comfort 
To further prove that it is adequate to ask only thermal sensation and thermal comfort in surveys, we need to be able to use 
thermal sensation and comfort to accurately predict other subjective thermal metrics that have not been collected. In this section, 
we will apply a conventional logistic regression method and a widely used machine learning technique, i.e. Support Vector 
Machine, to predict thermal acceptability and preference. 

 
 

 

3  Principal components are linear combination of the original metrics; the coefficients are listed in the Table. For instance, PC1 = 
0.63*TS – 0.75*TC – 0.12*TA – 0.17*TP 



10-fold cross validation has been utilized to evaluate the two methods. We would randomly divide the whole dataset into 10 
subsets. Each time, 9 sets will be used as the training set and 1 set will be used as the test set. We repeat this process for 10 times 
until each set has been used as the test set for once, and report the average accuracy as an evaluation of the model’s predictive 
power. 

 
To predict thermal acceptability and preference with thermal sensation and comfort, it is required that all the four subjective 
thermal metrics have been collected. In Thermal Comfort Database I and Database II, there are 107583 records in total, 25616 
from Database I and 81967 from Database II. Among the more than 107 thousand records, there are 16795 data points having 
collected all the four thermal metrics. We use those 16795 data points in the analysis of this Section. 

3.1 Predicting thermal acceptability 
It is a common practice to conduct exploratory data analysis before applying more complicated algorithms as shown in Figure 4, 
which presents a reasonable trend that the acceptability rate will increase with the thermal sensation approaching neutrality and 
the thermal comfort level raising. 

 

 
 

(b)  by thermal comfort 
Figure 4 Histogram of thermal acceptability: blue (1.0) for acceptable, red (0.0) for unacceptable 

 

In logistic regression, we need to manually select the features to be input into the classifier. We tried different combinations of 
features due to the curiosity in two aspects: first, could we improve the model accuracy by introducing non-linear term, for 
instance TS squared or TC squared; second, could we improve the model accuracy by adding the feature of PMV or using PMV to 
replace TC or TS. 

 
As shown in Table 2 that adding TS2 is more helpful to improve accuracy than adding TC2, indicating that with thermal sensation 

(a)  by thermal sensation 



departing from the neutrality, approaching either cold or hot, subjects would feel the thermal environment unacceptable at an 
accelerating rate. As a contrary, the relation between thermal acceptability and comfort is more linear. 

 
Additionally, adding PMV is not effective to enhance model’s predictability. For the purpose of predicting thermal acceptability, it 
is not necessary to collect PMV in addition to collecting thermal sensation and thermal comfort, especially considering how 
complicated the work is to collect PMV, which requires measuring or estimating clothing, metabolic rate and etc. 

 
In SVM, the kernel term would automatically depict the non-linear behavior. Therefore, we do not need to manually select the 
non-linear combinations of features when implementing SVM, and this is considered as one of the merits of SVM. As for the 
predicting power, logistic regression and SVM have similar accuracy (85.7% for logistic regression vs. 87.4% for SVM). 

 
Table 2 Prediction performance with different input features 

 

Input features Performance metrics 
Accuracy Precision Recall F1-score 

TS, TC 83% 81% 77% 78% 
TS, TC, TS2

 86% 84% 81% 82% 
TS, TC, TC2

 85% 84% 74% 77% 
TS, TC, TS2, TC2

 86% 84% 81% 82% 
TS, PMV 84% 77% 69% 72% 
TC, PMV 84% 83% 77% 79% 
TS, TC, PMV 84% 82% 77% 79% 

 
Figure 5 outlined the decision boundary predicted by logistic regression and SVM. The two classifiers give the same prediction 
when subjects are neutral-comfortable (middle top region) and nonneutral-uncomfortable (peripheral bottom region), while give 
opposite predictions when subjects feel neutral-uncomfortable (middle bottom region) or nonneutral-comfortable (peripheral top 
region). Actually, individual difference in thermal comfort was observed in the conflicting area (middle bottom region and 
peripheral top region). In this region, subjects with similar thermal sensation and comfort vote, vote differently in thermal 
acceptability. This inter-individual variability could not be explained by thermal sensation and comfort. Some meaningful 
information, which might be relevant to subjects’ individual preference, is missed. We could not predict the thermal acceptability 
by asking thermal sensation and comfort only in the survey. PCA actually quantifies the proportion of this variety, which is around 
15% of the total variance. 

 

 
(a) Logistic regression (prediction accuracy: 85.7%) 



 

 
(b) Support Vector Machine (prediction accuracy: 87.4%) 
Figure 5 Prediction boundary of thermal acceptability 

 
The last thing worthy to be pointed out is the shape of decision boundary. The logistic regression presents a decision boundary 
with a more regular shape, which is because the equation form in the logistic regression is a binomial which is pre-defined and 
regularly-shaped. While the decision boundary given by SVM is much more irregular and difficult to interpret. From the 
perspective of model interpretation, logistic regression outperforms SVM. 

 
 
3.2 Predicting thermal preference 
Again, we start with exploratory analysis by drawing the histogram. Figure 6 identifies a clear trend of higher percentage of 
subjects preferring “no change” when the thermal sensation is close to neutral and the thermal comfort level is high. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) by thermal sensation 



 

 
 

(b) by thermal comfort 
Figure 6 Histogram of thermal preference 

 
Similar to the case of predicting thermal acceptability, we included TS, TC, and TS2 in the logistic regression to depict the 
non-linear influence of thermal sensation, which is not need in the implementation of SVM. The average accuracy of 10-fold cross 
validation of logistic regression is 63.4%, which is very similar to that of SVM (63.9%). It is not a surprise that the accuracy to 
predict thermal preference would be lower than the accuracy to predict thermal acceptability. Since there are three outcomes 
(prefer cooler, no change, and prefer warmer) in thermal preference prediction, rather than only two in thermal acceptability 
prediction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Logistic regression (prediction accuracy: 63.4%) 
 

 
(b) Support Vector Machine (prediction accuracy: 63.9%) 

Figure 7 Prediction boundary of thermal preference 



 

Two types of prediction errors could be observed from Figure 7. The first type is due to the individual difference [35]. For instance, 
in the middle of figure, when the thermal sensation is close to neutral and the thermal comfort is 3 (slightly uncomfortable), some 
people might prefer warmer, some prefer no change while some prefer cooler. In this case, it is difficult if not impossible for 
human, as a real intelligence, to predict which direction the subjects would choose only given the information of thermal sensation 
and comfort, not to mention to require the classifier, as an artificial intelligence, to accurately predict. The second type of the 
prediction error is due to the irregular behaviors. For instance, in the left area of Figure 7, some subjects voted hot as thermal 
sensation but still prefer warmer. The irregular behaviors, which would be discussed in more details in Section 4.1, might lead to a 
wrong classification of themselves, as in Figure 7(a), or even worse, lead to a wrong decision boundary, as in Figure 7(b). 

 
Similar to the acceptability prediction, the prediction boundary given by SVM is more irregular and more difficult to interpret. 
Furthermore, Figure 7 indicates that SVM is more sensitive to outliers. There is a half-oval region on the right counter-intuitively 
predicted as “prefer warmer”, due to some subjects with irregular behaviors (“hot” thermal sensations while still want to be 
warmer). However, this area is correctly predicted as “prefer cooler” by the logistic regression. 

 
 

4. Discussion 
 

4.1 Illogical votes and anomaly detection 
We could clearly observe illogical votes in Figure 4 and Figure 5 where the thermal comfort vote is comfortable or very 
comfortable, but still fell the thermal environment is not acceptable; or from Figure 6 or Figure 7 when the thermal sensation is 
hot but prefer warmer or when the thermal sensation is already cold but still prefer cooler. Illogical votes are unavoidable in 
subjective thermal comfort survey, which might be due to several reasons, such as subjects misunderstood the survey questions, 
subjects were distracted by other issues, or sometimes the experimenter mis-recorded the result and etc. 

 
Illogical votes are like random noise and would bring in variance that could not be captured by the two Principal components and 
constitutes a part of 15% unexplained variance in the PCA. It is reasonable to believe the explanation power of the first two 
Principal components would increase above 85% if those illogical votes are removed. 

 
Given the fact that the existence of anomalies would significantly bias the model we built, even in a study with more than 18,000 
observations, it could imagine how the anomalies would bias the conclusion in a chamber experiment or on-site study with a 
sample size on  the scale of 100 or  1000. Therefore, recognizing  the existence of  anomalies  and proposing  a method to 
automatically detect them would be very helpful in thermal comfort studies. To further explore this topic, a stochastic-based 
two-step framework to detect outliers in thermal comfort votes has been proposed in [36]. 

 
 

4.2 Logistic regression vs. SVM 
We applied a conventional logistic regression method and a machine learning technique (SVM) in this study to predict thermal 
acceptability and thermal preference. These two algorithms predict markedly different prediction boundary but surprisingly with 
similar prediction accuracy. Some advantages and disadvantages of these two approaches could be observed from this study: 
 More manual work is required by logistic regression because the features and regression equation forms need to be 

specified manually to depict the non-linear behavior. However, the prediction boundary of logistic regression is easier to 
interpret and more robust to outliers. 

 SVM is easier to run since practitioners do not need to manually specify a non-linear regression form. However, the 
prediction boundary of  SVM is more irregular and difficult to interpret. Additionally, SVM is more sensitive to 
anomalies. 

The characteristic of being easily influenced by anomalies is partly due to the issue of overfitting, which refers to the fact that the 
classifier is strongly affected by the observed data and failed to be generalized to unobserved data. SVM provides the chance to 
address the overfitting issue by tuning the hyperparameters C. As illustrated by Figure 8, by decreasing the value of hyper-
parameter C, we could relieve the overfitting problem. 



 

 
(a) C = 2 (b) C = 1 

 

 
markedly influence occupants’ overall satisfaction [8]. As the prominent management thinker Peter Drucker [38] once said you 
cannot manage what you cannot measure, the first step to maintain a good thermal environment is to accurately measure it. This 
study discussed how many and which subjective metrics should be used to assess the thermal environment. The findings of this 
paper could help the design of chamber experiments, field studies, and human-building interaction interfaces by shedding light on 
the choice of subjective thermal metrics to effectively and accurately collect information on occupants’ thermal experience with as 
few questions as possible. 

 
The first limitation of this study is we only analyze the data from ASHRAE Global Thermal Comfort Database. Though it is the 
largest database so far in the field of thermal comfort, it is unavoidable that lots of field studies are not included in this database. 
Therefore, some conclusions (such as PMV become less popular in the past two decades) might not necessarily be true in the 
whole thermal comfort research community. Additionally, to accurately assess the thermal environment, we need not only select 
the most relevant metrics, but also collect enough samples. Another limitation of this study is we only discussed the selection of 
metrics, but overlooked the influence of sample size. How the sample size would impact the uncertainty of thermal comfort 
measurement has been discussed in [39]. The third limitation of this study is we only used two machine learning algorithm – 
Logistic Regression and SVM – to validate the effectiveness of thermal comfort  metrics we selected. Some cutting-edge 
algorithms such as XGBoost have been overlooked. 

(c) C = 0.5 (d) C = 0.25 
Figure 8: Ways to reduce overfitting of SVM 

In terms of the selection of prediction algorithm, we tend to prefer logistic regression, as it has smoother and easier-to-interpret 
boundary, while its accuracy is as high as SVM. Recent studies shown that ensemble learning (such as random forest [15] or 
XGBoost [37]) could provide more accurate and robust prediction, which is worthy further investigation as well. However, the 
selection of machine learning algorithm is beyond the scope of this paper as the focus of this study is thermal comfort metrics. 

4.3 Contribution and limitation 
Creating a thermally comfortable indoor environment is an important topic in building engineering. As it is energy intensive and 



5. Conclusion 
This paper applies machine learning techniques on the data collected in the recently released ASHRAE Global Thermal Comfort 
Database II, to answer a fundamental but overlooked question in thermal comfort studies: which subjective metrics should be used 
for the assessment of the occupants’ thermal experience. 

 
We found that the thermal sensation is the most frequently used metrics in Thermal Comfort Database II, which was asked almost 
in every thermal comfort study, followed by thermal preference, comfort and acceptability. PMV, as another important thermal 
metrics, was only as half-popular as 20 years ago. 

 
The Pearson Correlation Coefficients and Distance Correlation Coefficients were used to quantify the dependence between 
thermal metrics. The pair of thermal sensation/thermal preference, thermal comfort/air movement acceptability and thermal 
comfort/thermal preference are the top three most dependent pairs. The correlation coefficients between PMV and all the six 
subjective thermal metrics are less than 0.2. 

 
The Principal Component Analysis was used to study the dimensions of subjective thermal metrics. We found the first and second 
Principal Components could explain 49.3% and 36.3% of the total variance respectively. Therefore, the personal experience of 
thermal conditions in built environment is not a one-dimensional problem, but at least a two-dimensional problem, one quantifies 
the physiological factor, and the other quantifies the psychological factor. Additionally, the first and second Principal Components 
are majorly constructed by the thermal sensation and thermal comfort, therefore, thermal sensation and thermal comfort should be 
asked in order to collect as much information as possible if only two questions were asked. 

 
To further confirm that thermal sensation and comfort have strong predictive power, we used Logistic Regression and Support 
Vector Machine to predict thermal acceptability and thermal preference. The prediction accuracy is 87.4% for thermal 
acceptability and 63.9% for thermal acceptability. The prediction error might be due to occupants’ individual difference in thermal 
comfort and illogical subjects’ behaviors. 

 
The findings of this paper could help the design of chamber experiments, field studies, and human-building interaction interfaces 
by shedding light on the choice of subjective thermal metrics to effectively and accurately collect information on occupants’ 
thermal experience with as few questions as possible. 

 
 
Declaration of competing interest  

All co-authors declare there is no conflict of interest in the reported work. 

Acknowledgments 

The work is partly supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, the U.S. Department of 
Energy under Contract No. DE-AC02-05CH11231.  

 
References 
[1]  L. Pérez-Lombard, J. Ortiz, and C. Pout, “A review on buildings energy consumption information,” Energy Build., vol. 40, 
no. 3, pp. 394–398, Jan. 2008. 
[2] Z. Wang, B. Lin, and Y. Zhu, “Modeling and measurement study on an intermittent heating system of a residence in 
Cambridgeshire,” Build. Environ., vol. 92, pp. 380–386, Oct. 2015. 
[3] Y. Long, S. Liu, L. Xie, and K. H. Johansson, “A scenario-based distributed stochastic MPC for building temperature 
regulation,” in 2014 IEEE International Conference on Automation Science and Engineering (CASE), 2014, pp. 1091–1096. 
[4] A. Mirakhorli and B. Dong, “Occupancy behavior based model predictive control for building indoor climate—A critical 
review,” Energy Build., vol. 129, pp. 499–513, Oct. 2016. 
[5] C. Karmann, S. Schiavon, L. T. Graham, P. Raftery, and F. Bauman, “Comparing temperature and acoustic satisfaction in 60 
radiant and all-air buildings,” Build. Environ., vol. 126, pp. 431–441, Dec. 2017. 
[6] The American Society of Heating, Refrigerating and Air-Conditioning Engineers, “ANSI/ASHRAE Standard 55 - Thermal 
Environmental Conditions for Human Occupancy.” 2017. 



[7] C. A. Balaras, E. Dascalaki, A. Gaglia, and K. Droutsa, “Energy conservation potential, HVAC installations and operational 
issues in Hellenic airports,” Energy Build., vol. 35, no. 11, pp. 1105–1120, Dec. 2003. 



[8] Z. Wang, H. Zhao, B. Lin, Y. Zhu, Q. Ouyang, and J. Yu, “Investigation of indoor environment quality of Chinese large-hub 
airport terminal buildings through longitudinal field measurement and subjective survey,” Build. Environ., vol. 94, pp. 593–605, 
Dec. 2015. 
[9] Y. Liu, Z. Wang, Z. Zhang, J. Hong, and B. Lin, “Investigation on the Indoor Environment Quality of health care facilities in 
China,” Build. Environ., vol. 141, pp. 273–287, Aug. 2018. 
[10] J. Taylor et al., “Towards a framework to evaluate the ‘total’ performance of buildings,” Build. Serv. Eng. Res. Technol., vol. 
39, no. 5, pp. 609–631, Sep. 2018. 
[11] M. Feldmeier and J. A. Paradiso, “Personalized HVAC control system,” in 2010 Internet of Things (IOT), 2010, pp. 1–8. 
[12] V. L. Erickson and A. E. Cerpa, “Thermovote: Participatory Sensing for Efficient Building HVAC Conditioning,” in 
Proceedings of the Fourth ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, New York, NY, 
USA, 2012, pp. 9–16. 
[13] Y. Murakami, M. Terano, K. Mizutani, M. Harada, and S. Kuno, “Field experiments on energy consumption and thermal 
comfort in the office environment controlled by occupants’ requirements from PC terminal,” Build. Environ., vol. 42, no. 12, pp. 
4022–4027, Dec. 2007. 
[14] Jazizadeh Farrokh, Ghahramani Ali, Becerik-Gerber Burcin, Kichkaylo Tatiana, and Orosz Michael, “Human-Building 
Interaction Framework for Personalized Thermal Comfort-Driven Systems in Office Buildings,” J. Comput. Civ. Eng., vol. 28, no. 
1, pp. 2–16, Jan. 2014. 
[15] J. Kim, S. Schiavon, and G. Brager, “Personal comfort models – A new paradigm in thermal comfort for occupant-centric 
environmental control,” Build. Environ., vol. 132, pp. 114–124, Mar. 2018. 
[16] M. Schweiker et al., “Challenging the assumptions for thermal sensation scales,” Build. Res. Inf., vol. 45, no. 5, pp. 572–589, 
Jul. 2017. 
[17] Y. He, N. Li, N. Li, J. Li, J. Yan, and C. Tan, “Control behaviors and thermal comfort in a shared room with desk fans and 
adjustable thermostat,” Build. Environ., vol. 136, pp. 213–226, May 2018. 
[18] Y. He, X. Wang, N. Li, M. He, and D. He, “Heating chair assisted by leg-warmer: A potential way to achieve better thermal 
comfort and greater energy conservation in winter,” Energy Build., vol. 158, pp. 1106–1116, Jan. 2018. 
[19] J. Kim,  Y.  Zhou, S. Schiavon, P. Raftery, and G. Brager, “Personal comfort  models: Predicting individuals’ thermal 
preference using occupant heating and cooling behavior and machine learning,” Build. Environ., vol. 129, pp. 96–106, Feb. 2018. 
[20] D. Li, C. C. Menassa, and V. R. Kamat, “Personalized human comfort in indoor building environments under diverse 
conditioning modes,” Build. Environ., vol. 126, pp. 304–317, Dec. 2017. 
[21] L. Jiang and R. Yao, “Modelling personal thermal sensations using C-Support Vector Classification (C-SVC) algorithm,” 
Build. Environ., vol. 99, pp. 98–106, Apr. 2016. 
[22] W. Liu, Z. Lian, and B. Zhao, “A neural network evaluation model for individual thermal comfort,” Energy Build., vol. 39, 
no. 10, pp. 1115–1122, Oct. 2007. 
[23] F. Auffenberg, S. Stein, and A. Rogers, “A personalised thermal comfort model using a Bayesian network,” presented at the 
IJCAI International Joint Conference on Artificial Intelligence, 2015, vol. 2015-January, pp. 2547–2553. 
[24] S. Lee, I. Bilionis, P. Karava, and A. Tzempelikos, “A Bayesian approach for probabilistic classification and inference of 
occupant thermal preferences in office buildings,” Build. Environ., vol. 118, pp. 323–343, Jun. 2017. 
[25] A. Ghahramani, C. Tang, and B. Becerik-Gerber, “An online learning approach for quantifying personalized thermal comfort 
via adaptive stochastic modeling,” Build. Environ., vol. 92, pp. 86–96, Oct. 2015. 
[26] K. L. Jensen, J. Toftum, and P. Friis-Hansen, “A Bayesian Network approach to the evaluation of building design and its 
consequences for employee performance and operational costs,” Build. Environ., vol. 44, no. 3, pp. 456–462, Mar. 2009. 
[27] T. C. T. Cheung, S. Schiavon, E. T. Gall, M. Jin, and W. W. Nazaroff, “Longitudinal assessment of thermal and perceived air 
quality acceptability in relation to temperature, humidity, and CO2 exposure in Singapore,” Build. Environ., vol. 115, pp. 80–90, 
Apr. 2017. 
[28] M. Banko and E. Brill, “Scaling to Very Very Large Corpora for Natural Language Disambiguation,” in Proceedings of the 
39th Annual Meeting on Association for Computational Linguistics, Stroudsburg, PA, USA, 2001, pp. 26–33. 
[29] V. Földváry Ličina et al., “Development of the ASHRAE Global Thermal Comfort Database II,” Build. Environ., vol. 142, pp. 
502–512, Sep. 2018. 
[30] de Dear, “Global database of thermal comfort field experiments,” presented at the ASHRAE Transactions, 1998, vol. 104, pp. 



1141–1152. 
[31] P. O. Fanger, Thermal comfort. Analysis and applications in environmental engineering. Danish Technical Press, 1970. 
[32] G. S. Brager and R. de Dear, “Thermal adaptation in the built environment: A literature review,” Energy Build., vol. 27, no. 1, 
pp. 83–96, 1998. 
[33] R. de Dear and G. S. Brager, “Developing an adaptive model of thermal comfort and preference,” ASHRAE Trans., vol. 104, 
1998. 
[34] Y. He, N. Li, J. Peng, W. Zhang, and Y. Li, “Field study on adaptive comfort in air conditioned dormitories of university with 
hot-humid climate in summer,” Energy Build., vol. 119, pp. 1–12, May 2016. 
[35] Z. Wang et al., “Individual difference in thermal comfort: A literature review,” Build. Environ., vol. 138, pp. 181–193, Jun. 
2018. 
[36] Z. Wang, T. Parkinson, P. Li, B. Lin, and T. Hong, “The Squeaky wheel: Machine learning for anomaly detection in 
subjective thermal comfort votes,” Build. Environ., vol. 151, pp. 219–227, Mar. 2019. 
[37] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” in Proceedings of the 22Nd ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 2016, pp. 785–794. 
[38] P. Drucker, The practice of management. New York, NY, USA: Harper & Brothers, 1954. 
[39] J. Wang, Z. Wang, R. de Dear, M. Luo, A. Ghahramani, and B. Lin, “The uncertainty of subjective thermal comfort 
measurement,” Energy Build., vol. 181, pp. 38–49, Dec. 2018.



 

 
 
 



 

 


	ADP4C3D.tmp
	1. ABSTRACT
	Key words:
	Nomenclature
	2. Introduction
	2.1 Thermal comfort metrics
	2.2 Methods for thermal comfort studies
	2.3 ASHRAE Global Thermal Comfort Database II
	2.4 Objectives
	2.2 Correlation Matrix
	2.3 Principal Component Analysis

	3. Prediction with thermal sensation and comfort
	3.1 Predicting thermal acceptability
	3.2 Predicting thermal preference

	4. Discussion
	4.1 Illogical votes and anomaly detection
	4.2 Logistic regression vs. SVM

	5. Conclusion
	References


