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Abstract (150 words) 
Energy-related occupant behavior is crucial to the design and operation of low-energy buildings. 
This chapter introduces state-of-the-art methods, tools, and datasets for quantifying occupant 
impacts on building energy use and occupant comfort. The chapter begins with an overview of 
how occupants can influence building environments and energy performance, and highlights 
gaps in the abilities of building energy simulation programs to represent these influences. Next, 
state-of-the-art methods and modeling tools that enable more sophisticated occupant behavior 
simulation are reviewed, along with the most prominent datasets available to support quantitative 
behavior model development. Then, an overview of application areas for occupant behavior 
modeling tools and datasets across the building life cycle is presented, and example applications 
are demonstrated through three case studies. The chapter concludes by identifying emerging 
opportunities and challenges surrounding the use of occupant behavior simulation to support the 
design and operation of low-energy buildings that foster greater occupant satisfaction. 
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Occupant behavior, energy behavior, energy use, energy efficiency, energy modeling, behavioral 
insights, interdisciplinary, low energy buildings, building performance simulation  
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13.0 Introduction  
The energy-related behaviors of building occupants constitute a key factor influencing building 
performance; accordingly, realistic representation of occupant behavior in building performance 
simulations is essential to ensuring that such simulations yield accurate guidance for building 
design and operation decisions. For the purpose of this chapter, building occupant behavior (OB) 
refers to (1) occupant presence in spaces and movement between spaces, (2) occupant 
interactions with building systems, and (3) occupant adaptations (e.g., changing clothing, having 
hot/cold drinks).  
 
Occupant behaviors such as adjusting a thermostat for comfort, switching lights on/off, using 
appliances, opening/closing windows, pulling window blinds up/down, and moving between 
spaces can have a significant impact on energy use and occupant comfort in buildings. 
Depending on the building type, climate, and degree of automation in operation and controls, 
existing studies have found that occupant behavior may increase or decrease energy use by a 
factor of up to three for residential buildings (Andersen 2012), and increase energy use by up to 
80% or reduce energy use by up to 50% for single-occupancy offices (Hong & Lin 2013);  
another study (Sun & Hong 2017a) estimates that occupant behavior measures have a 41% 
energy savings potential for office buildings. Developing a deeper understanding of occupant 
behavior and further quantifying its impact on the use of building technologies, occupant 
satisfaction and building performance using simulation tools is crucial to the design and 
operation of low-energy buildings with high indoor environmental quality (IEQ).  
 
Nevertheless, in most building design, construction, operation, and retrofit practices, the 
influence of occupant behavior remains under-recognized and over-simplified. In the most 
widely used building performance simulation programs, for example, the representation of 
occupant behavior is limited to pre-defined static schedules or fixed settings and rules (Cowie et 
al. 2017), leading to deterministic and homogeneous simulation results that fail to capture the 
stochasticity, dynamics, and diversity of occupants’ energy behavior in buildings. Meanwhile, 
available models of occupant behavior have been developed across different researchers and 
have showed inconsistencies, precluding arrival at a consensus within the research community 
on how to approach experimental design and modeling methodologies. Given the above issues, a 
strong need has emerged in recent years for researchers to work together on devising a consistent 
research framework for occupant behavior definition and simulation. 
 
Whole-building performance simulation (BPS) programs such as EnergyPlus (BTO 2017), ESP-r 
(Hand 2015), IDA-ICE (Equa 2017), DeST (Yan et al. 2008), and TRNSYS (2012) have recently 
been applied to quantitatively evaluate the effects of occupant behaviors on the performance of 
building technologies and energy systems, with the aim of reducing energy use in buildings and 
associated greenhouse gas emissions. Half of current BPS programs include built-in stochastic 
occupant behavior modeling capabilities; however, this functionality is far from consistent across 
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different BPS tools and generally lacks flexibility for user customization (Cowie et al. 2017). In 
these programs, prescribed schedules and rule-based control are frequently used to represent 
building occupants and their energy-related behaviors. Overall, the stochastic representation of 
occupants within BPS programs is much less ubiquitous than deterministic modeling capabilities 
(Cowie et al. 2017).   
 
A recent study (Hong et al. 2017) provides a thorough overview of OB implementation 
approaches in the current BPS tools, which are: (1) Direct input or control - refers to the case 
when occupant-related inputs are defined using the semantics of BPS programs – just as other 
model inputs are defined (building geometry, construction, internal heat gains and HVAC 
systems); (2) Built-in OB models - users can choose deterministic or stochastic OB models 
already implemented in the BPS program, which are originally data-driven and use functions and 
models such as linear or logit regression functions. These models typically include occupant 
movement models, window operation models, and lights switching on/off models; (3) User 
function or custom code - users can write functions or custom code to implement new or 
overwrite existing or default building operation and supervisory controls; and (4) Co-simulation 
approach - allows simulations to be carried out in an integrated manner, running modules 
developed by different programming languages or in different physical computers. For a building 
energy modeler, the choice of which implementation approach to select is a difficult one. All of 
these approaches have their advantages and disadvantages, such as precision, calculation time, 
and input model development time. 
 
There is a strong need to homogenize and stimulate wider uptake of stochastic occupant 
modeling capabilities in BPS programs. The development of a BPS program-independent co-
simulation platform could address the gaps by centralizing functionality, allowing models to be 
implemented within the platform and then applied in a consistent way among different BPS 
tools. There is also a significant need for developing a suite of new occupant behavior modeling 
tools to improve the building performance simulation by: (1) providing a standard representation 
of occupant behavior models, enabling the exchange and use of occupant behavior models 
between BPS programs, applications, and users to improve the consistency and comparability of 
simulation results, and (2) generating realistic occupancy schedules. These tools capture the 
diversity, stochastics, and complexity of occupant behavior in buildings to improve the 
simulation and evaluation of behavioral measures, as well as of the impact of occupant behavior 
on technology performance and energy use in buildings. 
 
In this chapter, state-of-the art methods and tools that enable more sophisticated occupant 
behavior simulation in BPS programs are reviewed, along with the most prominent datasets 
available to support quantitative behavior model development. A particular focus is placed on the 
OB tools yielded by the recently concluded International Energy Agency (IEA) Annex 66: 
Definition and Simulation of Occupant Behavior in Buildings. Four advanced occupant behavior 
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modeling tools which allow for a rapid and widespread integration of OB models in various BPS 
programs are introduced: (1) obXML – an XML schema representing OB models using the 
DNAS (Drivers-Needs-Actions-Systems) ontology; (2) obFMU – an OB model solver using the 
functional mockup unit; (3) Occupancy Simulator – an agent-based Markov chain model of 
occupant presence and movement in buildings; and (4) Buildings.Occupants – an open-source 
package of occupant behavior models implemented in Modelica, an equation-based, object-
oriented language. Next, an overview of application areas for OB modeling tools and datasets 
across the building life cycle is presented, and example applications are demonstrated through 
three case studies. The chapter concludes by identifying emerging opportunities and challenges 
surrounding the use of occupant behavior simulation to support the design and operation of low-
energy buildings that foster greater occupant satisfaction. 
 
13.1 Occupant behavior modeling methods, datasets, and simulation tools  
This section reviews the state-of-the art methods and tools that enable more sophisticated 
occupant behavior simulation, along with the data collection approaches and the most prominent 
datasets available to support quantitative behavior model development. 
 
13.1.1 State-of-the-art occupant behavior modeling approaches 
Various mathematical methodologies have been used in occupant behavior modeling. Classical 
statistical models such as general and generalized linear models have been applied extensively, 
while for time-dependent data, Markov and Hidden Markov chains (Dong & Lam 2014; Liisberg 
et al. 2016; Andersen et al. 2014; Richardson et al. 2008) have proved to be useful tools. Mixed-
effects and agent-based models have been applied to capture the diversity among occupants 
(Haldi 2013; Langevin, Wen, et al. 2015), and machine learning and data mining techniques such 
as clustering (Pan et al. 2017; Ren et al. 2015) and decision trees have followed from the 
improved availability of large occupant behavior datasets (Hong, D’Oca, Turner, et al. 2015). In 
this section, the use of different modeling approaches in the literature is described, with the 
models organized by the different behavior types for which they were developed. As 
aforementioned, the occupant behaviors referred to in this chapter are: (1) occupant 
presence/absence in spaces and movement between spaces, (2) occupant interactions with 
building systems (e.g., opening the windows, operating the HVAC system), and (3) occupant 
personal adaptations (e.g., changing clothing, having hot/cold drinks). This section mainly 
focuses on the first two occupant behavior types, as few existing modeling studies cover 
occupants’ personal adaptations.  
 
Representative modeling approaches 
Markov chains assume that future system states (e.g., of occupancy, or of a building control) are 
dependent only on the current system state together with the probabilities of the state changing. 
A Markov chain consists of a set of transition probability matrices that describe the transition 
between states in each time step. The matrix entries can be estimated from the source data using 
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maximum likelihood estimation. A hidden Markov model (HMM) consists of a Markov chain 
whose states are not directly observed, and information is derived about the unobserved entity 
from a series of related observations. For a detailed description of Markov chains, refer to 
Zucchini et al. (2016). Time series in which quantities take a finite number of states can be 
modeled using Markov chains. In practice, Markov chains are employed to model (1) occupancy 
(presence, absence, people count); (2) window states over time (open, closed); (3) blind usage 
(open, closed, fraction of opening); and (4) activity level (working, sleeping, resting, laundry, 
cooking, absent).  
 
The general linear model (classical GLM) is a classical statistical model that assumes normally 
distributed response variables and a linear relationship between the explanatory variables and the 
response variable. For example, ordinary linear regression and the analysis of variance 
(ANOVA), and mixtures thereof, are classical examples of GLM. Let 𝑌𝑌 = (𝑌𝑌1, … ,𝑌𝑌𝑛𝑛) be a vector 
of n observations of a response variable. We assume that Y follows a multivariate normal 
distribution 𝑁𝑁(𝜇𝜇, Σ). In the classical GLM, it is assumed that the vector of mean values 𝜇𝜇 =
(𝜇𝜇1, … , 𝜇𝜇𝑛𝑛) can be expressed as a linear combination of some explanatory variables expressed by 
column vectors 𝑋𝑋1, … ,𝑋𝑋𝑘𝑘. 
 
Generalized linear models (GLM) relax the assumption of normally distributed errors, relating a 
linear predictor 𝑋𝑋𝑋𝑋 to the expected response 𝐸𝐸(𝑌𝑌) via a link function 𝑔𝑔 where 𝑔𝑔�𝐸𝐸(𝑌𝑌)� =  𝑋𝑋𝑋𝑋. 
In a binary logistic regression modeling a dichotomous response variable, for example, the link is 
defined as ln � 𝜋𝜋

1−𝜋𝜋
� = 𝑋𝑋𝑋𝑋, where 𝜋𝜋 is the expected probability of a response 𝑌𝑌 = 1 and model 

errors are assumed to follow a logistic distribution. A further generalization of the linear model 
adds random effects 𝑈𝑈 to the fixed effects of predictor variables 𝑋𝑋, or in the case of the binary 
logistic regression:  ln � 𝜋𝜋

1−𝜋𝜋
� = 𝑋𝑋𝑋𝑋 + 𝑍𝑍𝑈𝑈; random effects account for unobserved heterogeneity 

in the data.  This class of approaches is termed generalized linear mixed models (GLMM).  
 
Bayesian network models (BNs) are directed acyclic graphs or belief networks that are used to 
represent the relationships among a predefined group of discrete and continuous variables (Xi). 
BNs consist of a graphical model and an underlying conditional probability distribution. The 
nodes of the graph represent the variables, and the dependencies between variables are depicted 
as directional links corresponding to conditional probabilities. Hence, the construction of a BN 
consists of determining the structure and the probability distribution associated with these 
relations. The relationships between nodes can be explained by employing a family metaphor: a 
node is a parent of a child if there is an arc from the former to the latter. For instance, if there is 
an arc from X1 to X3, then node X1 is a parent of node X3. The Markov property of the BNs 
implies that all probabilistic dependencies are identified via arcs and that child nodes only 
depend on the parent nodes. 
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Agent-based models (ABMs) represent systems from the bottom-up, simulating individual actors 
or ‘agents’ with personal attributes and behavioral possibilities, as well as rules for interacting 
with other agents and their surrounding environment; macro- or group-level behaviors emerge 
from the micro-level behaviors of individual agents. For more guidance on the agent-based 
modeling approach, refer to (Macal & North 2010), as well as the chapter in this book titled 
“Agent-Based Modelling of the Social Dynamics of Energy End-Use” by Chappin et al.  
 
Modeling studies of building occupancy 
Occupancy is defined in existing studies as either the presence or absence of an occupant or the 
occupant count (the number of occupants) in a given space. One of the most typical occupancy 
modeling approaches is Markov chains. The occupancy models of Richardson et al. (2008) and 
Page et al. (2008) are the earliest published examples of first-order Markov chains being used to 
generate stochastic synthetic occupancy patterns. This first-order Markov chain technique has 
since been widely adopted in the development of occupancy models in office buildings (Wang et 
al. 2011; Liao et al. 2012; Andersen et al. 2014). In certain studies, presence/absence at the space 
level is modeled alongside the number of occupants – for example, in (Hong et al. 2013), which 
uses the occupancy models to determine the lighting and heating requirements of a building. 
More recently, Wilke (2013) used first- and higher-order homogeneous Markov processes to 
represent building occupancy, where a higher-order Markov process extends the first-order 
Markov case by including multiple past values of occupancy state. This approach is coupled with 
a survival analysis method, in which a Weibull distribution is used to estimate occupant presence 
durations at greater time lags before the present simulation step. Hence, information about the 
next time step is not only based on current occupancy state, but also on past occupancy values 
through the survival function that also captures the durations of occupant presence and absence 
coherently. 
 
Modeling studies of occupant interactions with building systems 
In naturally ventilated buildings, window opening and closing behavior is an important control 
mechanism used by building occupants to regulate the indoor thermal environment and air 
quality. It is crucial to have window operation models that create realistic patterns for use in 
building performance simulations. Accordingly, models of window use are particularly prevalent 
within the existing behavior literature.  
 
The most common modeling approach for window operations is logistic regression as a special 
case of GLMs. In some cases, interaction terms between several predictors are considered. Time 
dependencies are modeled by Markov chains (Fabi et al. 2014; Calì et al. 2016), and survival 
analysis has been applied to model opening durations (Haldi & Robinson 2009).  
 
More recently, GLMMs have been used to model the diversity in window opening behavior 
across occupants (Schweiker et al. 2012); this application of GLMMs has also been suggested by 
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Haldi (2013). Here, the inclusion of random effects in the GLMM approaches allows inter-
individual variability to be described - i.e., the diversity in behavior among different occupants, 
where fixed effect models only capture an average occupant’s behavioral tendencies. Hence, the 
GLMMs separate the variability in the data corresponding to occupants’ diversity from other 
sources of uncertainty. These kinds of models are especially useful for Monte-Carlo simulations, 
because an occupant is randomly drawn from a population in every simulation run, resulting in a 
spread of behavior that reflects reality. 
 
In another recent study, Barthelmes et al. (2017) used a Bayesian Network (BN) to model 
window control behavior in the residential sector. Their study addressed five key research 
questions related to modeling window control behavior: (1) variable selection for identifying the 
key drivers of window control behavior, (2) correlations between key variables for structuring a 
statistical model, (3) target definition for finding the most suitable target variable (window 
control actions rather than window states), (4) development of a BN model with the ability to 
treat mixed data, and (5) validation and demonstration of the high predictive power of stochastic 
BN models. 
 
In addition to the window opening and closing behavior, light switching behavior is also 
considered as a major factor influencing the electricity use in domestic homes and office 
buildings. Studies on the modeling of lighting switch behavior have mostly focused on small 
office and residential buildings, with the research findings greatly dependent on building layout 
and daylight control systems. The first report of a stochastic approach to manual lighting control 
was by Newsham et al. (1995), who developed a regression model called Lightswitch that 
simulated user activities of turning lights on/off in the workplace based on measured field data 
from an office building in Ottawa, Canada. The probability of turning on lights has also been 
modeled as dependent on natural/daylight level and occupant movement (Widén et al. 2009). 
 
A small number of studies attempt to integrate prediction of multiple types of human-building 
interactions in a single modeling package. For example, the agent-based modeling approach 
reported by Langevin et al. (2015) predicts the probability of several inter-dependent behaviors, 
including window opening and closing, adjustment of thermostats, use of personal heating and 
cooling devices, and the adjustment of personal clothing levels. In this framework, each agent 
represents an individual office occupant that acts adaptively based on the simulated distance 
between current thermal sensation and a thermal acceptability range, where both are modeled 
probabilistically based on occupant comfort field data from the ASHRAE RP-884 database 
(https://sydney.edu.au/architecture/staff/homepage/richard_de_dear/ashrae_rp-884.shtml). 
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13.1.2 Occupant behavior datasets 
Data collection approaches 
The collection of datasets for developing and validating behavior models is an essential driver of 
improved understanding and representation of behavior in BPS. To capture occupants’ energy-
related behaviors in buildings, researchers may collect two types of information: (1) reported 
information using surveys and/or (2) monitored information from sensing and data acquisition 
technologies.  
 
Surveys are a cost-effective means of achieving a large sample size and can measure phenomena 
that would be difficult or impossible to measure with sensors (e.g., thermal comfort sensation 
and clothing level, social interactions and attitudes). Several recent studies (Becerik-Gerber et al. 
2011; Konis 2013; Haldi & Robinson 2008) have relied on custom technological survey 
solutions for polling occupants more frequently than a telephone, paper, or online survey would 
allow. Surveys have also been used to develop models (e.g., Haldi and Robinson, 2009; 
Langevin, Wen and Gurian, 2015). Despite the aforementioned benefits to using surveys in 
occupant research, a number of established psychological biases, including the Hawthorne effect 
and social desirability bias, suggest that self-reported behavior may not always match observed 
behavior (McCambridge et al. 2014). In addition, a lack of understanding of different building 
services systems or the misinterpretation of questions may cause occupants to unknowingly 
report certain variable states incorrectly. Relative to other in-situ and laboratory monitoring 
approaches, surveys typically do not lend themselves to frequent sampling because they rely on 
occupants’ active input; therefore, their use in longitudinal studies may be limited to targeted 
periods of study, with the goal of limiting occupant fatigue (Langevin, Gurian, et al. 2015). 
 
Outside of surveying techniques for behavior data collection, previous studies have used sensing 
and data acquisition technologies to yield more granular occupant information (including both 
occupancy and activities). Sensor data collection may be conducted either in-situ (e.g., in a field 
setting) or in a laboratory condition. Data are typically acquired passively through sensors that 
feed into the building automation system (BAS). Such sensors measure variables that include: 
occupants’ presence, adaptive actions (e.g., changing window or door state, turning on/off 
personal heating and cooling devices), energy use (through sub-metering), and environmental 
variables such as temperature, humidity, air velocity, lumen level, and CO2 concentration (Haldi 
& Robinson 2010; Duarte et al. 2013). For in-situ studies, the measurement sample size may be 
constrained by the small number of willing participants in a given building, though frequent 
measurement intervals (1-5 minutes) may still yield large amounts of data for a small occupant 
sample. Additionally, lack of flexibility in sensor placement to avoid interfering with occupants’ 
activities or to prevent the measurements being disturbed by the occupants can reduce the 
accuracy of measurements (Reinhart & Voss 2003; Andersen et al. 2013).  
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On the other hand, laboratory facilities for occupant research are typically costly to build and 
operate, and experiments are often significantly more expensive than in-situ studies because of 
the human resources required. Another downside to laboratory studies is that the short-term and 
potentially unnatural characteristics of laboratory environments may yield occupant response 
data that is unrepresentative of a field setting; new experimental techniques propose using 
augmented reality technologies to allow laboratory settings for occupant behavior research to 
more closely mimic occupants’ experiences in real buildings over long time periods (Saeidi et al. 
2017).  
 
To summarize, occupant behavior data collected through survey instruments may reveal 
important insights on the rationales and motivations for behavior and cover variables that would 
be difficult to measure using sensor and data acquisition instruments; yet, survey techniques can 
prompt occupant response fatigue and they often rely on occupant recall of behavior, which may 
be inaccurate. Meanwhile, data collected by sensing instruments may yield richer and more 
granular insights on variables such as occupant presence, certain actions, and environmental 
conditions across long time periods; yet, measurement sample size may be constrained by the 
number of occupants who are willing to be monitored and suboptimal sensor placement in the 
field can compromise the accuracy of collected data.  
 
Ultimately, the most favorable behavior data approaches are likely to involve some combination 
of both survey and sensor measurements, enabling one data source to be cross-referenced with 
the other and supporting the compilation of a comprehensive set of information on the 
physiological, psychological, and social aspects of occupant behavior. 
 
Existing dataset resources 
An increasing number of datasets on building occupant behavior are being developed and shared 
through a growing variety of channels.1 Here we list a few of the most prominent existing 
datasets concerning occupant behavior. 

● ASHRAE Global Thermal Comfort Database I and II 
The ASHRAE Global Thermal Comfort Database project (Földváry Ličina et al. 2018) 
was launched in 2014 under the leadership of University of California at Berkeley’s 
Center for the Built Environment and The University of Sydney’s Indoor Environmental 
Quality (IEQ) Laboratory. The exercise began with a systematic collection and 
harmonization of raw data from the last two decades of thermal comfort field studies 
around the world. The final database is comprised of field studies conducted between 
1995 and 2015 from around the world, with contributors releasing their raw data to the 
project for wider dissemination to the thermal comfort research community. After the 
quality-assurance process, there was a total of 81,846 rows of data of paired subjective 

                                                 
1 Google recently developed a database search tool (https://toolbox.google.com/datasetsearch), which includes 
occupant behavior related datasets. 

https://toolbox.google.com/datasetsearch
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comfort votes and objective instrumental measurements of thermal comfort parameters. 
An additional 25,617 rows of data from the original ASHRAE RP-884 database are 
included, bringing the total number of entries to 107,463.  
The database is intended to support diverse inquiries about thermal comfort in field 
settings. To achieve this goal, two web-based tools were developed to accompany the 
database: 

a. Interactive visualization tool (https://cbe-
berkeley.shinyapps.io/comfortdatabase/): provides a user-friendly interface for 
researchers and practitioners to explore and navigate their way around the large 
volume of data in ASHRAE Global Thermal Comfort Database II. 
b. Query builder tool (http://www.comfortdatabase.com/): allows users to filter 
the database according to a set of selection criteria, and then download the results 
of that query in a generic comma-separated-values (.csv) file. 

 
● Library of occupant behavior models 

Within the effort of Annex 66, energy-related OB literatures have been reviewed to 
identify and compile a list of 127 commonly-used OB models in the field that cover the 
following categories: (1) behavior types - occupant movement and different types of 
occupant interactions with windows, doors, shading, blinds, lighting systems, 
thermostats, fans, HVAC systems, plug-loads; making hot/cold beverages and adjusting 
clothing levels. (2) building types - office, residential and school buildings. In this list, 
those models with clear documentation were considered for library inclusion, and were 
processed and implemented using the DNAS (Drivers, Needs, Actions, Systems) 
framework, presented in a standardized way called obXML (occupant behavior 
eXtensible Markup Language, see below).  
 
In addition to the obXML library (Belafi et al. 2016), a library of occupant behavior 
models in another language - Modelica was also recently developed (Wang et al. 2018). 
This Modelica package of occupant behavior models could be more conveniently 
integrated into other Modelica-based building system models.   
 

● Surveys on building simulation practices and human-building interactions 
As aforementioned, surveys are a cost-effective means of achieving a large sample size 
and can measure phenomena that would be difficult or impossible to measure with 
sensors. Two surveys were conducted under Annex 66 (https://annex66.org/).  
  
The first survey seeks to understand the current practices and attitudes of current building 
simulation users towards occupant modeling (O'Brien and Cowie, 2017). In total, 274 
valid responses were collected from BPS users (practitioners, educators, and researchers) 
from 37 countries. The results of this 36-question international survey indicate that 

https://cbe-berkeley.shinyapps.io/comfortdatabase/
http://www.comfortdatabase.com/
https://annex66.org/
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occupant assumptions made by simulation users vary widely and are considerably 
simpler than what has been observed in reality. Most participants cited lack of time or 
understanding as their primary reason for not delving deeply into occupant modeling, but 
responded that they are receptive to further training. 
 
The second survey is a cross-country questionnaire based on theories and insights from 
building physics and social psychology. This survey aims to investigate the building-user 
interaction in the workspace, as well as the degree to which this interaction impacts 
comfort provision, energy use, and operating costs in diverse office settings and cultural 
contexts worldwide (D’Oca et al. 2015). A total of 37 questions were devised by an 
interdisciplinary team having architecture, engineering and social science backgrounds, 
and responses were collected from administrative staff and faculties at 14 universities and 
research centers across six countries spanning the U.S., Europe, China and Australia. The 
outcomes highlight the correlation between perceived behavioral control and perceived 
comfort, satisfaction and productivity in office spaces. 
 

● OpenEI.org 
OpenEI provides a free platform for sharing datasets specifically in the area of renewable 
energy and energy efficiency. Currently, there are several datasets available on this 
platform that relate to occupant behavior. For instance, Langevin et al. (2015) published a 
one-year longitudinal dataset (15-minute interval) on local thermal conditions, related 
occupant behaviors, and comfort of twenty-four occupants of a medium-sized office 
building between July 2012 and August 2013 in Philadelphia, PA. The long-term data 
were collected via online daily surveys and data logger measurements of the local 
thermal environment and behavior. 
 

● Zenodo 
Zenodo (Zenodo.org) is a web platform that promotes open data for open science. 
Datasets, software and other materials can be deposited and shared through the Zenodo 
platform, which includes datasets related to occupant behavior. For instance, a recently 
published dataset on Zenodo contains movement behavior (head, eye, torso) and 
electroencephalogram (EEG) signals (a recording of the electrical activity of the brain 
from the scalp) of 21 young normal-hearing (11 males, 11 females, mean age 25 +/- 3.6 
years) and 19 elderly normal-hearing subjects (9 males, 12 females, mean age 69 +/- 5.4 
years) measured in virtual audiovisual environments in the laboratory. The virtual 
audiovisual environments that were used are: a living room, a lecture hall, a cafeteria, a 
street and a train station. The video and audio material for the environments is also 
available on the website (Hendrikse et al. 2018). 
 

● Nature Scientific Data 
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Nature Scientific Data is a peer-reviewed, open-access journal for descriptions of 
scientifically valuable datasets and research that advances the sharing and reuse of 
scientific data. The journal was launched by Nature Research to enable the 
discoverability, reproducibility and reuse of valuable data. Scientific Data primarily 
publishes Data Descriptors, a new type of publication that combines the narrative content 
characteristic of traditional journal articles with structured, curated metadata that outline 
experimental workflows and point to publicly archived data records. Currently, there are 
around 20 datasets in this resource that relate to occupant behavior or energy 
consumption measurements. For instance, Makonin et al. (2016) collected long-term 
measurements of electric and water consumption, energy use behavior, and HVAC 
operational parameters for a residential house in Canada between 2012 to 2014. 

 
Advanced occupant behavior simulation tools 
A suite of computational tools has been developed to standardize the representation of OB models 
and enable their use via co-simulation with BPS programs.  

obXML: An occupant behavior XML schema 

obXML (Hong, D’Oca, Turner, et al., 2015; Hong, D’Oca, Taylor-Lange, et al., 2015) is an XML 
schema that standardizes the representation and exchange of occupant behavior models for 
building performance simulation. obXML builds upon the Drivers–Needs–Actions–Systems 
(DNAS) ontology to represent energy-related occupant behavior in buildings. Drivers represent 
the environmental and other context factors that stimulate occupants to fulfill a physical, 
physiological, or psychological need. Needs represent the physical and non-physical requirements 
of occupants that must be met to ensure satisfaction with their environment. Actions are the 
interactions with systems or activities that occupants can perform to achieve environmental 
comfort. Systems refer to the equipment or mechanisms within the building that occupants may 
interact with to restore or maintain environmental comfort. A library of obXML files, representing 
typical occupant behavior in buildings, was developed from the literature (Belafi et al. 2016). 
These obXML files can be exchanged between different BPS programs, different applications, and 
different users. Figure 1 shows the four key elements of the obXML schema and their sub-elements. 

*** Insert Figure 13.1 *** 

Caption: Overview of the obXML schema showing the DNAS ontology.  

Credit: Hong et al., 2016 

obFMU: An occupant behavior functional mockup unit 

obFMU (Hong et al. 2016) is a modular software component represented in the form of functional 
mockup units (FMUs), enabling its application via co-simulation with BPS programs using the 
standard functional mockup interface (FMI). FMU is a file (with extension .fmu) that contains a 
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simulation model that adheres to the FMI standard. obFMU reads the occupant behavior models 
represented in obXML and functions as a solver. A variety of occupant behavior models are 
supported by obFMU, including (1) lighting control based on occupants’ visual comfort needs and 
availability of daylight, (2) comfort temperature set-points, (3) HVAC system control based on 
occupants’ thermal comfort needs, (4) plug load control based on occupancy, and (5) window 
opening and closing based on indoor and outdoor environmental parameters. obFMU has been 
used with EnergyPlus and ESP-r via co-simulation to improve the modeling of occupant behavior. 
Figure 2 shows the workflow of co-simulation using obFMU and EnergyPlus. 

*** Insert Figure 13.2 *** 

Caption: Co-simulation workflow of obFMU with EnergyPlus.  

Credit: Yan and Hong, 2018 

Occupancy Simulator: A web-based occupancy app 
Occupancy Simulator (Chen et al. 2018; Luo et al. 2017) is a web-based application running on 
multiple platforms to simulate occupant presence and movement in buildings. The application 
can also generate sub-hourly occupant schedules for each space and individual occupants in the 
form of CSV files and EnergyPlus IDF files for building performance simulations. Occupancy 
Simulator uses a homogeneous Markov chain model (Wang et al. 2011; Feng et al. 2015) and 
performs agent-based simulations for each occupant. A hierarchical input structure is adopted, 
building upon the input blocks of building type, space type, and occupant type to simplify the 
input process while allowing flexibility for detailed information capturing the diversity of space 
use and individual occupant behavior. Users can choose an individual space or the whole 
building to see the simulated occupancy results.  
 
Buildings.Occupants: An occupant behavior model package in Modelica 
To simulate the continuous and dynamic interaction between occupants and building systems, 
Buildings.Occupants (Wang et al. 2018) can be used. The Buildings.Occupants package, as part 
of the Modelica Buildings Library (Wetter et al. 2014), supports fast prototyping by seamlessly 
integrating occupant behavior models with Modelica models from existing libraries for building 
dynamics. Additionally, the structure of the package has been designed to allow for the flexible 
implementation of user-defined models by tuning the parameters and calling functions defined in 
the BaseClasses package. The Buildings.Occupants package includes reported occupant behavior 
models in the literature that are more commonly used and well documented in terms of the data 
source, mathematical equation, independent variables, parameter values etc. The models are 
categorized into sub-packages based on the building types and systems. There are 34 occupant 
behavior models for office and residential buildings that are included in the first release of the 
Buildings.Occupants package. The office building models include eight models on windows 
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operation, six models on window blind operation, four models on lighting operation, and one 
model on occupancy. 
 
13.2 Application of occupant behavior models across the building life cycle  
This section brings an overview of application areas for occupant behavior modeling tools and 
datasets across the building life cycle. It summarizes Annex 66’s 32 case studies of building 
occupant behavior modeling applications from around the world, and then introduces three 
example applications through case studies focusing on the building design-stage, operation and 
control-stage, as well as the retrofit-stage.  
 
13.2.1 Fit-for-purpose occupant behavior modeling in the building life cycle 
As suggested earlier in this chapter, occupant behavior is an important source of uncertainty 
when dealing with BPS (Clevenger & Haymaker 2006; Hoes et al. 2009), and an increasing 
number of models has accordingly attempted to represent occupant behavior in a more realistic 
manner within BPS. Such models can be classified according to their complexity – here defined 
as the amount of detail in a model, which in turn results from its size and resolution (Zeigler & 
Oren 1979). 
 
At the lowest spectrum of complexity are the diversity factors, or schedules: hourly fractions 
from 0 to 1 which are multiplied for a maximum amount of e.g. heat gains due to people, 
equipment, lighting, etc. Schedules are commonly employed to represent occupant presence and 
occupant behavior in current BPS tools, due to their ease of use and to the incentives from the 
building code (Yan et al. 2015). However, it is argued that simple schedules are not 
representative of actual occupant behavior, which is typically stochastic and influenced by a high 
number of variables. Moreover, schedules neglect occupants’ diversity (O’Brien et al. 2017).  
 
For this reason, researchers have developed non-probabilistic, probabilistic, and agent-based 
models, which give a more accurate representation of people’s behavior (Gaetani et al. 2016; 
Gunay et al. 2013). Here, it is important to note that the required confidence in the building 
performance prediction depends on the purpose of the simulation. For example, Gaetani et al. 
(2016) argue that a more complex behavior model is needed when energy usage for a single 
building is assessed (design/retrofit), but such complexity may not be necessary or feasible when 
aggregating predictions across the scale of a district with a collection of buildings. Furthermore, 
different buildings and performance metrics may be affected in a diverse way by the various 
aspects of occupant behavior: some cases are extremely sensitive to the way a particular aspect is 
modeled, while others may be little affected. 
  
In practice, BPS users may not understand the details of available behavior models and may not 
use them as intended. Above all else, the modeler must justify the chosen behavior modeling 
approach on a case-by-case basis to ensure that it is fit-for-purpose. Figure 3 illustrated the fit-



14 
 

for-purpose framework for occupant behavior model selection and application (Gaetani et al. 
2016). First, there is a need to select an appropriate tool for the given system design complexity. 
Then, information on the design parameters should be commensurate with the level of detail of 
the model. The characteristics of BPS tools that incorporate occupant behavior should therefore 
vary according to application context. Highly complex behavior modeling software may not be 
of much use when simple energy use estimations are required. In contrast, for a building design 
phase that calls for detailed modeling, additional behavior modeling sophistication may be 
warranted. 
*** Insert Figure 13.3 *** 

Caption: A fit-for-purpose framework for occupant behavior model selection and application. 

Credit: Gaetani et al., 2016 

 
13.2.2 Summary of 32 case studies for occupant behavior models and data in Annex 66 
IEA EBC Annex 66: Definition and simulation of occupant behavior in buildings (Yan et al. 
2017), an international collaborative project involving more than 120 researchers from 20 
countries working together from November 2013 to May 2018, collected a set of 32 case studies 
(Clinton et al. 2017) of modeling occupant behavior in buildings using various computational 
decision support tools. 
  
Motivation to accurately represent occupant behavior in these case studies comes from BPS 
practitioner beliefs that occupant behavior is a major source of discrepancy between simulated 
and measured building energy performance and that current modeling practice with regards to 
occupant behavior is overly simplistic (O’Brien & Gunay 2016). Indeed, the previously cited 
review of nine current BPS programs by Cowie et al. (2017) identified “a widening gap between 
knowledge and implementation in the field of occupant behavior modeling.”  
 
Accordingly, the purpose of the case study review was to illustrate the range and types of 
occupant behavior modeling applications, to contribute to a framework for classifying these 
applications, and to explore which behavior modeling approaches are most appropriate for which 
contexts. Essential elements of this framework answer the canonical journalistic questions about 
any story: who, what, why, when, and where. To determine which model is most fit for which 
context, three dimensions emerge as being particularly important: the stakeholder and their 
problem (who and why); the building type, services and provisions (what); as well as the process 
stage and relevant tools (when). 
 
The most innovative cases of occupant behavior modeling provide a “demand-pull” view, as 
seen by the users of such tools, to counterbalance the “supply-push” perspective that many who 
create such models bring to the subject (Godin 2017). The case studies collectively provide a 
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framework for thinking about: (1) when occupant behavior becomes important for making 
decisions about buildings, (2) which tools are most appropriate for specific applications, and (3) 
what insights emerge from practical experience with these tools.   
 
13.2.3 Three representative case studies: design-stage application, operation and control-
stage application, and retrofit-stage application 
 
Case study 1 - the impact of occupant behavior modeling assumptions on energy efficiency 
measure performance 
To improve energy efficiency—during new building design and building retrofit—evaluating the 
energy saving potentials of energy conservation measures (ECMs) is critical. ECMs refer to 
building technologies (e.g., LED lights), control strategies (e.g., daylighting and dimming control 
of lights), and behavior changes (e.g., occupants turning off lights when leaving an office) that 
improve upon the per-unit energy use of comparable incumbent or “business-as-usual” 
technologies or approaches. Occupant behaviors significantly impact building energy use and 
raise uncertainty when estimating the effectiveness of ECMs. This case study presents a 
simulation framework of quantifying the impact of occupant behavior on ECM savings. 
 
Methodology 
The ECM savings are influenced by many factors such as the building type, weather data, 
building operation, and occupant behaviors. The estimated ECM savings would vary with 
different model input assumptions. Traditional ECM evaluation methods adopt deterministic 
inputs and generate a static single result of energy savings, which neglects the uncertainty of the 
ECM savings. However, estimating the uncertainties of the ECM savings is critical, especially 
during risk analysis and decision making for ECM investment (Heo et al. 2011). Decision 
makers should be aware of the potential risks of implementing ECMs before selecting the most 
appropriate ECMs for a specific building.  

In this case study, a simulation framework was proposed to evaluate ECM savings considering 
the variations of occupant-related inputs and their influence on the ECM energy savings (Figure 
4). This proposed framework includes the following steps: (1) defining the three occupant 
behavior styles representing people with different levels of energy consciousness (austerity, 
normal, and wasteful), using quantitative occupant behavior models; (2) developing three 
baseline models using each of the predefined three occupant behavior styles and other same 
model inputs such as weather data, internal heat gains and energy system efficiencies; (3) 
calculating the energy uses of the three baseline models; (4) applying the ECMs to each baseline 
model to create the alternate models for each ECM, and (5) simulating the ECM energy models 
to calculate their energy use.  

The simulated ECM saving results using the proposed framework are a range of values instead of 
a single fixed value, which reflects the possible variations of the ECM savings due to different 
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occupant behaviors in the building. Therefore, the framework can be adopted to evaluate ECM 
savings in a more comprehensive and robust way, giving decision makers the information they 
need to recognize and assess the potential risks of investing in ECMs in buildings with different 
occupant behaviors. ECMs with consistent large energy savings can be prioritized for investment 
compared to those ECMs with savings that are sensitive to occupant behavior style. 

*** Insert Figure 13.4 *** 

Caption: A framework to quantify the impact of occupant behavior on performance of ECMs. 

Credit: Sun and Hong, 2017 

 
This framework was demonstrated in a real office building to quantify the influence of occupant 
behaviors on ECM savings. Figure 5 shows the overall workflow of the pilot study. Field 
investigation was conducted in the building to gather information for creating the baseline 
energy model, including the geometry, zoning, number of occupants in each zone, and occupant 
schedules. Three occupant behavior styles, representing the proactive energy savers, average 
(norm) occupants, and the energy spenders, respectively, were adopted to represent different 
levels of energy consciousness and the boundaries of either extreme (as in energy savers and 
spenders). Occupant schedules, generated by the Occupancy Simulator with inputs from the site 
survey of the case building, were used in the energy models.  

Seven individual ECMs and one packaged ECM were evaluated in this study, including reducing 
lighting power density (LPD), reducing plug-in electric equipment power density (EPD), 
improving envelope performance, improving HVAC system efficiency, daylighting control, 
variable refrigerant flow system, and natural ventilation coupled with the variable refrigerant 
flow (VRF) system. These ECMs were chosen considering their application to a 15-year-old 
building designed to comply with ASHRAE Standard 90.1-2001 standards, which were adopted 
in the baseline models to represent existing buildings. The efficiencies of the ECMs in this study 
were obtained from the more recent ASHRAE 90.1-2013 standards. The impact of occupant 
behavior on ECM energy savings was evaluated in four different climates—Chicago, Fairbanks, 
Miami, and San Francisco—so that the potential sensitivity to climate could be studied as 
another dimension. The selected cities represent the four typical climate types in the United 
States: humid continental, subarctic, tropical (subtropical), and Mediterranean, respectively. 

Whole-building simulation using EnergyPlus was used to evaluate the impact of occupant 
behaviors on the ECM savings. Baseline models were developed in EnergyPlus to represent the 
investigated office building. EnergyPlus is an open-source program that models heating, 
ventilation, cooling, lighting, water use, renewable energy generation, and other building energy 
flows (Crawley et al. 2001) and is the flagship building simulation engine supported by the 
Department of Energy. It includes innovative simulation capabilities (e.g., sub-hourly time-steps, 
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natural ventilation, thermal comfort, co-simulation with external interfaces, renewable energy 
systems, and user customizable energy management systems). Some of the innovative 
capabilities, such as natural ventilation, daylighting, external schedules, and energy management 
systems, were used in this pilot study. 
*** Insert Figure 13.5 *** 

Caption: The workflow of the pilot study. 

Credit: Sun and Hong, 2017 
 
Results 

Figure 6 shows an example of the pilot study results, which illustrates the ECM energy saving 
percentages compared to the baseline models under the three behavior styles in Chicago. The 
simulation results indicate that the saving percentages of LPD, EPD, envelope, system 
efficiency, and daylighting control are minimally affected by occupant behavior styles. This is 
because they are all purely technology-driven ECMs, which don’t rely on the interactions with 
the occupants to save energy. On the other hand, the saving percentages of the VRF system, 
natural ventilation, and integrated ECM are significantly affected by occupant behavior styles, 
because the energy performance in these ECMs is closely related to how the occupants interact 
with the ECM. For example, once the VRF system is installed, which allows zonal control, the 
occupants have decisions to make on how to control their indoor units: the austerity occupants 
only turn on the indoor units when they feel hot, normal occupants turn on the indoor units as 
long as they are in the room, while the wasteful occupants keep the indoor units on during the 
entire working hours. Also, cooling and heating setpoints are different among the behavior 
styles. Therefore, the energy performance of such ECMs heavily depends on how the occupants 
behave. 

 

*** Insert Figure 13.6 *** 

Caption: ECM saving percentages compared to the baseline models with different behavior 

styles in Chicago. 

Credit: Sun and Hong, 2017 

 
Conclusion 

The main findings from this study are:  
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(1) The occupant behavior style has significant influence on building energy use. Buildings 
occupied by energy spenders could consume more than twice the energy of the energy savers. 

(2) For occupant-independent ECMs, which are purely technology-driven and have little 
interaction with the occupants, such as reducing LPD, reducing EPD, improving envelope 
properties, and improving HVAC system efficiency and daylighting control, energy saving 
percentages are minimally (less than 2%) affected by occupant behavior styles. For occupant-
dependent ECMs, which have strong interaction with the occupants, such as the VRF system and 
natural ventilation, energy saving percentages are significantly (up to 20%) affected by occupant 
behavior styles. 

(3) The wasteful behavior style generally achieves the greatest absolute energy savings while its 
saving percentages are close to or even lower than those of the austerity and normal behavior. 
This is important information for decision makers in retrofit planning. 

(4) The occupant schedule has certain impacts on the simulated results of ECM savings, 
especially for the occupant-dependent ECMs coupled with the austerity behavior style. Adopting 
realistic occupant schedules rather than normalized ones would help improve the accuracy of 
ECM saving evaluation.  

The zero-net energy (ZNE) technologies are successful and growing today as energy 
performance requirements are becoming more and more stringent. ZNE technologies, such as 
natural ventilation, HVAC control, and demand response, tend to need more interaction with 
occupants. They are more sensitive to occupant behaviors and reactions to stimulations, which 
makes occupant behavior a significant uncertainty factor for the technology’s performance. In 
other words, occupant behavior may significantly change the way technologies are designed and 
expected to perform. The proposed framework provides a novel simulation approach enabling 
energy modelers to calculate the ECM savings as a range rather than a single fixed value 
considering the variations of occupant behaviors in buildings, which provides a critical input to 
the risk analysis of ECM investments. 

Case study 2 - Simulating the dynamic feedbacks between individual-level behavioral 
adaptations and building operations 
Real office building occupants interact with and adapt to their surrounding environments in 
deliberate and meaningful ways that affect both energy consumption and indoor environmental 
quality. As suggested throughout this chapter, numerous studies have estimated the magnitude of 
these effects, establishing the high degree of influence that occupant behavior exerts on building 
energy use and thermal comfort relative to other potentially significant factors (Hong & Lin 
2013; Haldi & Robinson 2011; Bourgeois et al. 2006). 
 
Given the importance of occupants’ environmental adaptations to building energy and comfort 
outcomes, this case study presents a Human and Building Interaction Toolkit (HABIT) that co-
simulates building energy and office occupant behavior. The toolkit uses a field-validated, agent-
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based model that estimates both individual and group-level comfort/behavior outcomes; 
accommodates whole building-level analyses; and yields comprehensive outputs on energy, 
behavior, and indoor environmental quality (IEQ) that can guide the design and operation of 
low-energy, high quality office building environments. 
      
The case study begins by describing the HABIT co-simulation exchange and its underlying 
agent-based model of thermally adaptive behaviors. The usefulness of the toolkit is then 
demonstrated through a series of case study simulations that explore a range of occupant 
behavior scenarios, including multiple cases where wider thermostat set point ranges are paired 
with the provision of efficient local heating and cooling options for occupants. The relative 
merits of each scenario are assessed by comparing resulting energy use intensities alongside 
occupant thermal unacceptability and productivity outcomes. 
 
Methodology           
Co-simulation overview    
HABIT pairs a previously published ABM of office occupants’ thermal comfort and adaptive 
behaviors (Langevin et al. 2016) in MATLAB with whole building energy simulations of office 
buildings in EnergyPlus (BTO 2017) using the Building Controls Virtual Test Bed (BCVTB) co-
simulation program (LBNL, 2018). 
      
The EnergyPlus/MATLAB information exchange runs as follows: EnergyPlus simulates zone-
level thermal conditions and passes these as inputs to the MATLAB comfort/behavior model; the 
MATLAB model predicts thermal comfort and related behavior outcomes for each occupant 
(i.e., fan on; window open, etc.) and aggregates these outcomes across all agents in the zone; the 
aggregated behavior outcomes are passed back to EnergyPlus and used to adjust appropriate 
zone schedules (i.e., heater/fan equipment gains; thermostat set points) for the next time step; the 
process repeats until a simulation end time is reached. 
      
The BCVTB negotiates single runs of the above MATLAB/EnergyPlus exchange. However, the 
MATLAB comfort/behavior model contains probabilistic elements. Thus, the exchange must be 
re-run multiple times to assess a range of possible outcomes.    
      
Agent-based behavior model overview 
In the default HABIT setup, each office occupant is represented in the MATLAB 
comfort/behavior model as a simulated agent that acts adaptively based on the scheme described 
in Langevin et al (2015). Under this scheme, behavior is considered to be the by-product of a 
negative feedback loop in which an agent acts to bring its current thermal perception into line 
with a reference range of seasonally acceptable ASHRAE thermal sensations, despite 
environmental disturbances. 
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An agent’s current thermal sensation and seasonally acceptable thermal sensation range are both 
modeled probabilistically using the distributions developed in Langevin et al (2013); daily 
occupant arrival/lunch/departure times are also sampled from a normal distribution around user-
defined means. Agent behavior choices may be constrained by the building management or by 
other agents in the space that share a given control. The reader is referred to Langevin et al 
(2015) for full details on the HABIT ABM and its validation. 
      
Table 1 presents the full set of behavioral adaptations simulated by the HABIT ABM and shows 
how their feedback on the thermal environment/comfort is represented on both the MATLAB 
and EnergyPlus sides of the BCVTB co-simulation. 
 
Case study simulations  
To demonstrate the usefulness of the above simulation framework, case study simulations were 
performed for a medium-sized office building. The simulated building has three stories with 
5600 m2 of total floor space and one core/four perimeter thermal zones per floor; masonry 
construction with 20% glazing; variable-air-volume air-handling units with hot water reheat; an 
occupant density of 0.05 person/m2; and a baseline occupied infiltration rate of 2.4 CFM/m2 
applied to perimeter zones (see Hendricken et al. (2012) for more details).  
 
*** Insert Table 13.1 *** 

Caption: Behaviors simulated in the HABIT framework and their default local/zone-level 

feedbacks in BCVTB co-simulation. 

Credit: Langevin et al., 2016 

       
Case study simulations are performed on all zones of the case study building for the months of 
January and July in the Philadelphia climate.2 These simulations each cover 15 zones (3 core; 12 
perimeter) and 297 occupants. These case study simulations are ultimately intended to yield a 
complete picture of the link between behavior, energy, and IEQ across multiple thermal zones 
with different orientations and locations within the general building geometry. 
     
In each of the simulations, multiple behavior scenarios are run to test the influence of behavior 
modeling assumptions on energy and IEQ outcomes. As shown in Table 2, behavior scenarios 
range from a “Baseline” case (B) where no thermally adaptive actions are possible, to a “Fully 
Unrestricted” (UR) case where a full range of actions is possible, and finally to a series of 
“Wider Set Points” (WSP) cases where zone thermostat set point ranges are progressively 
                                                 
2 Refer to Langevin et al (2016) for additional case study simulations that explore the sensitivity of outcomes to 
climate and location. 
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widened and occupants are provided with more efficient local heating/cooling options at their 
desks. The “Wider Set Points” scenarios are of particular interest in testing the degree to which 
localized heating/cooling devices can save energy while maintaining or improving occupant 
thermal comfort levels (as proposed, for example, in Hoyt et al (2014)). 
  
*** Insert Table 13.2 *** 

Caption: Behavior scenarios for case study simulations. Note: cell values indicate EnergyPlus 

settings associated with each behavior. 

Credit: Langevin et al., 2016 

  
Simulation outcomes are evaluated from both the energy and IEQ perspectives. For energy, an 
energy use intensity is calculated; for IEQ, the percentage of occupants that the behavioral model 
indicates are outside their acceptable thermal sensation range without any behavioral remedy is 
recorded at each time step and averaged across the entire simulation period, yielding an overall 
percentage thermally unacceptable outcome (a thermal comfort indicator). Relative work 
underperformance percentage (a productivity indicator) is also evaluated using the polynomial 
relationship presented in Jensen et al. (2009), which describes relative performance in terms of 
thermal sensation: 
      
Relative work performance = −0.0069tsv2 − 0.0123tsv + 0.9945     (1) 
      
where tsv is an occupant’s thermal sensation vote on the ASHRAE sensation scale. Relative 
underperformance is then simply 1 − relative work performance. 
     
Results 
        
 
*** Insert Figure 13.7 *** 

Caption: (a) Summed electric/gas energy use intensity, (b) thermal unacceptability %, and (c) 

work underperformance %, for whole building, Philadelphia. Note: whiskers are 95% prediction 

interval on mean result. 

Credit: Langevin et al., 2016 
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Key results for the case study simulations are summarized through Fig. 7a–c. Figure 7a shows 
that HVAC energy use intensity increases slightly in both January and July from the “Baseline” 
behavior scenario through the “Fully Unrestricted Behavior” scenario; the energy use intensity 
then moves back down across the “Wider Set Points” scenarios, which range from an initial ±1◦ 
C widening of the set point range (“Wider Set Points”) to a ±4◦C widening of this range (“Wider 
Set Points (Aggressive)”).    
      
Energy end use breakdowns in Fig. 7a allow a more specific examination of these trends. In 
January, for example, significant reductions in HVAC energy use for the “Wider Set Points 
(Aggressive)” scenario (∼24%) result from a decrease in gas space heating consumption that 
more than offsets an associated increase in electrical equipment energy from more frequent use 
of personal heaters. Similarly, in July, significant reductions in HVAC energy use by the “Wider 
Set Points (Aggressive)” scenario (∼37%) result from a decrease in electric space cooling 
consumption that more than offsets a small associated increase in electrical equipment energy 
from more frequent use of personal fans. 
      
Regarding IEQ, Fig. 7b shows a significant decrease in percentage of time thermally 
unacceptable relative to the baseline through the “Wider Set Points (Aggressive)” scenario in 
January, and through the “Wider Set Points (Moderate)” scenario in July, with the lowest 
thermally unacceptable percentage occurring as in the zone-level simulations for the “Fully 
Unrestricted Behavior” scenario in both months. In July, however, the “Wider Set Points 
(Aggressive)” scenario yields a thermally unacceptable percentage for July that is close to that of 
the baseline, with the prediction intervals for the two overlapping. This result also violates the 
10% thermally unacceptable threshold used in thermal comfort standards, suggesting that a 
“Wider Set Points (Aggressive)” strategy for a Philadelphia office in the summer will yield 
substantial warm discomfort amongst occupants. Work underperformance results for this 
scenario in Fig. 7c reinforce this conclusion, moving up to 3% underperformance as a result of 
the high cooling set point. Ultimately, a “Wider Set Points (Moderate)” strategy is the better 
option for achieving significant HVAC energy savings (∼28%) while maintaining good IEQ in 
the Philadelphia summer months. 
 
Conclusion 

Taken together, the results from this case study suggest that building managers can pair the use 
of more efficient local heating and cooling options with strategic thermostat set point 
adjustments as a simple way of saving substantial amounts of energy (up to 24/28% in 
heating/cooling months, respectively) while also improving occupant thermal acceptability. Care 
must be taken to consider additional outcome metrics, however: managers who value occupant 
productivity above all else, for example, may view the small productivity decrements predicted 
from raising cooling set points as unacceptable. Moreover, in the heating cases, the potential 
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disadvantages of trading natural gas for electric heating fuel in terms of energy costs and 
greenhouse gas emissions must also be taken into consideration.3 
     
Case study 3 - Modeling and evaluating the energy savings potential of behavior-focused 
retrofit measures 
Occupant behavior in buildings is a leading factor influencing building energy use. Low-cost 
behavioral solutions have demonstrated significant potential energy savings. Estimating the 
behavioral savings potential is important for a more effective design of behavior change 
interventions, which in turn will support more effective energy-efficiency policies. This case 
study introduces a simulation approach to quantify the energy saving potentials of occupant 
behavior measures.  
 
Methodology 
This case study investigated the energy saving potentials of occupant behavior measures by (1) 
conducting field investigation on a real office building (including the geometry, zoning, 
occupancy schedule, lighting schedule, as well as plug load power density and schedule), (2) 
developing the baseline models based on the above information, (3) defining five occupant 
behavior measures, including lighting, plug load, thermal comfort criteria, HVAC control and 
window control, and (4) running simulation to calculate the energy saving potentials of the 
occupant behavior measures across four typical U.S. climates (Chicago, Fairbanks, Miami, and 
San Francisco) and two vintages (1989 and 2010). Overall methodology is illustrated in Figure 8. 
*** Insert Figure 13.8 *** 

Caption: Overall methodology. 

Credit: Sun and Hong, 2017b 

 
The case building has two above-ground stories with a total conditioned floor area of 1,723 m2. 
Main room functions include office, conference room, classroom, and lounge (corridor). Smaller 
corridors are merged into office zones for simplification. The perimeter zones have operable 
windows, which allow the occupants to open windows for cooling or ventilation. The total number 
of occupants in the case building is 63. Figures 9 and 10 show the floor plan of the first and second 
floors, indicating the room functions. Baseline models representing the case building were 
developed in EnergyPlus. 
 
*** Insert Figure 13.9 *** 

Caption: The 1st floor plan. 

                                                 
3 These cost tradeoffs are further quantified in Langevin et al (2016). 
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Credit: Sun and Hong, 2017b 

*** Insert Figure 13.10 *** 

Caption: The 2nd floor plan. 

Credit: Sun and Hong, 2017b 

 
Five occupant behavior measures implemented in this case study are: (1) Lighting control – lights 
are only on if a space is occupied and occupants feel too dark. The conditional probability of 
turning on/off the lights follows a three-parameter Weibull distribution, defined in Wang’s paper 
(Wang et al. 2015). In this study, we referred to the parameters’ values in Wang’s paper; (2) Plug 
load control – 30% of power is turned off if unoccupied; (3) Thermal comfort criteria – two thermal 
comfort criteria were considered, one is the ASHRAE standard 55 comfort zone limits 
(ANSI/ASHRAE 2013), where the upper temperature limit of the ASHRAE 55 comfort zone was 
taken as the cooling setpoint in the simulation while the lower limit was taken as the heating 
setpoint. The other one is the adaptive comfort model (Brager & De Dear 2001) with 80% 
acceptability limits to calculate a dynamic comfort range based on ambient temperature, which 
was then used as dynamic cooling/heating setpoints in simulation; (4) HVAC control – HVAC is 
turned on if a space is occupied and occupants feel hot (in cooling mode) or cold (in heating mode). 
Ren’s model (Ren et al. 2014) was adopted to estimate the time-step HVAC control status in our 
study, which used a three-parameter Weibull distribution function to describe different air 
conditioning usage patterns; and (5) Window control – the control logic is illustrated in Figure 11. 
The Weibull distribution functions describing the conditional probability of turning on/off the 
lights and HVAC, which were defined by Wang (Wang et al. 2015) and Ren (Ren et al. 2014), 
were adopted in this study. Other than the individual measures, all the five measures were 
integrated as well and their integral energy savings were simulated. 
*** Insert Figure 13.11 *** 

Caption: Control logic of window Measure. 

Credit: Sun and Hong, 2017b 

 
The stochastic occupant schedules were generated by the Occupancy Simulator. Compared with 
the normalized identical occupant schedule in all spaces, the generated schedules can reflect the 
variation, diversity, and stochastic characteristic of the realistic occupant movements.  To make 
it consistent for all the studied measures, the same set of generated schedules is applied to both 
the baseline model and the five occupant measures.  
 
Results 
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Figure 12 shows an example of the breakdown end uses of the baseline model, the five 
individual measures, and the integrated measure. Each measure has its different impact on 
energy consumption: (1) the lighting measure and the plug load measure reduce the internal heat 
gains, which cut the cooling load but raise the heating load; (2) the comfort criteria measure 
reduces the heating/cooling load by enlarging the comfort boundary; (3) the HVAC measure and 
the window measure reduce the energy consumption by decreasing the HVAC operation time. 
When they are integrated, the effect of (3) is relatively weakened due to a lower cooling load 
level resulting from (1) and (2), and due to the higher heating load resulting from (1). 
 

 
*** Insert Figure 13.12 *** 

Caption: End-use energy savings of all five individual measures and integrated measure in 

Chicago and San Francisco for the baseline model of vintage 2010. 

Credit: Sun and Hong, 2017b 

 
Based on the simulation results, the occupant behavior measures can achieve considerable 
energy savings as high as 22.9% for individual measures and up to 41.0% for the integrated 
measures. The main energy savings captured by the occupant behavior measures come from the 
avoidance of energy waste in unoccupied rooms especially for their lighting, plug load, and 
HVAC systems.  
It should be noted that if the static occupant schedules in ASHRAE standard 90.1 were used, the 
behavioral measures savings will be significantly reduced by up to 50%. The occupant schedule 
makes a significant difference on the energy savings of occupant-based measures. Therefore, 
when estimating the potential energy savings of occupant-related measures, it is crucial to apply 
realistic occupant schedules that reflect occupancy variations in each room.  
Although energy savings of behavior measures would vary depending upon many factors, the 
presented simulation approach in this case study is robust and can be adopted for other studies 
aiming to quantify occupant behavior impact on building performance. 
 
13.3 Future perspectives on data and computational tools for occupant behavior modeling 
Although significant progress on occupant behavior modeling and simulation has been made 
through international collaboration under IEA EBC Annex 53 (Yoshino et al. 2017) and Annex 
66, as well as the associated development of an occupant behavior research community, future 
work will be challenged to leverage the interdisciplinary nature of occupant behavior research, 
communicate its contribution to a building industry that is moving towards zero-net energy or 
zero-net emissions, and embrace the adoption of supporting technologies for behavior research 
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like Internet of Things (IoT), big data, machine learning, and exascale computing. A few of the 
most pressing needs for future occupant behavior research are enumerated below. 
 
Data: (1) develop low-cost and reliable methods and tools to collect large-scale, high-quality 
occupant data covering all behavior types (i.e., presence and movement, adaptive behavior, 
comfort preference), occupant types, building types (commercial and residential), cultures, and 
climates, through in-situ smart sensing and online surveys and/or lab settings that can better 
mimic field settings through innovative use of virtual reality technologies, (2) employ machine 
learning algorithms and stochastic modeling techniques to extract knowledge and establish 
mathematical models of occupant behavior from the collected data, and (3) develop or adopt data 
sharing protocols that standardize variable types and response formats and substantively address 
behavioral data privacy and security concerns. 
 
Modeling and simulation: (1) develop representation of complex occupant effects and 
interactions at various scales (e.g., group behavior, social dynamics, inter-occupant behavior 
diversity, multiple behavior choice hierarchies, aggregation to the whole-building or grid-level), 
(2) establish a global open-source repository of occupant behavior models using standardized 
representation schema to enable interoperability between tools, users and applications, (3) 
implement a rigorous and transparent process of model creation, evaluation and verification to 
ensure model validity and applicability, (4) integrate occupant modeling with building 
information modeling in the building design and operation workflow, and (5) develop a synthetic 
population of building occupants with representative behavior types to support agent-based 
modeling and simulation. 
 
Application: (1) develop guidelines and tools for fit-for-purpose application of an occupant 
behavior model suite in commonly-used building energy simulation tools, (2) improve occupant-
related assumptions and increase the use of occupant behavior models in critical decision points 
of the building life cycle including load calculation, evaluation of energy conservation measures, 
selection of equipment and system types, code compliance, performance rating, and occupant-
responsive model predictive control, (3) quantify key building performance uncertainties related 
to occupant behavior and choose design strategies that are robust to these uncertainties in 
fostering energy-positive human-building interactions, and (4) establish clear communications 
with customers or stakeholders regarding the influence that the diversity and stochasticity of 
occupant behavior has in determining a range of possible outcomes for key building performance 
metrics. 
 
Interdisciplinary collaboration: occupant behavior is diverse and stochastic, requiring an 
interdisciplinary approach to gain a deeper understanding that spans building science, 
environmental engineering, social and behavioral science, data science, and computer science. 
Through several IEA EBC annexes (i.e., Annex 53, 66 and 79), social scientists and 
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psychologists contributed to the design of surveys that explore the link between social and 
contextual factors, such as culture, gender, age, and habits, and occupants’ energy use behaviors. 
This contribution is important and complementary to the engineering approach of using 
measured variables, such as indoor and outdoor environmental parameters, to formulate 
mathematical algorithms that yield accurate probabilities of occupants’ behavioral actions.  
Fostering an interdisciplinary approach that engages building designers and operators is also 
crucial to the practical integration of occupant behavior insights (e.g., occupant needs, human-
building interactions) across the building life cycle (design, construction, operation and retrofit), 
supporting the achievement of building performance goals through leveraging both the 
technological and human dimensions (D’Oca et al. 2018).    
 
To address the aforementioned research needs, it is crucial to foster and sustain an occupant 
behavior research community through continuous international collaboration such as the on-
going effort of IEA EBC Annex 79 (http://annex79.iea-ebc.org/), IEA Task 24 Phase II: 
Behavior Change in DSM (http://www.ieadsm.org/task/task-24-phase-2/), and professional 
organizations such as ASHRAE Multidisciplinary Task Group on occupant behavior in buildings 
(MTG.OBB). Dedicated conferences such as BECC – Behavior, Energy and Climate Change 
(beccconference.org), and Behave - European Conference on Behaviour and Energy Efficiency 
(information on the 2018’s edition is available at https://www.zhaw.ch/en/about-
us/news/events/behave/) also provide excellent venues for researchers and practitioners to 
exchange and share knowledge, experience, success stories and important lessons learned about 
the growing field of occupant behavior research.  
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