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Abstract

Data-driven techniques that extract insights from sensor data reduce the
cost of improving system energy performance through fault detection and
system health monitoring. To lower cost barriers to widespread deploy-
ment, a methodology is proposed that takes advantage of existing sensor
data, encodes expert knowledge about the application system to create ’vir-
tual sensors’, and applies statistical and mathematical methods to reduce the
time required for manual configurations. The approach combines sensor data
points with encoded expert knowledge that is generic to the application sys-
tem but independent of a particular deployment, thereby reducing the need
to tailor to individual deployments. This paper not only presents a method
that detects faults from measured energy data, but also 1) describes an en-
gagement method with experts in the energy system domain to identify data,
2) integrates domain knowledge with the data, 3) automatically selects from
among the large pool of potential input data, and 4) uses machine learning
to automatically build a data-driven fault detection model. Demonstration
on a commercial building chiller plant shows that only a small number of
virtual sensors is necessary for fault detection with high accuracy rates. This
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corresponds to the use of only five out of 52 original sensor data points fea-
tures. With as few as four features, classification F1 scores exceed 90% on
the training set and 80% on the testing set. The results are implementable
and realizable using off-the-shelf tools. The goal is to design with domain
experts an energy monitoring system that can be configured once and then
widely deployed with little additional cost or effort.

Keywords: machine learning, time series, fault detection, anomaly
detection, energy savings, energy efficiency

1. Introduction

Renewable energy technologies as well as building energy management
systems have upwards of hundreds of existing sensor data points used for
control and monitoring. Furthermore, innovations in “Internet of Things”
(IoT) devices have led to connected power meters, lights, occupancy sensors,
and appliances that are capable of data collection and communication. This
data presents a valuable opportunity to extract meaningful information and
take data-driven action.

The motivation for transforming data from these devices into actionable
information is to improve operations, monitor system health, increase energy
generation, and decrease energy waste. The development and widespread
use of energy conservation and renewable energy technologies are critical
to minimizing negative environmental consequences. To that end, increas-
ing profitability for users and decreasing costs of these technologies enables
market penetration and widespread adoption. On the energy demand side,
commercial buildings consume 19% of US primary energy [1]. Of this, an
estimated 15% to 30% of energy used in commercial buildings is wasted by
poorly maintained, degraded, and improperly controlled equipment [2].

However, one cannot achieve scalable deployments of analytics and ap-
plications across systems if deploying solutions requires vendors and do-
main experts to install sensors and information technology infrastructures
that require tailoring each solution for each deployment. Today, even well-
established commercial offerings are not deployed at scale because costs are
prohibitive. Thus, a major challenge to scalability is reducing hardware and
software installation costs, manual configuration requirements, and manual
monitoring.
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To address this challenge, this paper describes a novel framework for
fault detection that combines existing data from control systems with expert
knowledge that is general to the type of energy system to create new virtual
sensors. These are ’virtual’ in the sense that they do not correspond to
values taken directly off a physical sensor but are calculated from values
taken from physical sensor(s). The use of expert knowledge that is generic
to the energy system application but independent of individual instances
reduces the need for configuration to individual deployments. Techniques
from statistics and machine learning automate the process of selecting inputs
to the fault detection system. The input data is converted into a simple form
suitable for off-the-shelf machine learning algorithms.

This work’s novelty is the process to obtain relevant domain knowledge,
create and select virtual sensors, and build a data-driven fault detection sys-
tem. This method is not tied to a particular type of energy system. Further-
more, the designer of this fault detection system does not require knowledge
about the energy system. Deployment at a specific instance of an energy
system also does not require detailed knowledge about the specification and
configuration of a specific instance.

Energy systems are complex with many potential data points that can
be tracked. These include signals, inputs, responses, and states related to
thermodynamic, meterological, control, mechanical, and electrical properties
of the system. We present a method for selection of the most useful sensors
for fault detection. The desirability of fault detection and the problem of a
large quantity of potential sensors to select from are common across energy
systems, be it HVAC, energy generators, distribution systems, or energy end
uses. Our data driven methodology can be extended to other energy systems.
People who are not experts in the energy system nor a specific instance can
follow our proposed scheme to create a fault detection system.

Energy applications for machine learning include assessing solar and wind
energy. Solar irradiance was predicted by applying logistic regression to im-
portant meteorological variables found through analysis with Boosted Re-
gression Trees [3]. To estimate wind turbine power output, five models were
compared based on measure-correlate-predict methods using artificial neural
networks, Support Vector Machines for regression and random forests [4].

For energy consumption in buildings, various machine learning models
were regressed on five commonly accessible building and climate features
to estimate annual commericial building energy consumption across the US
[5]. Deep learning was applied to forecast 24 hr cooling loads in both a su-
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pervised manner and an unsupervised manner to extract features as input
for cooling load prediction [6]. Real time building energy consumption data
was predicted by combining time-series sliding window analysis with meta-
heuristic optimization-based machine learning [7]. Machine learning has also
been used to create building control strategies by constructing approximate
model predictive control laws by using multivariate regression and dimen-
sionality reduction algorithms [8]. By learning occupant behaviour through
supervised and unsupervised learning, rules were created to infer real-time
room setpoints for office cooling [9]. For fault detection, machine learning
frameworks have been proposed to identify and classify islanding and grid
disturbance [10] and to detect faults and in wind turbines [11]. This paper
generalizes and adapts [11] for fault detection in buildings.

In fault detection literature, a paper in a three part review series of fault
detection and diagnosistics for processes [12] describes a common set of crite-
ria with which to compare and evaluate fault detection and diagnostic meth-
ods and provides and describes a taxonomy for the methods. There also
exist review papers that survey specific categories of fault detection, such as
supervisory methods, model based techniques, and trends in applications of
model based techniques [13]. Another review paper surveys fault diagnostics
with multivariate statistical models [14]. A further paper comments on the
era of “big data” in the context of analyzing process history data [15]. An
overview of analytical methods and features of methods used in commercial
fault detection and diagnostics offerings for buildings is provided in [16]. It
documents that rule based approaches are still common, but there is growing
use of process history based approaches.

Fault detection approaches using machine learning has also been applied
to HVAC systems. For fault detection in buildings, machine learning has
been applied to fault diagnostics in air handling units modeled as a Bayesian
probablistic model [17] and for fault detection in chiller plants modeled as
a gaussian mixture model [18]. By using physical models, state estimation
techniques have been applied to identify faults by comparing the deviation
of actual measurements from their values as predicted by the physical model
[19]. HVAC sub-systems have also been modelled as agents in a directed
graphical model that is trained on HVAC data under normal running condi-
tions [20]. Neural networks have been employed to predict physical proper-
ties and calculated weighting factors for the neural networks to get thresholds
above which faults are detected with subtractive clustering analysis used for
fault diagnosis [21]. In terms of black box modeling, three different data
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mining techniques have been compared for outlier detection to detect faults:
density-based spatial clustering of applications with noise, K-means, and
classification and regression tree [22]. Grey box methods include use of Sta-
tistical Process Control (SPC) to measuring and analyze variations, Kalman
filtering to provide predictions and determine SPC control limits, and system
analysis for fault propagation across subsystems [23]. Rule based techniques
include using expert rules to create a cloud-based expert-rule based fault
detection system [24].

In contrast to these studies, this paper not only presents a method that
detects faults from measured energy data, but also 1) describes an engage-
ment method with experts in the energy system domain to identify data, 2)
integrates domain knowledge with the data, 3) automatically selects from
among the large pool of potential input data, and 4) uses machine learning
to automatically build a data-driven fault detection model. This scheme is
not specific to HVAC systems but has also been demonstrated on wind tur-
bines [11]. Most previous works rely on experts to directly select data input
and design the fault detection system, for example, by specifying rules or
deciding how to model the system being monitored. In contrast, we present
a methodology that automates the data selection and fault detection design.

One challenge with data-intensive energy monitoring systems is the imple-
mentation and processing costs associated with the large number of sensors
required. This paper describes a framework that combines expert knowledge
about an application with data readily available from an existing control sys-
tem. Automated tools are used to identify data points relevant for health
monitoring, and then machine learning to identify the most effective model
parameters for configuring the system design. This procedure is demon-
strated on developing a health monitoring system for fault detection in a
commercial building HVAC system.

The additional expert knowledge features are based on 1) an understand-
ing of the measured physical values and performance metrics, 2) the time
series behaviour of the sensor measurements, and 3) statistical features. Fea-
ture selection methods are then applied to this expanded feature set to select
the most important overall features and to validate whether the new features
selected are more useful for prediction than the original ones. In the health
monitoring field and in application domains, variable and feature selection is
often obtained from expert judgement. In the machine learning field, variable
and feature selection commonly involves using mathematical and statistical
techniques, as summarized by Guyon and Elisseeff [25] and Li et al [26],
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which will be the process employed in this paper.
Next, machine learning models are trained to predict faults using both

the expanded feature set and the original data set from the control systems
to predict faults. The data from the control system is collected from the
supervisory control and data acquisition (SCADA) system, the industrial
computer system used for automation and control.

This paper is organised as follows: Section 2 describes the proposed
methodology. Section 3 describes a case study to design a fault detection
system for a commercial building chiller plant. Section 4 applies the method-
ology to the case study. Section 5 reports the experimental results. Section
6 summarises the conclusions.

2. Method

2.1. Overview

A data-driven scheme is presented for generalized fault detection using a
combination of encoded expert knowledge and statistically derived features
from sensor data. The proposed method, illustrated in Figure 1, uses machine
learning and statistical techniques to optimally chose a subset of sensor data
from existing data in the system. This sensor data is supplemented with
expert engineering knowledge that is generic to the class of equipment. The
method is applied to a chiller plant that provides centralized chilled water to
cool large buildings and multi-building campuses.

Using the data from the control system, new features are created that
incorporate knowledge about the application. The creation of new features
derived from existing data variables in the control system reduces the cost of
implementation by avoiding the purchase, installation, and setup of new sen-
sors. New features are also included to improve fault detection performance.

To create application domain knowledge features, experts were inter-
viewed to determine metrics that were useful to monitor the condition of
equipment and energy performance.

2.2. Collection of Domain Knowledge

2.2.1. Selection of Experts

Individuals with hands on experience with maintenance, operations, and
working with the existing sensor data were targeted for interviews. For chiller
plants, these experts include building, chiller plant, maintenance, and facili-
ties managers, operators, and specialists. Similar roles exist for other types
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Figure 1: Schematic diagram illustrating the incorporation of domain knowledge from
experts with sensor data for automated feature and sensor selection and a data driven
machine learning model to detect faults

of energy systems. For wind turbines, these experts have titles such as per-
formance specialists and wind turbine operators.

Experts also include scientists, researchers, technical leads at control com-
panies, and operators. Other sources of domain knowledge include operations
and design training manuals, previous work experience in the industry, and
basic science and engineering knowledge. This reference material can be used
to generate a list of proposed features that can then be presented to experts
for comments.

2.2.2. Interview Questions

Once identified, experts were individually interviewed in sessions lasting
between 30 minutes to one hour. During interviews, the following questions
were asked. These questions were asked at the level of the whole system
(i.e., the chiller plant), components (e.g., primary chiller water loop), and
equipment (e.g., a chiller, a pump, a valve).
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• What sensor values do you check? How?

• What metrics do you calculate and track?

• What are common and/or standard metrics?

• What sensors are associated with those metrics?

• How are these metrics calculated?

• What data do you wish was readily available?

• If you had a dashboard for your data, what would you like to see on it?

• What types of plots do you create? Can you please describe them?
What are on the axes?

• What values do you plot against one another?

• What time scales do you look at?

• What time scales would be too noisy or transient?

Experts do not need to be interviewed for each deployment. Experts
should be interviewed when there are differences in the type of equipment or
components. For example, interviews should be conducted for fixed versus
variable speed chillers, and for plants with secondary chilled water loops
versus those with only primary chilled water loops. However, additional
interviews are not necessary for differences in, for example, equipment size,
model number, or differing numbers of cooling towers or chillers.

2.3. Application Domain Knowledge Features

The collected application domain knowledge supplements control system
data as shown in Figure 1 to create candidate features. These candidate
features can be thought of as virtual sensors because they do not correspond
to values taken directly off a physical sensor but are calculated from values
taken from physical sensor(s). The original data is combined with this new
knowledge in a simple form that is appropriate as input into various machine
learning algorithms. The new features created using application domain
knowledge include: engineering knowledge features, time series features, and
statistical features.
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2.3.1. Engineering Knowledge Features

Engineering knowledge features are created using knowledge of the quan-
tities that the original features correspond to, the location of where data for
those features is collected, and an understanding of the operations of the
application. For example, the cooling tower range temperature (the tem-
perature drop across the cooling tower) is an important metric to track the
performance of a cooling tower. Thus, a new feature is the difference be-
tween the temperature of the water approaching a cooling tower and the
temperature of the water leaving a cooling tower.

2.3.2. Time Series Features

Since physical systems are the focus of these fault detection applications,
it is known that the original features and derived features are physical quan-
tities that form time series. Timestamped data samples are not independent
from one another. It is desirable to include time related data. To that end,
time series features are created from the data samples, the selection of which
would be driven by the targeted application and faults.

In the example presented here, the data samples are converted to sliding
time series representations of one hour using lagged features. To represent
the data as time series, lagged features — also called delays — for each
original feature are created to include the data from time t − 60min to t.
For example, if the original feature “Chiller 1 Power” is at time t and the
sampling resolution is 5 minutes, one new feature is “Chiller 1 Power at time
t− 5min”, another new feature is “Chiller 1 Power at time t− 10min”, etc.
all the way to “Chiller 1 Power at time t− (n ∗ 5)min”.

The n, which is called the order of the lag, is selected using Akaike’s
Information Criterion (AIC) [27] and Bayesian Information Criterion (BIC)
[28].

In this study, for each feature, orders recommended by both AIC and
BIC are calculated and the max order between AIC and BIC is selected.

2.3.3. Statistical Features

Statistical features are created from the original features and can be se-
lected based on the application. The first statistical feature is the sliding
average. For example, the sliding average of “Outside Air Temp” at sample
time t is the average of “Outside Air Temp” between t − n to t. The slid-
ing average is also a finite impulse response filter commonly called a boxcar
filter. This has the benefit of suppressing high frequency noise. The second
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statistical feature is the sliding standard deviation. The size of the sliding
window is the size of order selected for delay variables.

2.4. Feature Selection and Data Reduction

2.4.1. Overview

Feature selection methods are conducted on the original variables and new
features to find subsets of features useful for prediction of faults. Reducing
the number of features is also desirable as it reduces the data requirements
and computation time. To validate the usefulness of the new features to
detect faults, we can observe if and how many of the new features are among
the top selected features.

2.4.2. Univariate Feature Selection

First, variance is calculated for each feature. Then, features with zero
variance are removed as their values are constant and provide no diagnostic
information. Features with low variance can also be filtered out and removed
from the list of candidate features.

There are numerous univariate feature selection methods such as uni-
variate statistical tests of significance and similarity scores. These methods
identify individual variables. However, individual variables may become re-
dundant when used collectively.

2.4.3. Minimal-Redundancy-Maximal-Relevance criterion

Next, the mutual information based minimal-redundancy-maximal-relevance
criterion (MRMR) is run on the derived features and the original features.
MRMR is a feature selection method that is used to find a subset of fea-
tures useful for prediction of the faults. MRMR reduces redundancy in the
features and selects those most relevant to prediction [29]. MRMR can oper-
ate in one of two schemes: Mutual Information Difference (MID) or Mutual
Information Quotient (MIQ).

First, the feature set S with the maximum relevance to the target class c
is chosen based on the average mutual information between each individual
feature xi and class c. However, features selected according to maximum
relevance could also have high redundancy, i.e., many highly dependent fea-
tures. If two features are highly dependent, then removing one of the features
would not have much of an effect on distinguishing between classes. Thus, a
minimum redundancy condition is added [30]. MRMR combines the above
two constraints.
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2.4.4. Other Methods and Automated Tools

An overview of feature selection is provided in [26] and implementations
of some automated feature selection methods are provided in the Python
packages scikit-learn and sklearn. The authors of MRMR also released their
own implementation of their MRMR algorithm in C/C++ and Matlab [30].

2.5. Machine Learning Model Creation

To detect a fault, the fault detection problem is framed as a classification
problem. The classes can be “no fault”, “fault type A”, “fault type B”, etc.
The different types of faults can also be grouped together into a single “fault”
class.

2.5.1. Creation of Training and Testing Sets

When testing on time series, care must be taken to not use future data
to predict past data. To this end, training of the fault detection model is
conducted on ’past’ data and testing is conducted on ’future’ data. For
example, data from January is used as the training data set and data from
February is used as the testing data set.

2.6. Performance Metrics

The metrics of recall, precision, and F1-score, metrics commonly used in
classification problems, are used to quantify performance. The formulae for
calculating recall, precision, and the F1-score are:

Recall =
tp

tp+ fn
(1)

Precision =
tp

tp+ fp
(2)

F1 =
2tp

2tp+ fp+ fn
(3)

where tp is the number of true positives, i.e., correctly predicted fault
samples, fp is false positives, fn is false negatives, i.e., fault samples incor-
rectly labelled as no-fault, and tn is true negatives.

The fault detection performance of the models that use the new features
is compared against the fault detection performance of the models that use
the raw variables for different numbers of features.
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3. Sensor Data

3.1. Sensor Data Collection

The methodology described in Section 2 is demonstrated on the design of
a fault detection system for a chiller plant. Data for normal operations and
for operations under fault conditions was generated using a physics-based
model of a commercial building chiller plant. It is undesirable to introduce
faults in the real plant to collect measured data because introducing faults
would interfere with normal operations of the facility and damage the ex-
pensive equipment. The physics-based model was created and calibrated
by a research partner using the Modelica modeling language [31] within the
Dymola modeling and simulation environment. The specific facility is the
chiller plant at the Molecular Foundry at the Lawrence Berkeley National
Laboratory. The Molecular Foundry is a six-floor nanoscience research facil-
ity cooled by a chiller plant that is operational 24 hours a day, seven days
a week. The chiller plant has three chillers, two cooling towers, three pri-
mary chilled water pumps, three condenser water pumps, and one secondary
chilled water pump.

Simulations were run for two months under no fault conditions and fault
conditions for each fault that is investigated. The chiller plant faults in-
cluded in this data set are: cooling tower fan failure, abnormal chiller cycling,
and secondary pump degradation. While the types of faults present in the
data affect the features that are selected in the feature selection process, the
methodology presented here can be applied to other faults. The number of
data points for each of the faults is summarized in Table 1.

Table 1: Included Faults and Corresponding Frequencies

Fault Number of Data Points
Cooling Tower Fan Failure 775
Abnormal Chiller Cycling 16672
Secondary Pump Degradation 17518
No Fault 68538

From the simulation, measurements that correspond to available mea-
surements common in real world chiller plant control systems were extracted
at a commonly available sampling rate. This results in 52 features with a
sampling resolution of every 5 minutes. These features include control sig-
nals, temperatures, power, and On/Off status of equipment in the chiller
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plant, such as the cooling tower, chillers, and pumps. Table A1 lists the
sensor points.

3.2. Data Cleaning and Pre-Processing

To clean the data, samples that are in between the five minute sampling
times are removed. Samples with the same timestamp are averaged.

While the simulation provides continuous values, in the building control
system, some variables are only binary On/Off signals. To ensure that the
simulation reflect the available binary data in the building control system,
for those variables, continuous values are converted to binary values.

3.3. Creation of Classification Labels

The fault/no-fault labels for the samples are determined based on the
times for which the equipment with a fault is operating. Samples obtained
from running the simulation with no faults is labelled with the ’no faults’
label. When the simulation is run with a fault, the resulting samples are
labelled with the corresponding ‘fault’ class label when the equipment with
the fault is On. Otherwise, samples are labelled as ‘no fault’. For example,
when a simulation is run with a mechanical failure fault in Pump 1, samples
during which Pump 1 is On is labelled with the ‘mechanical fault’ label.

4. Methodology Applied to the Case Study

4.1. Engineering Knowledge Features

The original features in the Building Automation System (BAS) are sup-
plemented with new virtual sensor features created from the original features
using knowledge of chiller plants. This knowledge of chiller plants includes
knowledge of the quantities that the original features correspond to; the loca-
tion of where data for those features is collected; and an understanding of the
operation of the chiller plant. To collect this list of virtual sensor features,
experts were interviewed in the process described in Section 2.2.

A summary of the new features derived from the original features using
domain knowledge is shown in Table 2. This results in the addition of 67
features.
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Table 2: Example Features from Knowledge of Chiller Plants

Cooling Output Total Plant Tonnage
Cooling Tonnage for Each Chiller

Efficiencies Kilowatt per Ton for Each Chiller
Efficiency for Each Cooling Tower

Differences Temperature Range for Each Cooling Tower
Chilled Water Delta T for Each Chiller
Condensed Water Delta T for Each Chiller

4.2. Time Series Features

Time series features are created using the process described in Section
2.3.2. The inclusion of delay features results in 706 time-delay features. The
order of the lag is selected using AIC and BIC. For each feature, the max
order between AIC and BIC is selected. AIC consistently selected equal
or higher orders than BIC. For most of the features, the maximum lag is
selected because the AIC and BIC orders exceed the maximum lag. When
the maximum lag is not selected, the resulting orders are close to the max.
The variables for which the selected lags are not equal to the max lag are
shown in Table 3, along with the selected lags by AIC and BIC.

4.3. Statistical Features

For each feature, the sliding mean and standard deviation is calculated.
The window size for the sliding mean and standard deviation is the order
as selected by AIC and BIC in the previous step. Where the AIC and BIC
selected an order of 0, a window size of 12 is used.

4.4. Data Cleaning and Standardization

Data cleaning and standardization do not result in the creation of new
features. Features that are constant are removed. Next, the data is stan-
dardized. The data is centered by removing the mean value of each feature,
then scaled by dividing features by their standard deviation. This results in
the data having a mean of zero and unit variance.

4.5. Machine Learning Model Training

4.5.1. Support Vector Machines

For this case study, support vector machines (SVMs) are used as the
machine learning model. Support vector machines are supervised learning
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Table 3: Selected lag orders for some features. For features not shown, the selected lag
order is 12
Feature AIC BIC

Order Order
Total Tonage 11 11
Chiller 1 Temp Setpoint 10 2
Chiller 1 Condenser Water Flow 12 11
Chiller 1 Leaving Condenser Temp 12 11
Chiller 2 Temp Setpoint 10 2
Chiller 3 Temp Setpoint 10 2
Chiller 3 Power 10 8
Chiller 3 On Off Status 12 7
Chiller 3 Condenser Water Delta Temp 6 12
Chiller 3 Leaving Chilled Water Temp 12 8
Cooling Tower 1 Fan Power 11 11
Primary Loop Chilled Water Supply Temp 12 6
Secondary Loop Pressure Difference 12 11
Secondary Loop Pump On Off Status 0 0
Secondary Loop Pump Control 12 11
Chiller 3 Condenser Water Pump Control 12 1
Chiller 3 Chilled Water Pump On Off 12 1
Relative Humidity 12 12

models with associated learning algorithms that solve for separating hyper-
planes. SVMs are primarily used for classification and regression. Given
training data that is labelled, SVMs solve for an optimal hyperplane that
can classify new samples, depending on which side of the hyperplane the
new samples are located.

4.5.2. Model Tuning and Cross Validation

A set of hyperparameters are used to specify an SVM model. The hy-
perparameters that are searched over are C, γ, and the kernel. These hy-
perparameters are tuned using 10-fold cross validation on the training set
to find the hyperparameters which yielded the highest f1 classification score.
The C parameter is a penalty on misclassification of training samples, which
must be traded off against simplicity of the decision surface. A low value
for C makes the decision surface smooth, while a high value for C aims to
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correctly classify all training samples. The γ parameter defines the size of
the influence of any single training sample. The larger the γ, the closer other
samples must be to be affected. The kernel is a similarity function that cal-
culates the similarity between two inputs to the function. The purpose of the
kernel is to take the input data and transforms it in feature space to simplify
the learning problem. For example, data that is not linearly separable may
become linearly separable in polynomial feature space.

5. Results and Discussion

5.1. Selected Features

Table 4 lists the top ten features as selected by the MIQ and MID schemes
to classify no-fault operations and fault operations. Because the two feature
selection schemes use different measures of distance, some variation in rank-
ings between the MIQ and MID schemes is expected. There is some overlap
between the features selected under the MIQ and MID schemes.

Table 4: Top 10 features selected for fault VS no fault by MRMR under the MIQ and
MID scheme with feature rankings

Feature MIQ MID
Chiller 3 kilowatt per ton at t-40min 1 NA
Secondary loop pump power at t-10min 2 2
Condenser water pump 1 OnOff status, t-15 min 3 NA
Chiller 3 kilowatt per ton 4 1
Secondary loop pump power standard deviation 5 4
Chiller 3 kilowatt per ton at t-60min 6 5
Chiller 3 kilowatt per ton at t-10min 7 NA
Secondary loop pump power 8 NA
Chiller 3 kilowatt per ton at t-55min 9 NA
Chiller 3 kilowatt per ton at t-5min 10 NA
Chiller 1 OnOff status at t-60min NA 3
Relative humidity t-20min NA 6
Cooling tower 1 control NA 7
Chiller 3 kilowatt per ton at t-30min NA 8
Chiller 1 OnOff status at t-5min NA 9
Secondary loop pump power at t-50min NA 10
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In the feature selection process, the new derived features are favoured
more than the original features. Under the MIQ scheme, all of the top ten
features are new features, with one exception — Secondary loop pump power,
which is ranked #8. All the top ten features under the MID scheme are all
new features except for one feature — Cooling tower 1 control. The first ten
features selected by the MIQ scheme represent six distinct data points from
the control system. The top ten features contain representatives from all the
different types of new features: application domain knowledge features, time
series features, and statistical features. The type of new feature is marked in
Table 5 in the same order as Table 4.

Table 5: Type of feature in top features selected by MRMR where Eng = Engineering
Knowledge Features, Stat = Statistical Features, Lag = Time Series Features, and Orig
= Original Features

Feature Eng Stat Lag Orig
Chiller 3 kilowatt per ton at t-40min X X
Secondary loop pump power at t-10min X
Condenser water pump 1 OnOff status, t-15 min X
Chiller 3 kilowatt per ton X
Secondary loop pump power standard deviation X
Chiller 3 kilowatt per ton at t-60min X X
Chiller 3 kilowatt per ton at t-10min X X
Secondary loop pump power X
Chiller 3 kilowatt per ton at t-55min X X
Chiller 3 kilowatt per ton at t-5min X X
Chiller 1 OnOff status at t-60min X
Relative humidity t-20min X
Cooling tower 1 control X
Chiller 3 kilowatt per ton at t-30min X X
Chiller 1 OnOff status at t-5min X
Secondary loop pump power at t-50min X

The number of new derived features among the features selected by
MRMR is then compared against the total number of selected features. Com-
parisons are made between the number of selected new features and the ex-
pected value of selected new features if features were randomly selected.

Figure 2 plots the number of new derived features among the features
selected by MRMR under the MIQ scheme, along with their respective rank-
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ings. The dotted red line traces the expected curve if all the top features are
new derived features. The deviations of the curves from the dotted reference
line are the number of original features among the top selected features. Up
to approximately the first 20 features of MIQ, the actual curves follow this
reference line closely. This indicates that the top 20 selected features are
almost all new features. In the top 50 selected features, there are 42 derived
features and eight original measurement features. This suggests that among
the top features selected to maximize relevance while minimizing redundancy,
most of the selected features are new features. Under the MID scheme, more
original measurement features are selected than under the MIQ scheme.

Figure 2: Number of new features among the top features with a dotted reference line
indicating the expected line if all the features were new features

The top selected features are probabilistically related to the faults. How-
ever, the top selected features are not all directly at the fault location at time
t. Many of the top selected features are delay features. The high ranking of
expert engineering features agrees with field knowledge. For example, chiller
kilowatt per ton is frequently recommended to monitor chiller performance.
Chiller kilowatt per ton likewise ranks highly on this list, given that there
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are chiller degradation faults in the data set. However, it is interesting to
observe that the delays of chiller kilowatt per ton are selected. This may be
due to transients in the system causing a delay in time between the start of
the fault and the sensors registering symptoms of the fault. For example, in
the case of the chiller, temperatures in the chiller may raise for a few min-
utes before temperature sensors in the chiller register, the temperature raises
above the deadband, the chiller control system responds, compressors start
working harder, and power consumption increases.

The top selected features are engineering features that are calculated
from several sensor measurements. For example, chiller kilowatt per ton
requires three to four input sensors. Thus, the use of engineering features
fuses information from multiple sensors.

The selection of features is dependent on the faults in the data set. If
a different set of faults is to be detected, the choice of features will very
likely be different. Nonetheless, the results are promising in that nine faults
representing four types of faults show fault detection performance reaching
high asymptotic values at four features, as will be shown in the next section.

The feature selection method MRMR is based on information theory.
Four main groups of feature selection methods have been identified: similarity-
based, information-theoretical-based, sparse-learning-based, and statistical-
based methods [26]. Table 6 lists the top ten features selected by common
methods from the similarity-based and statistical-based group: Fisher score
and chi-squared respectively. Both methods gave the same features in the
same order. The top features are all variations of ”Chiller 3 kilowatt”, an
engineering knowledge feature. The variations include the mean, which is
a statistical value, and time lagged values. These feature selection methods
consider each feature in relation to the fault prediction but do not consider
interactions between the features themselves. Thus, the top features are all
related.

5.2. Model Fault Prediction Results

The optimized set of existing and new virtual features resulted in fault
detection with high detection performance while only using a surprisingly
small number of features.

Figures 3 and 4 plot prediction performance metrics against the number
of features. Figure 3 contains the performance metrics for detection of any of
the faults in the data set, which is framed as a two class classification problem,
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Table 6: Top features and corresponding feature type selected by chi-squared and Fisher
score, where Eng = Engineering Knowledge Features, Stat = Statistical Features, Lag =
Time Series Features, and Orig= Original Features

Rank Features Selected by Eng Stat Lag Orig
Fisher Score and Chi-Squared

1 Chiller 3 kilowatt mean X X X
2 Chiller 3 kilowatt per ton X
3 Chiller 3 kilowatt per ton at t-5min X X X
4 Chiller 3 kilowatt per ton at t-10min X X X
5 Chiller 3 kilowatt per ton at t-15min X X X
6 Chiller 3 kilowatt per ton at t-20min X X X
7 Chiller 3 kilowatt per ton at t-25min X X X
8 Chiller 3 kilowatt per ton at t-30min X X X
9 Chiller 3 kilowatt per ton at t-35min X X X
10 Chiller 3 kilowatt per ton at t-40min X X X

where the two classes are “fault” and “no fault”. Figure 4 considers the the
fault identification problem, where each fault is a different class.

Within Figures 3 and 4, the first column of graphs plots the F1 score, the
second column the precision, and the third column the recall. The first row
of graphs within each figure are the scores on the training set and the second
row of graphs are the scores on the testing set. The x-axis is the number of
features. Based on the higher scores under the MIQ scheme compared with
the MID scheme, experiments were only run under the MIQ scheme. The
metrics for fault detection are for the “fault” class and the metrics for fault
identification are the weighted average across all classes.

In the fault detection setup using MRMR with expert knowledge features,
with as few as four features, classification scores exceed 90% on the training
set and 80% on the testing set. The original measurement feature set has
52 features, which is significantly more than the number of features required
under this methodology. Recall scores are consistently above 90% starting
at one feature. The precision increases with increasing number of features,
which in turn improves the F1 score. This is because the F1 score is a
weighted sum of precision and recall.

For fault identification using MRMR with expert knowledge features, clas-
sification scores are slightly lower by 5% F1 score on the testing set while
remaining the same on the training set compared to the fault detection set-
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ting. F1 scores in the fault identification setting do not drastically change be-
tween one and two features. At three or more features, performance plateaus.
Performance also varies between the types of faults.

All scores asymptote after four features. The asymptotes on the training
data are approximately 95% for all the performance metrics using MRMR
with expert knowledge. The asymptotes on the testing data are approxi-
mately 80% for precision, 90% for recall, and 85% for F1 score. The 10%
difference between performance on the training set versus the testing set
suggests that the fault detection model is slightly over-fitting to the training
data.

We reran the experiments with features selected by MRMR from among
features that did not use knowledge gained from experts during the interview
process. That is, we trained machine learning models without the engineer-
ing knowledge features and without the statistical features, which required
information about appropriate time windows obtained during the interview
process. Experts were asked the appropriate window size. The choice of win-
dow would not have been obvious to individuals who are non-HVAC experts.
The appropriate window size was found during the interview process, par-
ticularly from the questions “What time scales do you look at?” and “What
time scales would be too noisy?” When the features with expert knowledge
are removed, fault detection performance drops by more than 40% on the
training set and more than 30% on the testing set in F1-score, as shown in
Figure 3. The selected features are listed in Table A2 in Appendix B. All
data points are classified as faults by the resulting fault detection system,
resulting in poor recall and poor F1 scores. Fault identification performance
drops by almost 20% in F1-score, as shown in Figure 4. The results suggest
that gathering knowledge from experts to create new features improves fault
detection and fault identification performance.

For features selected by the Fisher score or chi-squared with expert knowl-
edge features, prediction performance is worse than using features selected by
MRMR with expert knowledge features by a large margin. This difference is
more than 40% in the F1 score on the training set and more than 30% on the
F1 score on the testing set compared to using features selected by MRMR
with expert knowledge. The fault detection and identification performance
using Fisher score or chi-squared to select from features that include fea-
tures derived with expert knowledge is about the same as performance with
MRMR without using features derived with expert knowledge.

The prediction performance using Fisher score or chi-squared is also in-
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dependent from the number of features, holding constant within 2%, except
at four features in the fault detection setup. The consistency is because the
selected features are all related and correlated with one another, being the
mean and time lags of the same value. Thus, adding them does not benefit
predictions.

These results show that feature selection methods that consider redun-
dancy between features give better fault detection performance than feature
selection methods that do not. Time lagged features and sliding means are
highly correlated for measured physical properties in energy systems. Thus,
feature selection methods that take into account correlation between fea-
tures should be used instead of univariate methods that consider features
individually.

Misclassification error rate on the training set can be traded-off with mis-
classification error rate on the testing set. That is, the model can be trained
to fit the training data less and a higher misclassification rate on the training
data can be tolerated in exchange for hopefully lower misclassification rate
on the test set. This is known as the bias-variance trade-off. The training
set was chosen to be historical data in relation to the testing set. Thus,
the testing set likely deviates from the training set due to changing weather
conditions impacting cooling load demand and chiller plant performance.

To detect a larger number of different faults, however, the number of
features needed for fault detection may be higher than as shown in these re-
sults. Different faults at different locations within the chiller plant will likely
require features at the different locations. Different faults within the same
location may also need additional features to distinguish between the faults.
Nonetheless, the proposed methodology allows for user choice in the types
of faults to focus on. Also, this methodology enables a trade off between
detection accuracy and number of fault types with data collection and com-
putation costs. Real sensor data points can be supplemented with virtual
sensor data points and can be processed in workflows used to create fault
detection models and machine learning models.

5.3. Selected Sensors

From Figure 3, most of the improvement in fault detection performance
occurs with the addition of the first three features. Fault detection perfor-
mance plateaus after the third feature. This suggests that with the first three
features, we can already achieve most of the predictive performance for this
machine learning model.
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The most important sensors are the sensors associated with these three
features. The sensors associated with these three features are shown in Table
7. There are only five sensors associated with these features. In comparison,
this HVAC system had 52 original sensor points.

Table 7: Top three features (virtual sensors) and their associated real sensors

Feature Associated Sensor Values
Chiller 3 kilowatt per ton Chiller 3 Power
at t-40min Chiller 3 Evaporator Entering Temperature

Chiller 3 Evaporator Leaving Temperature
Secondary loop pump power Secondary loop pump power
at t-10min
Condenser water pump 1 Condenser water pump 1 On Off status
OnOff status at t-15 min

5.4. Limitations

The effectiveness of this proposed framework to benefit from expert de-
rived features is limited by the cooperation of experts to share their knowl-
edge. We have found that experts are more open to discussions when the
interview intent is framed as identifying their pain points and designing a
useful data analysis and information tool for them. That is, the discussion
should focus on their needs and desires in an automated fault detection,
instead of how to automate their jobs away.

Because this is a data-driven approach to fault detection, this method
requires data under both fault and fault-free operating conditions. This data
can be either real or simulated. Data may also be normalized for differences
in, for example, plant sizes and equipment sizes. Generalizability of fault
predictions may degrade over time due to sensor drift and changes to the
plant such as retrofits and changes to the control strategy.

Another limitation of this method is the reliance on extracting sensor
data from the control system, the ease of which may be highly variable. The
data selection method does not consider the cost of the sensor data. It is
possible to remove expensive sensors from the ranked list of selected sensors
and then re-rank the remaining candidates.

The input data into this framework requires a consistent sampling rate
across samples. The time series and statistical features requires a span of
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data across several time steps. Missing data truncates continuous time spans
of data, but missing data can be interpolated or imputed.

6. Conclusion

When trying to extract meaningful information from existing data and de-
ployed sensors, system designers may be faced with an overwhelming number
of data points. This paper presents a data-driven approach to designing and
configuring energy monitoring systems. The proposed approach automati-
cally selects data to input into energy monitoring systems using statistical
methods. A method based on information theory is used to recommend fea-
tures that are strong predictors of a fault, are highly relevant, and minimally
redundant. The results show that only a few sensors may be needed to detect
faults with high accuracy rates and that the sensors can be identified using
automated statistical tools.

Application domain knowledge can be encoded to create virtual sensors.
These virtual sensors do not correspond to values taken directly off a physical
sensor and can be more predictive of a fault than direct sensor data. The top
selected features have a probabilistic relationship to the physical location of
a fault, but may not be the sensor directly at the fault location at the time
of the fault. The proposed methodology allows for user choice in the types of
faults to focus on and the ability to trade off detection accuracy and number
of types of faults with data collection and computation costs.

The ability to detect faults with high accuracy with few sensors is encour-
aging for widespread deployment of such a fault detection system. The few
numbers of features shows that across a type of system, for data collection
purposes, individual instances of a system do not need to share a large num-
ber of sensors. To configure the data collection part of such a fault detection
system, only a subset of all the sensors need to be identified.

The flexibility in the proposed design methodology eases adoption of the
methodology for different types of systems. This methodology is demon-
strated on a chiller plant in a commercial building and has also been applied
to wind turbines [32] [11]. It can be generalized to a wide range of other in-
strumented energy systems, such as HVAC systems, solar panels and natural
gas turbines. The expert knowledge collection process outlined here can be
applied to experts of other energy systems. The methodology can be followed
to select the most useful sensors for fault detection. Thus, those who are not
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experts in the energy system nor a specific instance can follow the proposed
scheme to create a fault detection system.

To apply this methodology to design a fault detection system for another
application only requires 1) the identification of common existing data points,
and 2) basic application knowledge in the form of a list of metrics. The
application knowledge can be gathered, for example, through interviews of
application experts or through analysis of basic engineering relationships
in the system. The proposed methodology enables increased fault detection
accuracy with fewer features and fewer data points with fewer installation and
configuration requirements from vendors and experts. The resulting software
can also be readily deployed to other instances of the same type of system,
due to the lack of reliance on individual specific information. Deployment
costs may also be lowered due to this approach’s demonstrated effectiveness
when using basic application knowledge and off-the-shelf, open source tools
and algorithms.

6.1. Future Work

The proposed fault detection methodology can be extended to include
faults that evolve or worsen and also can be used to account for when faults
are fixed, the physical system is changed or upgraded, or when maintenance
occurs, as happens in real world systems. The fault detection capabilities can
be expanded to include fault diagnosis, identification, and prognosis. This
can be done, for example, by incorporating knowledge bases, simulations
of fault development, or other representations of expert knowledge of fault
evolution. The modularity of the proposed methodology allows for future re-
search on more effective choices of parameters. For example, further analysis
can be conducted on the choice of feature selection process, machine learning
model, and time series characteristics.

Additional research is needed to collect more sensor data and fault labels
under normal operations and different faults. Labelled data is difficult to
find. Sensor measurements under faulty operations are even more difficult to
obtain, due to the infrequency of faults and the undesirability of introducing
faults to expensive systems for the purposes of data collection.

New methods to combine data from different sources and across different
systems are also needed. A new deployment may have limited, if any, histor-
ical data, and it is desirable to use data from other deployments and other
systems, both real measurements and simulated data. Given differences be-
tween individual instances, for example between individual buildings or sim-
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ulated and real systems, procedures are needed to fuse data from different
sources to take advantage of available data of comparable systems.

Future research can also improve the ease of installation and the user
experience. User interfaces should be easy to use, accessible, and encourage
consistent response to faults and energy performance improvement opportu-
nities. This may be accomplished through research in integration of fault
detection systems with operations and maintenance, design of the control
automation system, and design of user interfaces. Energy monitoring could
be as simple as verbally speaking or assisted by digital assistants. More ad-
vanced decision-analytic queries, such as where to invest a quantity of money
for energy improvement, may also be possible.
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Figure 3: Scores on training and testing sets under the MIQ scheme for fault detection
(classification into fault vs. no fault)

Figure 4: Scores on training and testing sets under the MIQ scheme for fault diagnostics
(classification into different types of faults)
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Appendix A: Original Sensors
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Table A1: Full list of original sensors

For each of the Chillers 1-3
Chiller Power
Chiller Condenser Entering Temperature
Chiller Condenser Leaving Temperature
Chiller Evaporator Entering Temperature
Chiller Evaporator Leaving Temperature
Chiller Setpoint Temperature
Chiller On/Off Status
For each of the Cooling Towers 1-2
Cooling Tower Fan Power
Cooling Tower Approach Temperature
Cooling Tower Leaving Temperature
Cooling Tower Control Signal
For each of the Condenser Water Pumps 1-3
Condenser Water Pump Control Signal
For each of the Primary Chilled Water Pumps 1-3
Primary Chilled Water Pump Control Signal
Secondary Chilled Water Pump
Secondary Chilled Water Pump Control Signal
Secondary Chilled Water Pump Power
Secondary Chilled Water Loop
Secondary Loop Pressure Drop
For each of the Air Refrigeration Units 1-4
Chilled Water Temperature
Weather
Wet Bulb Temperature
Relative Humidity
Time
Second of the Year (represents time in seconds from 12am Jan 1)
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Appendix B: MRMR Selected Features without Expert Knowledge

Table A2: Top features and corresponding feature type selected by MRMR from among
the features that do not require expert knowledge

Rank Features Selected by MRMR Lag Original
1 Cooling tower 2 approach temperature X
2 Primary pump 2 On Off Status X
3 Secondary pump power X
4 Secondary pump power at t-60min X
5 Secondary pump power at t-5min X
6 Secondary pump power at t-30min X
7 Secondary pump power at t-10min X
8 Secondary pump power at t-55min X
9 Secondary pump power at t-15min X
10 Secondary pump power at t-50min X
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