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Introduction

• The benefits of the various programs of the U.S. Department of Energy’s Vehicle 
Technologies Office (VTO) are estimated on a biannual basis in the BaSce (Baseline & 
Scenarios) analysis. 

• To date, the BaSce analysis of plug-in electric vehicles (PEV) assumes that large-scale 
deployment will not significantly alter the electric power system or change the 
benefits and costs associated with fueling infrastructure (both for electricity and 
petroleum). This assumption is unlikely to be true in the case of large-scale 
electrification of transport. 

• Hence, Lawrence Berkeley National Laboratory (LBNL), in collaboration with Argonne 
National Laboratory (ANL), is improving the BaSce analysis to better estimate the 
benefits and costs of PEV deployment by including the impacts on the power system, 
smart charging, and changes in fueling and charging infrastructure.

• LBNL is updating, calibrating and validating the Behavior Energy Autonomy Mobility 
(BEAM) model in order to improve the PEV benefits analysis as described above. 

• As a first step, BEAM has been calibrated and validated with mobility and charging 
data from the nine-county San Francisco Bay Area. 
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Methodology

• Agent-Based Integrated Systems Modeling
– Agent-based models are conceptually simple. 

– Individual actions of agents can be defined with a 
combination of technical familiarity and common sense. 

– The emergent outcomes of agent-based models are 
complex.  

– Through the process of interpreting the emergent outcomes, 
agent-based models can inspire insight into system dynamics 
that challenge intuition and preconceived notions. 
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Methodology

• The BEAM Framework
– BEAM is an extension of MATSim. 

– MATSim – Multi-Agent Transportation Simulation 
which features:
o High fidelity simulations: explicitly representing 

individuals and their interactions with detailed models 
of infrastructure

o Captures the emergent outcomes of self-interested 
participants in a market

o Agents maximize personal utility through iterative 
execution of the mobility simulation, followed by 
scoring of the each agent’s experience and then 
replanning their day to improve the score
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Figure 1: Process flow of the MATSim 

iterative simulation loop.



Methodology

• The BEAM Framework (cont.)
– BEAM extension to MATSim. 

o PEVs are now represented in MATSim, including 
key vehicle characteristics and energy 
consumption models

o Utility associated with charging is combined 
with MATSim utility for mobility

o Charging infrastructure is explicitly modeled 
including physical access to plugs from parking 
spaces and queuing systems to manage order of 
sessions

o Agents are modeled as finite state machines, 
model actions are dispatched as events in a 
discrete event simulation engine
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Figure 3: In BEAM, charging sites have multiple charging 

points which are accessible to limited parking spaces and 

can have multiple charging plugs of various types.
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Methodology

• The BEAM Framework (cont.)
– BEAM extension to MATSim. 

o A flexible framework for modeling the 
decision on whether to charge at a 
given location is used to simulate 
alternative choice models including an 
“always charge” heuristic, a simple 
random decision, and a nested logit 
discrete choice model 

o The nested logit choice model includes 
a detailed utility function that balances 
the tradeoffs between time, expense, 
and convenience of choice alternatives
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Figure 5: Structure of the arrival decision model in BEAM for deciding 

what site/level charger to select or – if charging is not chosen – what 

adaptation strategy to elect.

Utility 
Function

Attribute 
Type

Name Units Calibrated 
Coefficient

Charging 
Site/Level

Agent Remaining Range mi -0.025

Agent Remaining Travel Distance in Day mi 0.005

Agent Next Trip Travel Distance mi 0.05

Agent Planned Dwell Time hr 0.25

Agent Is BEV dummy 2.5

Charger Cost $ -4.5

Charger Capacity kW 0.001

Charger Distance to Activity mi -1

Charger At Home and Is Home Charger dummy 2.5

Charger Is Available dummy 2.5

N/A Intercept dummy 5

… … … … …

Table 4: Excerpt of the utility function attributes and coefficients in 

the calibrated nested logit model in BEAM.



Model Application
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• Model is applied to the San Francisco 
Bay Area

• Mobility data are derived from the 
Metropolitan Transportation 
Commission’s activity-based travel 
demand model

• PEV ownership is based on California 
Clean Vehicle Rebate Project data

• Charging infrastructure is derived 
from the U.S. DOE Alternative Fuels 
Data Center

Figure 6: Rebates claimed in the San Francisco Bay Area as mid-2016 by 

vehicle make and year (data from California Clean Vehicle Rebate Project).

Figure 7: Charging 

Infrastructure in the San 

Francisco Bay Area as of 

mid-2016 according to 

data from the Alternative 

Fuels Data Center.



Model Application
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Figure 8: Observed utilization of chargers on a weekday aggregated across San 

Francisco Bay Area.

• Observed charger utilization is developed by sampling 
from public APIs of charger availability online.
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Figure 9: Observed utilization of chargers on a weekday by county across San 

Francisco Bay Area.



Results and Analysis

• PEV Trip Demand
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Figure 10: Departure times in San Francisco Bay Area application of BEAM by type of activity 

from which the agent is leaving.

Trip Travel Distances

Miles

F
re

q
u

e
n
c
y

0 50 100 150 200

0
5
0

0
0

0
1

0
0

0
0

0
1

5
0

0
0

0
2
0

0
0

0
0

2
5

0
0

0
0

Daily Travel Distances

Miles

F
re

q
u

e
n

c
y

0 100 200 300 400 500

0
2

0
0

0
0

4
0

0
0
0

6
0

0
0
0

8
0

0
0
0

Figure 12: 

Distribution of travel 

distances in Bay 

Area application of 

BEAM.
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Results and Analysis

• Preliminary Model 
Calibration and 
Validation
– Gross probabilities of the 

choice alternatives were 
initially based on 
literature review and on 
the judgment of our 
modeling team

– Then we engaged in an 
empirical calibration of 
the Bay Area BEAM 
model by comparing 
simulated charging 
profiles to observed 
patterns
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Figure 14: Simulated vs. observed charger utilization for four sets of parameter values in the nested logit decision model in 

BEAM. Each point represents a comparison of the number of public chargers in use by charger level and hour according to 

BEAM outputs versus observed from charging networks in the Bay Area in mid-2016.



Results and Analysis

• Impact of Constrained 
Infrastructure on Charging 
Profiles

– One common modeling 
simplification is to ignore the 
fact that charging 
infrastructure in the public 
sphere is constrained

– We tested the impact of this 
simplifying assumption

– There is a dramatic difference 
in the charging profile of the 
agents when infrastructure is 
abundant versus constrained

– CONCLUSION: the current 
charging infrastructure in the 
San Francisco Bay Area is 
insufficient to allow all PEVs to 
charge whenever and 
wherever they arrive at a 
destination. 
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Figure 16: Instantaneous charging demand for PEVs in the Bay Area under a scenario with abundant and constrained 

charging infrastructure. Demand is disaggregated by charger type (Level 2, DC Fast, or residential). The charging 

decision model used is “Always Charge on Arrival.”



Results and Analysis

• Impact of Spatially Dispersed 
Charging Infrastructure on 
Charging Profiles

– A common modeling 
simplification is to ignore spatial 
dimensions. 

– But under constrained charging 
conditions and an “Always 
Charge on Arrival” choice 
strategy, we see that many plugs 
remain available.

– These plugs are not in use 
despite the fact that our previous 
analysis established that there is 
unfulfilled demand for charging.

– CONCLUSION: chargers are 
spatially sparse and are only 
cover a fraction of the sites 
within 2 km of agent activities.
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Figure 17: Plug availability for the baseline Bay Area BEAM scenario with the “Always Charge on Arrival” decision 

model. Here, availability is defined as plugs that are not actively charging any vehicle and are accessible by empty 

parking spaces, though they could be plugged into a vehicle.



Results and Analysis

• Impact of Alternative 
Models of Charging 
Decisions on Charging 
Profiles
– There is a clear 

difference in the 
charging profile of the 
agents when different 
choice models are used

– CONCLUSION: 
modeling driver 
behavior is critical to 
reproducing observed 
charging profiles. 
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Figure 18: Instantaneous charging demand for PEVs in the Bay Area under the baseline infrastructure scenario and 

three different models of charging decisions. Demand is disaggregated by charger type (Level 2, DC Fast, or 

residential).



Remaining Research Gaps

• Develop a method of incorporating this work into the 
BaSce analysis
• Once BEAM is integrated with the PLEXOS production cost model, it can be used to 

refine estimates of the benefits and costs that accrue to the power system in the 
BaSce analysis 

• Additional Calibration Work
• Using improved sources of data, LBNL could re-calibrate the nested logit choice model 

using more sophisticated calibration algorithms

• Apply Newly Conceived Charging Infrastructure Siting 
Methodology
• The utility functions evaluated by agents throughout the simulation provide an ideal 

and novel metric for infrastructure adequacy in space and time. Based on these data, 
a metric for need can be derived and used to spatially distribute new chargers in 
proportion to their need. 
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Conclusions

• Accurately reproducing observed charging patterns requires an explicit 
representation of constrained and spatially disaggregated charging 
infrastructure

• Chargers are not ubiquitous and therefore they must be treated as a 
finite resource in order to analyze realistic load profiles from charging

• Spatially explicit modeling of charging infrastructure is critical due to 
the relatively sparse distribution of chargers in urban networks

• Drivers balance tradeoffs with regards to time, cost, convenience, and 
range anxiety when deciding about whether to charge

• Simulating discrete choices improves modeling accuracy and can 
provide a useful metric for siting new charging infrastructure
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