Energy Technologies Area

Lawrence Berkeley National Laboratory

What Does It Cost to Save a Therm?

Presented by Steve Schiller, Sean Murphy, Greg Leventis and Lisa Schwartz

Berkeley Lab Webinar – June 4, 2020

This work was supported by the U.S. Department of Energy's Building Technologies Office.

Webinar Housekeeping Items

- The report and webinar slides are posted <u>here</u>.
- We're recording the webinar and will post it on our web site.
- Because of the large number of participants, everyone is in listen mode only.
- Please use the Q&A box to send us your questions and comments any time during the webinar.
- Moderated Q&A will follow our presentation. We'll answer as many questions as we can at that time.

What is the Cost of Saving Energy and why is it important?

◆Cost of Saving Energy (CSE) is:

- The cost of achieving energy savings over the estimated lifetime of the efficiency measures (programs) implemented
- Reported in dollars per unit of energy saved (e.g., \$/therm)
 - Program Administrator (PA) CSE accounts for expenditures for planning, administering, designing, implementing, and verifying programs as well as providing financial incentives to consumers (and others)

◆Why it's important

- State public utility commissions, utilities and other PAs use CSE data to:
 - Assess energy savings potential and design
 - Determine what programs to offer customers
 - Implement programs in a cost-effective manner
 - Accurately assess efficiency cost performance to ensure reliability most affordably

Berkeley Lab Studies on Cost of Saving Energy

- Program typology (<u>2013</u>)
- First study on program administrator cost of saving energy (2014)
 - For both natural gas and electric investor-owned utilities (IOUs)
 - Cost to utility or third-party administrator (not including any participant contributions)
 - Analysis down to program level
- ◆ Updated analysis for electricity (2015), including *total* cost
 - Total cost = PA cost + participant contributions
- Most recent electricity analyses for IOUs
 - 116 PAs in 41 states, 2009-2015 (2018)
 - Cost of saving peak demand, 9 states, 2014-2017 (2019) expanded analysis underway
- Analysis for publicly owned electric utilities with APPA (2019)
 - □ 111 PAs, representing 219 utilities in 14 states, 2012-2017
 - Analysis at market-sector level
- New study on cost of saving natural gas (2020)

Context

- National average retail price of natural gas during our study period (2012-2017) was ~\$1/therm¹
 - Retail prices include the commodity cost as well as transportation, delivery and storage costs. Some jurisdictions also include avoided environmental costs and avoided gas price risks.
- As another point of comparison, the average citygate (wholesale) price during this period was about \$0.45/therm.²
- U.S. households and businesses spent approximately \$65 billion on utility-supplied natural gas in 2018.³
- U.S. natural gas utilities spend about \$1.3 billion a year on energy efficiency programs.⁴

¹ U.S. Energy Information Administration

²U.S. Energy Information Administration

³ American Gas Association

⁴ https://library.cee1.org/content/2018-cee-annual-industry-report/

Study Scope

- ◆ 37 program administrators from 12 states: AR, CA, CT, IA, MA, MI, MN, NJ, NY, OK, RI and UT
 - Account for ~50% to 70% of annual national spending on natural gas efficiency programs*
- Representation in all four U.S. census regions
- Portfolio and market sector spending and savings
- **◆** 2012-2017

West Northeast South

^{*}Based on national spending on programs as reported by the Consortium for Energy Efficiency.

Definition: PA Cost of Saving Gas

Levelized Program **Administrator Cost of Saving** Gas (PA CSE)

The cost to the *program administrator* for achieving gas savings over the economic lifetime of the actions taken, discounted back to when the costs were paid and the actions occurred

Assumptions and inputs:

- 6% discount rate (real)
- Estimated program average measure lifetimes
- Total program cost (not including participant contributions), including incentives (2017\$)
- Gross annual therms saved

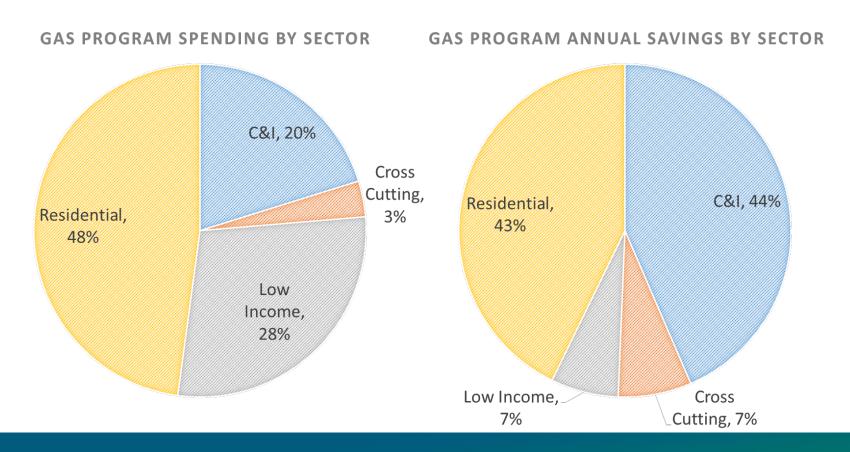
Program Administrator Cost of Saving Gas =

Capital Recovery Factor * (Program Administrator Costs)

Annual Gas Savings (in therms)

$$CRF = \frac{r(1+r)^{N}}{(1+r)^{N}-1}.$$

 $CRF = \frac{r(1+r)^{N}}{(1+r)^{N}-1}.$ r = the discount rate N = estimated program lifetime in years and calculated as the savings-weighted lifetime of massives. participating customers in a program


Scale of Efficiency Investments in Our Sample

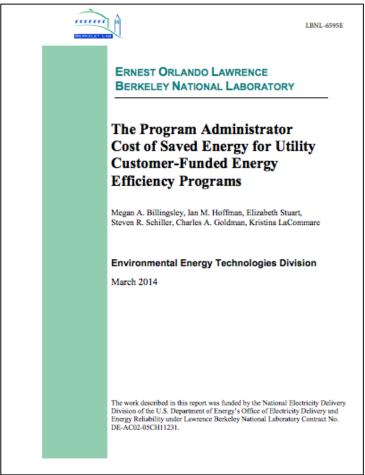
Our sample represents about \$5B of spending and nearly 1.4B therms of energy savings during the study period: 2012-2017.

Sector	Annual Gross Savings (millions of therms)	Spending (\$2017 million)	Average PA CSE (\$2017)	Median PA CSE (\$2017)
Residential	587.3	\$2,283.7	\$0.43	\$0.40
C&I	598.1	\$989.6	\$0.18	\$0.24
Low Income	91.1	\$1,350.1	\$1.47	\$1.16
Portfolio (All Sectors)	1,375.0	\$4,971.1	\$0.40	\$0.34

Spending and Savings by Sector

- Residential and low-income sectors account for 48% and 28% of spending in our sample, respectively
- Annual savings for residential and C&I are roughly equivalent

Please use the **Q&A box** to send us your questions and comments any time during the webinar.

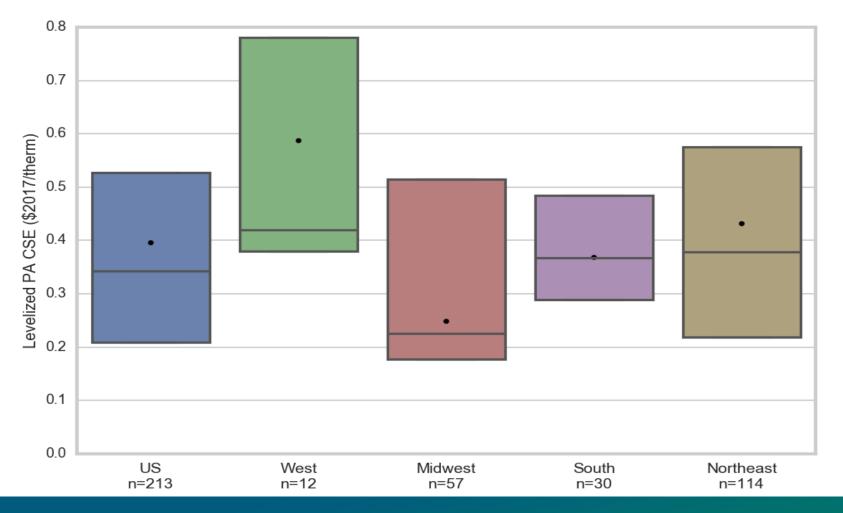

Moderated Q&A will follow our presentation. We'll answer as many questions as we can at that time.

Results

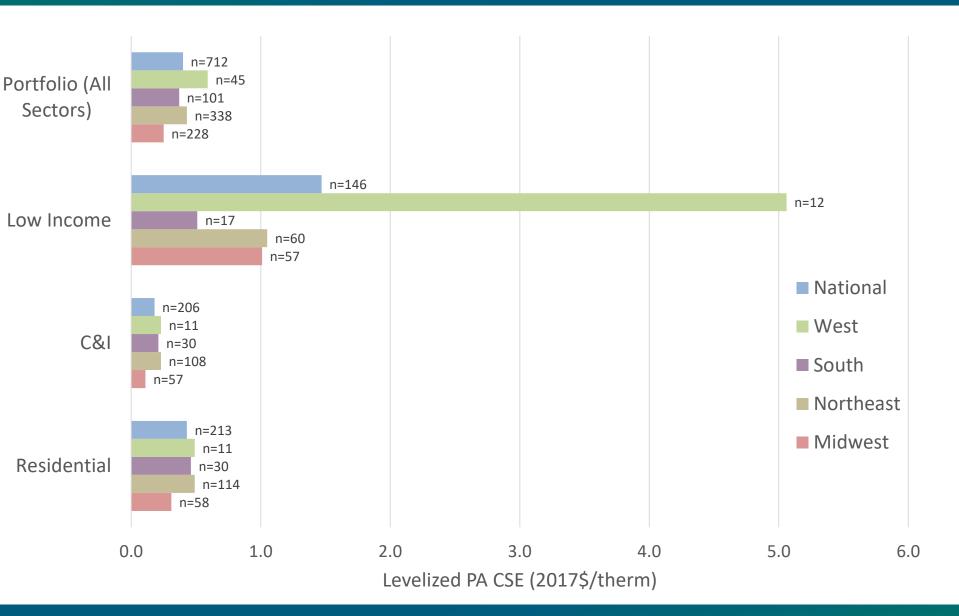
National Results


◆ Savings-weighted average PA cost of saving gas is \$0.40/therm for our 12-state sample over the 2012-2017 study period

Results are similar to a 2014 Berkeley Lab study, which estimated savings at \$0.38/therm from 2009 to 2011

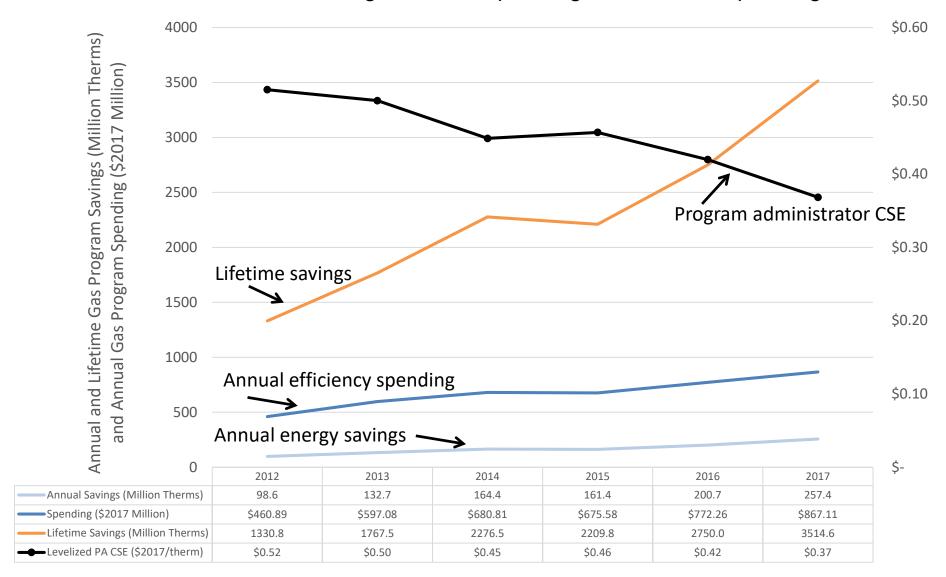

Cost by Market Sector

- C&I programs provided savings at the lowest savings-weighted average cost (\$0.18/therm). The cost of residential and low-income programs was \$0.43/therm and \$1.47 per therm, respectively.
 - Residential and low-income programs represent ~¾ of spending in our dataset.



Costs by Region

- Cost/therm varies by region—e.g., Midwest at \$0.25 vs. West at \$0.59
- High spending on low-income programs in West likely drives some of this disparity; also, weather-driven differences in savings opportunities



Results by Sector and Region

Cost and Savings Trends

- Average CSE values trended downward from 2012 to 2017
- Annual achieved savings trended up, at higher rate than spending

Challenges and Opportunities

Data and Reporting Challenges

- Data quality and screening challenges for example,
 program administrator definition, estimation and reporting of:
 - Savings metrics
 - Program costs
 - Market sectors
 - Program types
 - Measure lives
- Reporting of gas program data has improved in many states. But significant and meaningful opportunities remain for greater transparency, rigor and comprehensiveness in data reporting.

Opportunities: Additional Research

- This work could be strengthened and supplemented with the following additional research:
 - Expand data collection to other states for fuller geographic representation,
 larger sample size and greater confidence in the results
 - Provide technical guidance and support to states and PAs for more consistent reporting and improvements in evaluation, measurement, and verification and estimation of savings from natural gas efficiency programs
 - Conduct analyses to identify the drivers of a downward trend in the average PA CSE from 2012 to 2017, as well as factors such as climate that drive differences in the cost of saving gas across states
 - Analyze PA CSE for gas by efficiency program type (e.g., residential new construction, industrial process, commercial heating, ventilating and airconditioning)
 - Develop a cost curve for gas efficiency programs
 - Assess the potential impact of PA size on cost
 - Estimate the Total CSE for natural gas programs, including participant costs

Q&A

Please use the **Q&A box** to send us your questions and comments.

For More Information

ELECTRICITY MARKETS & POLICY

Lisa Schwartz

lcschwartz@lbl.gov

https://emp.lbl.gov

Join our mailing list (https://emp.lbl.gov/mailing-list) and stay up to date on our publications, webinars and other events. Follow us on Twitter

@BerkeleyLabEMP