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Abstract 5 

 6 

Energy Efficiency has historically focused on delivering savings as a means to offset growth in 7 

energy supply. Today’s growing emphasis on decarbonization of the energy supply is driving 8 

renewables adoption and increased interest in electrification. As a result, energy efficiency is 9 

being assessed not just in its ability to offset load growth, but also for its ability to alleviate 10 

location-specific constraints on transmission and distribution infrastructure. This work 11 

demonstrates that advanced measurement and verification modeling techniques can be used to 12 

estimate the spatio-temporal impact of a portfolio of energy efficiency programs, relative to the 13 

distribution grid. It extends measurement-based methods to an entire Demand Side 14 

Management portfolio and uses a single model to predict annual as well as seasonal building 15 

energy use with near-zero bias. In addition, new metrics are introduced to assess grid level spatio-16 

temporal impacts of energy efficiency. The advanced measurement and verification modeling 17 

technique was applied at three levels of customer account grouping: a proxy for the utility’s 18 

territory-wide distribution grid; the substation level; and the feeder level. The results show that 19 

the utility’s energy efficiency program portfolio delivers savings of over 12% at the proxy total 20 

level, with substation and feeder level savings ranging from 0.4%-26%, and -5%-42% respectively. 21 

These savings had a measurable impact of 1.0%-1.4% on the energy used at these locations in 22 

the grid. This work provides a methodological foundation that offers potential to connect 23 

efficiency with distribution planning, carrying implications for non-wires alternatives and 24 

targeted delivery of efficiency programs. 25 

 26 
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Nomenclature: 30 

E Energy (kilowatt-hour [kWh]) 31 

T Temperature (degrees Celsius [°C]) 32 

t Time (seconds) 33 

P Energy demand (kilowatts [kW]) 34 

 35 

1. Introduction 36 

Energy Efficiency (EE) is the practice of using less energy to provide the same or an improved 37 

level of service to an energy consumer, in an economically efficient way (Goldman et al. 2010). It 38 

has historically focused on the delivery of savings as a means to reduce consumer energy costs 39 

and offset growth in energy supply. Today, there is growing emphasis on decarbonization of the 40 

energy supply chain, which is driving renewables adoption and increased interest in 41 

electrification (the practice of switching natural gas consumption to electricity, which is in turn 42 

provided by low/no carbon energy sources). Energy efficiency is now being considered not just 43 

for its ability to offset growth in supply, but also for its ability to alleviate location-specific 44 

constraints on transmission and distribution (T&D) infrastructure as load growth increases 45 

unevenly across regions. Also, the EE industry is beginning to consider the time-differentiated 46 

value of efficiency, since the increasingly diverse generation mix means that carbon emissions 47 

can vary significantly by time of day/year. Moving beyond the traditional approach of average 48 

annualized savings for EE surfaces additional insights into the value of efficiency relative to 49 

avoided carbon, cost-effectiveness, and grid-level hourly net load shapes.     50 

 51 

Targeting EE programs either independently or in concert with demand response (DR) and 52 

distributed generation can play a role in deferring capital investments for T&D infrastructure 53 

(Chew et al. 2018), which have averaged approximately $45B annually over the last decade in the 54 

U.S. (Neme et al. 2015). These ‘non-wires alternatives’ (NWA) are defined as: “An electricity grid 55 

investment or project that uses non-traditional T&D solutions, such as distributed generation, 56 

energy storage, energy efficiency, demand response, and grid software and controls, to defer or 57 

replace the need for specific equipment upgrades, such as T&D lines or transformers, by reducing 58 

load at a substation or circuit level” (Navigant 2017). Studies from as early as the 1990s showed 59 

that demand side management (DSM) programs that are carefully matched to local area costs 60 

and timing of loads can cost effectively and reliably defer infrastructure investments (Kinert et 61 

al. 1992). Due to increasing T&D costs relative to costs of generation, strategies have been tested 62 

to develop area-specific marginal costs, loads and DSM load impacts (Orans et al. 1991). This was 63 

significant because it allowed for T&D benefits to be emphasized more in DSM program planning.     64 
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More recently, Chew et al. 2018 summarized case studies of NWAs from leading U.S. projects. 65 

The majority of these case studies demonstrated success in helping to delay or permanently defer 66 

infrastructure upgrades. For example, the Brooklyn Queens Demand Management (BQDM) 67 

Program, is often noted in the EE industry as a successful effort implemented to delay the 68 

construction of a new substation beyond initial load-relief projections (Chew et al. 2018).  69 

 70 

Since different EE projects/measures produce savings at different times of day (the so-called 71 

“savings shape”), there is opportunity to target measure deployment for maximum temporal 72 

value. For example, a commercial lighting EE measure will produce more savings during the day, 73 

whereas a residential hot water measure will produce more savings in the morning or evening. 74 

From a system perspective, the cost of generating and supplying electricity, and the associated 75 

environmental impacts, as well as net load, varies by time of the year and time of day. Therefore, 76 

to accurately quantify the system-wide value of energy savings, it is necessary to account for 77 

seasonal and hourly variations in energy savings. Mims et al. 2017 show that the time-varying 78 

value of energy efficiency savings is important because when calculating the benefits to the 79 

power system, the energy savings value will vary by the season and hour of the day that the 80 

energy reductions occur (Mims et al. 2017). Boomhower et al. 2017 in their analysis reveal that 81 

the value of electricity is highly variable even within a single day, and this variability is tending to 82 

grow larger as a greater fraction of electricity comes from solar and other intermittent 83 

renewables (Boomhower et al. 2017). In Novan et al. 2018, the authors use meter-based data 84 

and are able to estimate not just total energy savings, but also when they occur (Novan et al. 85 

2018).  86 

 87 

The consideration of how DSM programs can be coupled with distributed generation and energy 88 

storage to deliver more targeted spatial and temporal benefits to both customers and the grid, 89 

brings new opportunities for the use of interval meter-based energy savings analysis methods. 90 

While demand response programs have typically used interval meter data, energy efficiency 91 

savings analyses more commonly use engineering calculations or stipulated savings that 92 

represent population average annual energy reduction. However, interval meter-based savings 93 

analysis methods offer the ability to disaggregate load, based on time of day, day of week, and 94 

season.  95 

 96 

Prior work has investigated building-level applications of meter-based savings analysis, for EE and 97 

DR. For example, Mathieu et al. 2011 present methods for analyzing commercial and industrial 98 

facilities’ advanced metering infrastructure (AMI) data with a focus on DR (Mathieu et al. 2011).  99 

Bode et al. 2014 use whole building level interval meter data to screen sites and estimate energy 100 

savings (Bode et al. 2014).  Jump et al. 2015 used smart meter data to determine how well the 101 

whole building level approach to energy savings estimation is applicable and concluded positively 102 
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that the approaches were viable (Jump et al. 2015). Granderson et al. 2017 show more broadly 103 

the commercially available technologies that use AMI data both for energy analytics and 104 

advanced M&V (sometimes called “M&V 2.0”) (Granderson et al. 2017b). Most meter-based 105 

savings analysis however, in the field and in the literature, have focused on total energy savings 106 

and have not considered the time or season in which those savings occur. Other methods that 107 

do not use meter-based savings analysis to estimate building load impact on the distribution grid 108 

are also present in the literature. Mejia et al. 2020 present a spatio-temporal growth model for 109 

estimating the adoption of new end-use electric technologies encouraged by energy-efficiency 110 

policies (Mejia et al. 2020).  This work uses a geographically weighted regression to capture the 111 

spatio-temporal nature of energy efficiency savings. The results show load curves of distribution 112 

transformers that provide valuable information regarding the distribution network expansion 113 

planning, but the analysis does not quantify actual impacts from specific efficiency programs. 114 

Arnaudo et al. 2019 use co-simulation of the electricity grid and buildings to monitor grid capacity 115 

to avoid overloading (Arnaudo et al. 2019). They find that given grid capacity limits, different 116 

energy efficiency policies could be implemented in buildings to unlock better energy and 117 

environmental performance. Even though this work was using simulated data rather than AMI 118 

data, it is useful for higher level distribution grid planning including uncertainty analysis.  119 

 120 

In previous work, the authors have developed and tested promising advanced M&V approaches 121 

to partially automate the savings estimation process through the analysis of time series meter 122 

data. Granderson et al. 2015, and Granderson et al. 2016 showed through statistical test 123 

procedures that these automated techniques are accurate and robust in modeling and predicting 124 

commercial buildings’ annual energy use. A literature review did not surface prior work that has 125 

analyzed time-based energy efficiency savings at different levels of the distribution grid 126 

infrastructure (e.g., substation level and feeder level) using meter-based savings analyses.  127 

 128 

Addressing this gap in the published research, the goal of this work was to demonstrate the use 129 

advanced M&V modeling techniques to estimate the spatio-temporal impact of a portfolio of EE 130 

programs, relative to the distribution grid. This paper presents the results of an analysis of 131 

interval meter data from over 25,000 accounts from a California utility. The specific research 132 

questions that were answered in this work were: 1) what are EE savings at different locations in 133 

the distribution grid, and how much do those savings impact the total load at those locations? 2) 134 

what is the hourly EE savings shape at different locations in the distribution grid, and how does 135 

this shape vary by season?  136 

 137 

The paper proceeds as follows: Section 2 describes the methodology underlying the study, 138 

Section 3 summarizes the findings, and Section 4 provides a discussion of the results. The final 139 

section provides conclusions and ideas for future work. 140 
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 141 

2. METHODOLOGY 142 

 143 

To determine grid-level savings due to energy efficiency, AMI data from a California utility was 144 

provided, covering the period 2015 to 2018 that indicated accounts that participated in EE 145 

programs in 2016 and 2017.  This data was pre-processed and analyzed as shown in Figure 1, to 146 

establish aggregate spatio-temporal load impact estimates for both EE program participants and 147 

non-participants. Sections 2.1 to 2.4 describe the study method in detail.  148 

 149 
 150 

Figure 1: Flowchart showing analytical steps in the study 151 

 152 

2.1 Composition of the dataset  153 

A dataset of hourly Advanced Metering Infrastructure (AMI) accounts was used for the analyses 154 

presented in this paper. These AMI meters corresponded to 12 different substations and 51 155 

feeders, representing a sample across the territory. The dataset included accounts that 156 

participated in EE programs and those that did not; in the remainder of this paper those accounts 157 

types are referred to as EE and Non-EE. For the EE participants, the date of installation of the EE 158 

measures were also provided, so that a baseline and analysis period could be defined to analyze 159 

the impact of the EE programs. In addition, the data was labeled to indicate customers who had 160 

relocated during the analysis period, those who had an electric vehicle (EV), and those who had 161 

a photovoltaic (PV) system. Appendix A summarizes the EE customer types at each substation 162 

i.e., if they were commercial, residential, industrial, or unlabeled. 163 

 164 

2.2 Data pre-processing 165 

For the assessment of EE program impacts, 2015 was taken as the baseline year and 2018 was 166 

selected as the analysis year. Meter data from the following account types were removed from 167 

the analyzed dataset: 168 
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 Accounts that relocated in 2015 or 2018, because the change in energy consumption 169 

could have been caused by occupancy change rather than by the EE measure. 170 

 Accounts that had an EV or a PV, because they were a very small number in the sample 171 

and their load shape patterns were highly variable.  172 

 Accounts for which data was missing in either the baseline year or analysis year. 173 

After completing the data pre-processing, 1,372 EE accounts and 25,841 Non-EE accounts were 174 

included in the study sample. 175 

 176 

The analysis was performed at three levels of account grouping: 1) The sum of data from all 177 

meters across all substations, which can be viewed as a proxy for the utility’s territory-wide 178 

distribution grid. This is referred to as “total level.” 2) The sum of data from all meters associated 179 

with a given substation, for all 12 substations. 3) The sum of data from all meters associated with 180 

a given feeder, for all 51 feeders. 181 

 182 

For each of the three account grouping levels the accounts were split into two subsets: EE and 183 

Non-EE. Then, in order to decrease the variability of the energy use time series, and thus improve 184 

the prediction accuracy of the considered baseline modeling method, the hourly energy use was 185 

aggregated for all of the accounts within a subset (i.e., EE and Non-EE). This was conducted for 186 

the baseline year (2015) and the analysis year (2018). Thus, for each time step t the energy use 187 

for the EE and Non-EE accounts was defined in Equations 1 and 2 as: 188 

 189 

𝐸𝑡
𝑁𝑜𝑛𝐸𝐸 = ∑ 𝐸𝑡

𝑗𝑁𝑁𝑜𝑛𝐸𝐸
𝑗=1   (1) 190 

 191 

𝐸𝑡
𝐸𝐸 = ∑ 𝐸𝑡

𝑗𝑁𝐸𝐸
𝑗=1   (2) 192 

 193 

where 𝑁𝑁𝑜𝑛𝐸𝐸 is the number of accounts in the Non-EE subset, 𝑁𝐸𝐸 is the number of accounts in 194 

the EE subset, and 𝐸𝑡
𝑗
 is the energy use of account j at the time step t.  195 

Note that: at the total level 𝑁𝑁𝑜𝑛𝐸𝐸 is equal to the total number of Non-EE accounts that are in 196 

the dataset (i.e., 25,841) and 𝑁𝐸𝐸 is equal to the number of EE accounts that are in the dataset 197 

(i.e., 1,372); at the substation level 𝑁𝑁𝑜𝑛𝐸𝐸 and 𝑁𝐸𝐸  are respectively equal to the number of Non-198 

EE and EE accounts that are connected to a specific substation; at the feeder level 𝑁𝑁𝑜𝑛𝐸𝐸 and 199 

𝑁𝐸𝐸 are respectively equal to the number of Non-EE and EE accounts that are connected to a 200 

specific feeder. 201 

 202 

For the remainder of this paper, both EE and Non-EE accounts will be referred to as account types 203 

and the total, substation and feeder level aggregations will be referred to as analysis levels.  204 

 205 
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  206 

2.3 Baseline Energy Modeling 207 

Regression methods are a standard approach used for developing baseline models that aim to 208 

model the relationship between energy use and a set of independent variables (also known as 209 

explanatory variables) 𝒙 = (𝑥(1), … , 𝑥(𝑑)), where d is the number of independent variables. The 210 

most commonly available independent variables in energy use baseline modeling are the time of 211 

the week and the outdoor air temperature. Mathematically the regression problem can be 212 

represented for a given observation set {(x1,y1),…, (xT,yT)}, as 213 

 214 

𝐸𝑡 = 𝑓(𝒙𝑡) + 𝜀𝑡,      𝜀 𝑡~ 𝑁(0, 𝜎𝜀
2)    (3) 215 

  216 

where 𝒙𝑡 = (𝑥(1), … , 𝑥(𝑑)), 𝑡 = 1, … , 𝑇 are d dimensional vectors of inputs variables, 𝜀𝑡 is 217 

independent Gaussian noise with mean 0 and variance 𝜎𝜀
2. Building a baseline model consists of 218 

approximating the function 𝑓(𝒙) given a set of T observation {(x1,y1),…, (xT,yT)}. 219 

 220 

In recent years several baseline energy modeling approaches that use interval meter data have 221 

been introduced in the academic literature and in the industry. For instance, Mathieu et al. 222 

present a regression-based electricity load model that uses a time-of-week indicator variable and 223 

outdoor temperature to characterize demand response behavior (Mathieu et al. 2011). Heo and 224 

Zavala present a Gaussian process (GP) modeling framework to determine energy savings and 225 

uncertainty levels in M&V (Heo and Zavala 2012), while Burkhart et al. present a Monte Carlo 226 

expectation maximization framework for M&V (Burkhart et al. 2014). More recently Touzani et 227 

al. presented a Gradient Boosting Machine baseline model for M&V (Touzani et al. 2018). These 228 

methods are based on traditional linear regression, nonlinear regression, and machine learning 229 

regression methods. The temporal variation in electricity consumption in buildings can be driven 230 

by several factors, including weather, occupancy schedule, and daily and weekly periodicity. In 231 

practice and in the literature, to capture these effects, it is common to use two different input 232 

variables - outside air temperature and time of the week. Historically, energy savings analysis has 233 

focused on total annual energy savings.  234 

 235 

Since one of the key research questions associated with this work concerns the seasonality of 236 

hourly savings shapes, an analysis was performed to evaluate the impact of including season as 237 

independent variable on seasonal model goodness of fit metrics. Two models were considered: 238 

The Gradient Boosting Machine (GBM) baseline model (Touzani et. al 2018), which is an ensemble 239 

tree-based machine learning method, and Time-of-Week-and-Temperature (TOWT) model 240 

(Mathieu et al. 2011), which is a piecewise linear model where the predicted energy consumption 241 

is a combination of two terms that relate the energy consumption to the time of the week and 242 

the piecewise-continuous effect of the temperature. In previous studies (Granderson et al. 2017, 243 
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Touzani et al. 2018) GBM and TOWT were shown to be highly accurate at predicting annual 244 

consumption, equaling or outperforming other M&V industry standard models. The GBM model 245 

was configured with input variables for outside air temperature, time of the week, an indicator 246 

to specify if the day of the observation is a holiday, an indicator to specify if the day of the 247 

observation is a week day or a weekend and an indicator to represent the season of the 248 

observation (where “winter” covered the period December to February, etc.). The TOWT model 249 

uses only time of the week and the outside air temperature as input variables.  250 

 251 

The goodness of fitness of each model was assessed using three statistical model fitness metrics: 252 

NMBE, CV(RMSE) and R2 (see definition and description of the metrics in Granderson et al. 253 

2017a). Figure 2 shows the three model fitness metrics for both GBM and TOWT models by 254 

season and by analysis level. Each chart shows data points for EE models and Non-EE models, 255 

e.g., at the total proxy level there are two TOWT R2 data points for Autumn, one for the EE model 256 

and one for the Non-EE model. Overall the GBM models outperformed the TOWT models, having 257 

higher R2, lower CV(RMSE), and NMBE closer to zero. The most significant improvement can be 258 

seen in the NMBE metric where GBM models have near-zero bias (NMBE) across all seasons, 259 

which is most desirable for accurate seasonal savings quantification. Given its near-zero bias for 260 

both annual as well as seasonal time horizons, the GBM model was used in this work.  261 

 262 

2.4 Analysis framework 263 

The GBM baseline model was fit to the data for the two account types and the three analyzed 264 

levels of the distribution grid. Model goodness of fitness metrics R2, CV(RMSE) and NMBE were 265 

evaluated to verify model sufficiency. The threshold values of model fitness metrics for CV(RMSE) 266 

and NMBE were from ASHRAE Guideline 14 (ASHRAE 2014), while the R2 value is an industry best 267 

practice. These were: 268 

 269 

  Coefficient of determination or R2, threshold > 0.7, 270 

  Coefficient of Variation of the Root Mean Squared Error (CV(RMSE)), threshold <25%; 271 

  Normalized Mean Bias Error (NMBE) target within -0.5% to +0.5% range.  272 

 273 

Using the baseline models, energy use predictions for the analysis year (2018) were generated. 274 

The annual savings for the EE and the Non-EE groups was calculated as the difference between 275 

the baseline predictions and the actual consumption in the analysis period (known as the 276 

“avoided energy consumption” approach to estimating savings). The analysis result was 277 

expressed as a percentage reduction in consumption, the fractional savings (FS), defined in 278 

ASHRAE Guideline 14 as shown in Equation 4: 279 

𝐹𝑆 =
�̂�𝑝𝑜𝑠𝑡−𝐸𝑝𝑜𝑠𝑡

�̂�𝑝𝑜𝑠𝑡
=

𝐸𝑠𝑎𝑣𝑒

�̂�𝑝𝑜𝑠𝑡
  (4) 280 
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where �̂�𝑝𝑜𝑠𝑡 is the model-predicted energy consumption in the analysis period, and 𝐸𝑝𝑜𝑠𝑡 is the 281 

actual energy consumption in the analysis period. 282 

 283 

 284 

 285 

 286 

 287 

 288 

 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 

Figure 2: Seasonal goodness of fit metrics for GBM and TOWT models at the proxy total (top), substation (all 297 

substations in middle), and feeder levels (all feeders at bottom). 298 

 299 

The FS of the EE group was compared to the FS of the Non-EE group as an additional verification 300 

of the validity, or reliability of the savings results, that complemented the assessment of baseline 301 

model goodness of fit. The expectation is that the savings observed for EE program participants 302 

will be significantly different from changes in consumption for the Non-EE program participants 303 
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(which may reduce or increase over time). Confirming that this is indeed the case in the analysis 304 

results was used to verify that the EE savings signal was above some level of energy consumption 305 

change that may affect all accounts, EE and Non-EE, independent of their participation in energy 306 

efficiency programs (For example, changes in the economy, naturally occurring efficiency, or 307 

upstream utility efficiency interventions). In the following, for simplicity this change in energy use 308 

for NonEE accounts, that may occur independent of efficiency program participation, is called 309 

‘noise.’  310 

 311 

The FS was calculated to quantify the efficiency savings achieved by accounts at different points 312 

in the distribution grid. To assess the impact of those savings on the energy used at these points 313 

in the grid, the metric relative fractional savings (RFS) was developed. Defined in Equation 5, the 314 

RFS expresses the savings of a given set of EE program participants as a fraction of the energy 315 

used at level of the distribution grid in which the EE accounts are located. This is in contrast to 316 

the fractional savings (FS), which quantifies savings for a particular aggregation of accounts with 317 

respect to their own historical consumption.  318 

 319 

RFS is defined as: 320 

𝑅𝐹𝑆 =
𝐸𝑠𝑎𝑣𝑒

∑ �̂�𝑝𝑜𝑠𝑡
  (5) 321 

where �̂�𝑝𝑜𝑠𝑡 is the model-predicted energy consumption in the analysis period, and 𝐸𝑝𝑜𝑠𝑡 is the 322 

actual energy consumption in the analysis period. The denominator of equation 5 corresponds 323 

to the sum of EE and the Non-EE groups for each location in the distribution grid. 324 

 325 

To determine the hourly EE savings shapes at different locations in the distribution grid, and how 326 

those shapes vary with season, average hourly savings were quantified for weekdays, for both 327 

accounts types. These hourly savings were computed for the full year of the 2018 analysis period, 328 

and also for the each of four seasons. Winter was taken as spanning December through February, 329 

spring as March through May, summer as June through August, and fall as September through 330 

November. In this analysis only the FS metric was analyzed, due to the fact that the RFS is less 331 

visible at the hourly level. As in the analysis of annualized EE at different points in the grid, the 332 

hourly FS for EE participants was compared to the FS for Non-EE participants to verify that they 333 

EE savings signal was indeed above the ‘noise’.   334 

 335 

 336 

 337 

 338 

 339 

 340 
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3. FINDINGS 341 

This section first presents the utility’s EE programs energy savings at different points in the 342 

distribution grid. These annualized results are followed by findings that illustrate hourly savings 343 

profiles for the full year, and for the different seasons of the year.  344 

 345 

3.1 Annual efficiency savings in the distribution grid  346 

For the proxy total distribution grid level (the aggregate of twelve substations, containing 1,372 347 

EE accounts and 25,821 Non-EE accounts, with EE accounts comprising 5.4% of the total number 348 

of accounts in the analysis). The left plot in Figure 2 shows that the EE accounts saved 12.6% from 349 

the baseline year to the analysis year, while the Non-EE accounts ‘saved’, i.e., reduced their 350 

consumption, by 2.7%. As noted in the methodology section, the reduction in energy use 351 

observed in the Non-EE accounts group could be due to a number of exogenous factors, however 352 

as expected, the EE accounts are savings significantly more, verifying that the savings signal is 353 

discernible from the ‘noise’.   354 

 355 

The right plot in Figure 3 shows that the 12.6% savings that were achieved by the EE accounts 356 

manifested as a 1.3% reduction in the total energy used across the twelve substations. That is, 357 

energy efficiency was observed to impact grid-level energy use by 1.3%. However, the impact of 358 

the Non-EE accounts was even larger, with 2.7% FS translating to an RFS of 2.4%. This is due to 359 

the large number of Non-EE accounts versus EE accounts. Even though the 1,372 accounts in the 360 

EE group saved over 12%, the impact of these savings on energy used in the distribution grid was 361 

surpassed by the 2.7% savings were observed in the 25,821 Non-EE accounts.       362 

 363 

  364 
 365 

Figure 3: FS and RFS for EE and Non-EE accounts at the proxy total distribution grid level.  366 

 367 

Figure 4 shows the fractional savings and relative fractional savings for each of the 12 substations 368 

individually. Across substations the average number of EE accounts was approximately 5% of the 369 

total number of accounts, as was the case for the total grid-level proxy. Of the 11 substations 370 
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with EE account savings larger than Non-EE accounts, 4 substations also had an RFS for the EE 371 

accounts that exceeded that of the non-EE accounts.  At the substation level, the FS achieved by 372 

EE participants ranged from near zero, to above 25%, with an average of 11%.  373 

 374 

This indicates that even without the utility explicitly conducting location targeting, efficiency is 375 

delivering observable impacts for a portion of the substations in the distribution grid.  376 

 377 

 378 
Figure 4: FS and RFS for EE and Non-EE accounts at the substation level.  379 

 380 

At the feeder level the average number of EE accounts was 5% of the total number of accounts, 381 

as was the case for the substation and proxy total levels. However, at this level of the distribution 382 

grid, the EE savings signal was more variable, and less discernible. The FS for the EE group was 383 

larger that of the Non-EE group for 39 out of 51 feeders analyzed, and ranged from -4.7 to 42% 384 

with an average of 9%. The RFS for the EE accounts ranged from -2 to 12% with an average of 1%, 385 

and exceeded that of the Non-EE accounts for 12 out of the 51 feeders. 386 

 387 

3.2 Hourly efficiency savings shapes in the distribution grid  388 

Figure 5 shows the average savings for each hour of the day at the proxy total distribution grid 389 

level. The left-most plot shows hourly savings for the full year, and the four plots to the right 390 

show the hourly savings profiles for each season. For every hour of the day, the savings for the 391 

EE accounts is larger than that of the Non-EE accounts, reflecting the validity of the savings 392 

results. Annually, the hourly EE savings range from approximately 7% to over 17%. The annual 393 

and seasonal savings profiles reflect similar shapes, with savings peaking around noon, and 394 

minimum at around 5:00 am. In the summer, the peak savings appear a couple of hours earlier 395 

at 10:00 am. It is also notable that, while Non-EE accounts saw a reduction in consumption overall 396 

(as stated earlier), Figure 4 indicates that consumption actually increased (i.e., a negative savings 397 

value) for some hours in spring and summer. 398 
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 399 
Figure 5. Average hourly FS for EE and Non-EE accounts at the proxy total distribution grid level, annually (left), 400 

and seasonally.  401 

 402 

Figure 6 shows the annual hourly savings profiles for the proxy total distribution grid level, and 403 

also for each of the twelve substations that were analyzed. In contrast to the proxy total grid 404 

level, at the substation level, there are hours of the day for which the savings for EE accounts 405 

group are not larger than that of the Non-EE group. These hours of the day are shaded gray in 406 

the plots, and although relatively few in number, represent time periods for which the hourly 407 

savings signal cannot be distinguished from the ‘noise’ (Substation S3 being the most extreme 408 

example). These substations are dominated by single miscellaneous or industrial accounts, which 409 

have very different consumption patterns and usage levels than typical residential and 410 

commercial accounts. At the substation level the hourly savings shapes are highly varied, with 411 

more diversity of shapes, and also timing of the peak savings. This likely reflects the number and 412 

type of accounts associated with each substation, and the degree and type of efficiency deployed.     413 
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 414 
Figure 6: Average hourly FS for EE (red line) and Non-EE (blue line) accounts annually, at the proxy total 415 

distribution grid level (left), and at each substation analyzed. 416 

 417 

Figure 7 shows the summer season hourly savings profiles for the proxy total distribution grid 418 

level, and also for each of the twelve substations that were analyzed. Summer is a period of 419 

particular interest, as it is the time of year when loads are typically at their highest, putting the 420 

highest demand on the distribution grid. With the exception of substations S3 and S4, the hourly 421 

savings for the EE group are validated as higher than the Non-EE group for most hours of the day. 422 

Overall, for each substation, the summer savings shapes are similar to the full-year savings 423 

shapes, and there remains significant variability between substations.    424 

 425 

 426 
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 427 
Figure 7: Average hourly FS for EE and Non-EE accounts in summer (June, July, August), at the proxy total 428 

distribution grid level (left), and at each substation analyzed. 429 

  430 

Table 1 summarizes the difference in the calculated hourly fractional savings between the EE and 431 

Non-EE groups, at each level of analysis in the distribution grid (total proxy, substation, and 432 

feeder), for the full year, and also for each season. This difference indicates the validity, or 433 

quantifiability of the hourly savings results, and is expressed as the average number of hours (out 434 

of 24), for which the fractional savings of the EE group was larger than that of the Non-EE 435 

comparison group. The results indicate that the hourly savings results are most often valid at the 436 

total proxy level (EE higher than NonEE for all 24 hours of the day), decreasing down the hierarchy 437 

to the substation and feeder levels (e.g., in the Spring, EE savings are higher than NonEE for an 438 

average of just 15 hours of the day). At the substation and feeder level, savings validity is higher 439 

in Summer than in other seasons.  440 

 441 

  442 
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Table 1. Validity of hourly EE savings results, as indicated by the average number of hours out of 24 for which 443 

the fractional savings of the EE accounts are larger than those of the Non-EE accounts. 444 

 445 

Time Period Total Proxy Substation Feeder 

Whole year 24 21 17 

Winter 24 17 17 

Spring 24 18 15 

Summer 24 21 17 

Autumn 24 20 16 

 446 

4. DISCUSSION 447 

The results of the analysis showed that the utility’s DSM portfolio is delivering significant energy 448 

savings at each location in the distribution grid - from over 12% at the proxy total level, to average 449 

substation and feeder level savings of 11% and 9% respectively. At the substation level, the 450 

savings ranged from 0.4% to 26%, and at the feeder level the range was -5% to 42%. The possible 451 

causes of these wide ranges were not directly studied, but are expected to be driven by 452 

differences in the number of accounts participating in the efficiency programs, the specific 453 

measures installed, and the types of facilities represented, e.g., residential, commercial, 454 

industrial, and agricultural. These savings had a measurable impact on the energy used at these 455 

locations in the grid, with RFS of 1.3% at the proxy total level, to average 1.4% and 1.0% at the 456 

substation and feeder levels. These RFS impacts at the substation and feeder level were also 457 

highly variable, ranging from 0% to 5% (substations), and -2% to 12% (feeders), for the same 458 

reasons.  459 

 460 

The total average efficiency impact (RFS) of 1.4% is reasonable with respect to the utility’s load 461 

reduction planning targets that aim for annual reductions on the order of a couple of percent, 462 

due to building code improvement efforts and energy efficiency programs (which include 463 

midstream/upstream programs with subcontractors and retailers, which weren’t captured by the 464 

“EE” marker in the dataset used for this study). While the utility’s load reduction estimates are 465 

based primarily on calculated or stipulated savings, the analyses presented in this work provide 466 

a measurement-based lens into the achieved impacts of efficiency on the grid. These observed 467 

impacts were present even without explicit locational targeting of DSM delivery by the utility, 468 

suggesting compelling potential for the more aggressive use of efficiency as a non-wires 469 

alternative. These results were validated through comparison of the reductions in energy use for 470 
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accounts that participated in efficiency programs, and those that did not. Another means of 471 

validating the results was to ensure high levels of model goodness of fit to the baseline data.  472 

 473 

When the annual efficiency savings were disaggregated into average hourly savings shapes, the 474 

results showed that savings at the proxy total grid level peaked at around 12PM-1PM, and ranged 475 

from approximately 7% to 17%. The timing of the peak savings is driven by the measure types 476 

that are implemented in the programs (e.g., lighting, appliance, and equipment efficiency are 477 

common), and the end uses that those measures affect. The seasonal effects on the saving shapes 478 

were modest, with a shift of the summer peak savings to a couple of hours earlier in the day.  479 

 480 

At the substation and feeder level, hourly savings results became less quantifiable, as indicated 481 

by the comparison of the EE group to the NonEE group and by the degree of variation between 482 

savings shapes. With the exception of substations that were known to be dominated by industrial 483 

or other special building types, the effect was not large, but as expected, the hourly savings 484 

results became less quantifiable in moving from the proxy total to the feeder level, and in moving 485 

from the higher temperature and daylight summer period to the other seasons of the year. 486 

 487 

5. CONCLUSIONS AND FUTURE WORK  488 

As the efficiency industry (particularly utilities and their respective regulatory bodies) moves to 489 

consider how energy efficiency can meet the more nuanced needs of a decarbonized renewables-490 

integrated energy system, there is increased need to better understand the time and location of 491 

realized efficiency savings. Using a single model that can predict annual as well as seasonal 492 

building energy use with near-zero bias, this work demonstrated new metrics and methods to 493 

apply meter-based savings analysis to assess grid-level spatio-temporal impacts of energy 494 

efficiency. These approaches provide a methodological and modeling foundation that offers 495 

potential to connect efficiency programs with grid and distribution planning, carrying 496 

implications for non-wires alternatives and targeting the delivery of efficiency programs, as well 497 

as tracking achieved efficiency with respect to forecasts. 498 

 499 

There are several immediate directions for future work to expand upon the initial analyses 500 

presented in this paper. The DSM portfolio-wide analysis could be disaggregated to assess 501 

program-specific effects, and to characterize how the results vary with different distributions of 502 

residential versus commercial and industrial customers. This would provide further insights to 503 

program administrators seeking to design the most impactful portfolio of program offerings, and 504 

could be combined with additional work to enable integration of the customers with EVs and on-505 

site PV. To couple different levels of consumption measurement, the bottom-up analysis using 506 

AMI data could be complemented with an analysis of SCADA measurements at the distribution 507 
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level. Finally, the analyses presented in this work can be applied to NWA projects in the field, and 508 

to future pilots of location- and time-based targeting of EE program delivery.  509 
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Appendix A 602 

 603 

Table 2. Market segmentation of EE customers at substations analyzed 604 

 605 

SUBSTATION RESIDENTIAL COMMERCIAL INDUSTRIAL MISC 

S1 88 2 NA 1 

S2 57 7 NA NA 

S3 14 NA NA 1 

S4 159 10 2 1 

S5 25 19 1 1 

S6 267 3 NA NA 

S7 145 2 NA NA 

S8 127 2 NA 2 

S9 200 6 NA NA 

S10 84 7 NA NA 

S11 90 3 NA 3 

S12 30 12 NA 1 

 606 
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