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1. Introduction 
This paper expands on prior Berkeley Lab work on integrated simulation of 

building energy systems by the addition of active solar thermal collecting 

devices, technology options not previously considered (Siddiqui et al 2005). 

Collectors can be used as an alternative or additional source of hot water to 

heat recovery from reciprocating engines or microturbines. An example study 

is presented that evaluates the operation of solar assisted cooling at a large 

mail sorting facility in southern California with negligible heat loads and year-

round cooling loads.  Under current conditions solar thermal energy collection 

proves an unattractive option, but is a viable carbon emission control strategy. 

2. Distributed Energy Resources Customer Adoption Model 
The Distributed Energy Resources Customer Adoption Model (DER-CAM) 

finds the cost minimizing optimal combination of equipment and operating 

schedule to meet the useful energy flows required at a site, given end-use 

energy loads, electricity and natural gas prices, and DER equipment options.  

Slide 2 shows the flows of energy in a building from the inflows of purchased 

or solar energy on the left towards the useful energy flows on the right. DER-

CAM solves this entire system simultaneously. 

3. San Bernardino Mail Sorting Facility 
The mail sorting facility is a huge (25 000 m2) building in the desert east of 

Los Angeles.  Daytime maximum temperatures average 40 C in summer but 

fall to 23 C at midnight, while winter highs are only about 15 C, and it never 

freezes.  Each evening and night, machinery processes 2 million pieces of 

mail, resulting in year-round cooling loads and a 1.6 MW summer peak 

electrical load near midnight.  Electricity consumption totals about 2 GWh/a 

for cooling and 8 GWh/a for all other uses, leading to a total annual energy bill 

of US$930,000 (US$0.09/kWh).  Heating loads are negligible.  High electricity 

prices, abundant solar radiation and a large rooftop area, and year-round 

cooling loads make this building an apparent prime candidate for solar cooling. 



4. Data Inputs 
Current California subsidies for distributed generation are applied as follows: 

US$600/kW for reciprocating engines and large turbines, US$800/kW for 

microturbines, and US$3500/kW for photovoltaics, but are excluded from the 

carbon cases.  Other input data was collected as shown in the bibliography. 

5. Modeling Approach 
Two types of solar collectors are considered 1) low temperature flat plate 

collectors used as pre-heating to single effect absorption chillers (COP = 0.7) 

with supplemental heat being provided by waste heat or natural gas and 2) 

high temperature, pressurized, concentrating collectors used to fire double-

effect chillers (COP = 1.2) with waste heat and/or natural gas preheating. For 

both types of collector, two sensitivities were performed: 1) decreasing the 

cost ($/kW) of collectors to reflect either technological progress or further 

subsidies; and 2) imposing annual carbon emission constraints while 

removing the DER subsidies and minimum payback constraints. The average 

carbon intensity for the local utility is 0.131 kg/KWh (Price et. al. 2002). 

6. Results 
Natural gas reciprocating engines (mostly 1 MW systems) with heat recovery 

and absorption cooling are selected in all instances.  At current collector costs 

(US$150/kW for low temperature and US$1400 for high temperature), DER-

CAM chooses a 1 MW reciprocating engine system, 1.1 MW single effect 

absorption chiller, and a 1.5 MW low temperature collector. This lowers the 

annual bill by 14% to US$802,000. Only 30% of electricity use is self-

generated and absorption cooling displaces a further 8.8%.   Low temperature 

collectors are economic up to US$450/kW; however, cost savings relative to 

DER systems without collectors are small: only 5% even if free, and just 1% at 

current costs. High temperature collectors provide significant cost savings 

(16%) if free but are not economic above US$950/kW.  

Slide 5 shows how heat and electricity loads are met in two cases: above are 

January low temperature results at current collector costs; below are July high 

temperature results if collectors cost US$500/kW, less than half of current 

costs.  However, DER systems including high temperature collectors and 

double effect chillers could reduce the site carbon emissions by up to 500 t/a 



(40%) at a control cost of US$500/t. Systems including low temperature 

collectors and single effect chillers would require a public cost of US$1500/t to 

reduce emissions 500 t/a, due to a heavier reliance on expensive 

photovoltaics.  Slide 7 shows the installed capacity of DER equipment for the 

carbon constraint sensitivity.  Figure 8 shows the annual energy costs for the 

site in this sensitivity. These are the Pareto curves of the cost/carbon dual 

optimization.  

7. Conclusion 
At current costs, low temperature collectors are a cost effective addition to 

DER systems at the example site, but offer only minimal energy cost savings. 

High temperature collectors are not cost effective but offer greater opportunity 

for carbon savings and at a lower control cost.  
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