
 DOI 10.1016/j.enbuild.2020.109762 

 
 
 

An assessment of the load modifying potential 
of model predictive controlled dynamic facades 
within the California context 
 
 
Christoph Gehbauer, David H. Blum, Taoning Wang, 
Eleanor S. Lee 
 
Lawrence Berkeley National Laboratory 
 
Energy Technologies Area 
January 2020 
 
 
 

  



 

Disclaimer:  
 
This document was prepared as an account of work sponsored by the United States Government. While this 
document is believed to contain correct information, neither the United States Government nor any agency 
thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, 
express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, process, or service by its trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the 
University of California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the University of 
California. 
 
 
Acknowledgments: 
 
This work was supported by the California Energy Commission through its Electric Program Investment 
Charge (EPIC) Program on behalf of the citizens of California and the Assistant Secretary for Energy 
Efficiency and Renewable Energy, Building Technologies Program, of the U.S. Department of Energy, under 
Contract No. DE-AC02-05CH11231.   
 
The authors would like to thank Dustin Davis at the California Energy Commission and Marc LaFrance and 
Amir Roth at the U.S. Department of Energy for their continued support for this research.  We would like to 
also acknowledge our LBNL colleagues Thierry Nouidui and Daniel Fuller for their technical support for this 
research.    



 

     1 

An assessment of the load modifying potential of model 
predictive controlled dynamic facades  

within the California context 

 

Christoph Gehbauer*, David H. Blum, Taoning Wang, Eleanor S. Lee 
 

Building Technology and Urban Systems Division, Energy Technologies Area,  
Lawrence Berkeley National Laboratory, Mailstop 90-3147,  

1 Cyclotron Road, Berkeley, California 94720 USA 
 
 
 
Abstract 
 
California is making major strides towards meeting its greenhouse gas emission reduction goals with the 
transformation of its electrical grid to accommodate renewable generation, aggressive promotion of building energy 
efficiency, and increased emphasis on moving toward electrification of end uses (e.g., residential heating, etc.).   As 
a result of this activity, the State is faced with significant challenges of system wide resource adequacy, power 
quality and grid reliability that could be addressed in part with demand responsive (DR) load modifying strategies 
using controllable building technologies.  Dynamic facades have the ability to potentially shift and shed loads at 
critical times of the day in combination with daylighting and HVAC controls.  This study explores the technical 
potential of dynamic facades to support net load shape objectives.  A model predictive controller (MPC) was 
designed based on reduced order thermal (Modelica) and window (Radiance) models. Using an automated workflow 
(involving JModelica.org and MPCPy), these models were converted and differentiated to formulate a non-linear 
optimization problem. A gradient-based, non-linear programming problem solver (IPOPT) was used to derive an 
optimal control strategy, then a post-optimization step was used to convert the solution to a discrete state for facade 
actuation.  Continuous state modulation of the façade was also modeled.  The performance of the MPC controller 
with and without activation of thermal mass was evaluated in a south-facing perimeter office zone with a three-zone 
electrochromic window for a clear sunny week during summer and winter periods in Oakland and Burbank, 
California.  MPC strategies reduced total energy cost by 9-28% and critical coincident peak demand was reduced by 
up to 0.58 W/ft2-floor or 19-43% in the 4.6 m (15 ft) deep south zone on sunny summer days in Oakland compared 
to state-of-the-art heuristic control.  Similar savings were achieved for the hotter, Burbank climate in Southern 
California.  This outcome supports the argument that MPC control of dynamic facades can provide significant 
electricity cost reductions and net load management capabilities of benefit to both the building owner and evolving 
electrical grid.    
 
Keywords:  model predictive controls; switchable windows; dynamic facades; daylighting; windows; building 
energy efficiency; controller in the loop.  
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1. Introduction 
 
California's electricity system has been transformed over the past decade with renewable generation accounting for 
27% of the electricity supply in 2016 towards a goal of 50% by 2030.  Per capita energy use has remained nearly 
level between 1993 and 2005 [CEC 2017].  Despite these impressive achievements, significant progress is still 
needed to meet California's requirements for greenhouse gas (GHG) emission reductions of 40% below 1990 levels 
by 2030 and 80% below 1990 levels by 2050.  In a study forecasting total California electricity demand, the authors 
concluded that transformational solutions are needed to achieve California's 2050 GHG reduction goal [Wei et al. 
2013a].  The study identified a portfolio of measures, where increased efficiency in the buildings, transportation and 
industry sectors represented 43% of the requisite GHG reduction, with the remaining reductions coming from low-
GHG sources of electricity (e.g., renewable energy, carbon capture, nuclear), a switch from natural gas to electricity 
as a source for heating, electric vehicles, biofuels, and conservation measures. Assuming electrification of heating 
energy will be needed to meet GHG goals, the state's total net load1 profile was forecast to be defined largely by 
residential building loads and potentially electric vehicle charging with peak loads occurring in morning and evening 
hours [Wei et al., 2013b].   
  
This “duck” curve has already been exemplified with net load data collected in 2014 by the California Independent 
System Operator (CAISO) [Alston et al., 2017].  With increased photovoltaic (PV) and wind energy, California 
must address significant challenges with system wide resource adequacy, power quality and grid reliability created 
by variable, non-controllable sources of generation.  Conventional power plants were historically adjusted to meet 
instantaneous or variable demand.  With the addition of renewables, CAISO must now maintain reliability by 
matching the demand for electricity with supply using a variety of measures that adjust electricity production to 
meet changes in electricity demand on a second-by-second basis [CAISO, 2016].  In a demand response (DR) study 
conducted for the California Public Utilities Commission (CPUC), four service categories (shape, shift, shed, and 
shimmy) were evaluated to assess the potential of DR in 2020 and 2025 to support reliable grid operations over 
different requisite time scales [Alstone et al. 2017].  Load shape, shed, and shift strategies address the need to 
achieve a more balanced load shape across the day with slow ramped transitions to turn on or shut off generation 
resources to meet demand.  Load shed (dual use term) and shimmy strategies address the need to more quickly 
respond to system wide shortfalls and rapid changes in demand as an ancillary service.  
  
The DR study quantified the amount of controllable DR that could be expected to be available in 2020 and 2025 
across a range of competitive levelized costs for supplying the DR resource, where costs were defined by equivalent 
procurement costs for an alternative resource that could meet the same needs as DR [Alstone et al. 2017] or 
incentives linking DR with a value stream for the service.  In the simulations, the residential building sector was 
incented to control loads using time-of-use and critical peak pricing rate structures, whereas the commercial building 
sector was incented using a time-of-use rate structure.  A portfolio of controllable end use technologies were 
selected based on levelized cost for the DR resource, whether the service could be aggregated to produce reliable 
DR resource, speed of response (seconds, minutes), level of disruption to operations or occupants, and ability of the 
dispatchable technologies to provide real time, runtime information and metered data in order to participate in 
supply side markets.  Cost competitive DR load reductions per DR service category were given for the modeled 
technology measures; e.g., commercial lighting was projected to provide 156 MW-yr of shed DR and 216-303 MW-
yr of shimmy DR whereas commercial variable frequency drives were projected to provide 59 MW-yr of shed DR, 
3643-3749 MWh-yr of shift DR and 3-9 MW-yr of shimmy DR.  The DR study acknowledged that the technology 
options that were modeled were not comprehensive, that the DR study overall was the first of its kind and could not 
capture all potential energy scenarios, and that the results were indicative of DR potential.  
  

                                                           
1 “Net load” is defined as the sum of demand for electricity and supply provided by renewable generation.   
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In terms of policy, the CPUC bifurcated the DR program portfolio into 1) “load-modifying” DR resources that shape 
or reduce the net load curve through price response or behavioral campaigns with advance notice of months to days, 
and 2) “supply DR” sources that are controlled or dispatched within the CAISO markets [Alstone et al. 2017, CPUC 
Decision D.14-03-026].  In 2015, the CPUC defined the pathways for valuation of supply and load-modifying DR, 
where the latter could only provide capacity value through CEC load forecasts for resource (generation) adequacy 
planning (CPUC Decision 15-11-042).  Valuation, however, is further complicated by the interactive effects of 
energy efficiency and demand response.  Energy efficiency investments in controllable technologies could provide 
both load-modifying DR and the ability to participate in supply DR.  The DR study indicated that development of 
appropriate valuation of such technologies would require careful alignment between CPUC policy and market 
transformation programs.  
  
Given this context, there is some uncertainty as to whether the dynamic facades industry should develop products 
that are responsive to California’s net load profile, whether such capabilities will be incentivized by utility and non-
utility actors (e.g., aggregators, advocacy groups), and whether such products can deliver significant benefits above 
and beyond that of state-of-the-art controls.  Dynamic facades however have the ability to lower heating loads in the 
morning and evening through solar admission, lower cooling and lighting loads in response to time-of-use rates, and 
support shifting of loads in combination with precooling strategies by minimizing solar gains during peak periods.  
When used in combination with advanced heating, ventilation, and air-conditioning (HVAC) and lighting systems, 
dynamic facades have the potential to deliver very low energy use and demand in perimeter zones, serving as the 
first line of defense between the highly variable outdoor environment and the indoors.  While some measures can 
result in degradation in delivered service and amenity in buildings, dynamic facades have the potential to enhance 
the quality of the indoor environment through provision of daylighting and views, improve comfort, potentially 
increase health and productivity of occupants, while contributing as a net energy producer to the utility grid.  With 
advances in material science and controls R&D likely to significantly reduce the cost of dynamic facades, the sum of 
the benefits including increased demand flexibility could tip the balance to more widespread market adoption.   
  
This study explores the technical potential of dynamic facades to increase commercial building energy efficiency 
and provide load shed, shape and shift DR capabilities in support of California’s 2050 GHG reduction goals.  The 
objectives of the study are to 1) better understand DR response capabilities of dynamic façades, and 2) enable a 
more informed dialog to occur between utility actors and the dynamic facades industry in defining the role of this 
technology within the energy efficiency and demand response context of California.  A variable-transmission, three-
zone electrochromic window, dimmable lighting, and an HVAC system’s thermostat are controlled using model 
predictive controls (MPC) to minimize energy cost based on time-of-use rates and subject to comfort constraints.  A 
south-facing perimeter zone in a prototypical large office building is modeled using a workflow involving Radiance 
[Radiance, 2018] and Modelica-based [Modelica, 2018] simulation tools.  HVAC and lighting energy demand are 
evaluated for two climate zones in California.  We then discuss the technical potential of MPC to achieve load-
modifying DR response and associated cost savings compared to state-of-the-art controls.   
 
2. Background 
 
There have been numerous studies conducted to evaluate the technical potential of HVAC and lighting control 
strategies to shed and shift loads but very few involving dynamic facades and no known studies that disaggregate 
savings from combined measures.  One extensive simulation study [Gyalistras and Gwerder, 2010] found that 
integrated control of multiple building systems using optimal predictive control had a 16-41% annual energy savings 
potential for commercial buildings in Switzerland over the same systems controlled using best available rule-based 
controls.  Savings were due mainly to control of the exterior window blinds, free cooling, and energy recovery.  
Predictive control of the loads from dynamic facades (i.e., admission or rejection of solar gains) enabled efficient 
pre-heating or cooling of thermal mass, avoided frequent switching between heating and cooling, and kept room 
temperatures within the designated comfort range. During the winter, use of heating was avoided in morning hours 
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by opening the blinds to make better use of incident radiation for pre-heating the room, or alternatively, cooling 
energy use was reduced by opening the blinds at night to pre-cool the room radiatively prior to solar and internal 
gains expected for the next day.  On summer days, solar gains were reduced to a limit so as not to adversely affect 
lighting energy use savings from daylight.  Use of predictive controls enabled complete avoidance of mechanical 
cooling whereas rule-based controls resulted in the typical Gaussian load shape profile proportional to outdoor solar 
radiation levels on sunny summer days.  Predictive control of transmitted solar radiation also enabled the mean 
radiant temperature of the room to remain within comfortable levels in support of the pre-cooling strategy.  In all 
scenarios investigated, the study assumed use of automated blinds so isolating savings due to the blinds was not 
possible.  
  
Quantifying technical potential from systems integration is challenging, particularly when involving model 
predictive controls (MPC).  With MPC, a model of system operation, along with forecasts of disturbances, is used to 
predict future performance and optimize setpoint schedules and/or control inputs over a specified time horizon.  The 
solution of the first control step is implemented and the optimization is solved again with updated information 
(system state and disturbance forecasts) for the next control step.  When the controls involve multiple systems, the 
optimization problem can become complex with prediction horizons of 24 h or more.  In prior research, [Coffey 
2012] used model predictive controls to determine how to control the dynamic facade and radiant slab heating and 
cooling system to minimize cooling and lighting energy use over a prediction horizon of 24 h and within zone 
temperature constraints (20-24°C).  The study used reduced-order models for the control optimization, where the 
models for daylight level, solar gains to the slab and zone air, and thermal aspects of the model were calibrated 
using an error minimization process to match an EnergyPlus model of the American Society of Heating, 
Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1-2010 compliant large office reference building.  The 
optimization was solved with genetic algorithms using GenOpt [GenOpt 2018] then the reduced order models were 
used to determine final perimeter zone energy use (EnergyPlus could not be used due to inherent limitations of the 
tool).  With MPC control of an exterior or interior venetian blind and thermostat, annual energy use due to HVAC 
and lighting was reduced by 3-7% for south and west facing perimeter zones in Sacramento, Chicago, and New 
York compared to the same blind held at a static slat angle (emulating a manually-operated blind).    
  
Interest in MPC has increased given both the desire for more energy-efficient, integrated systems and increased 
computational power of embedded controllers.  Although used extensively in the chemical process, aerospace and 
transportation industries, MPC is still in the relatively early stages of development in the buildings industry.  
Experimental studies have been limited to no more than a few dozen proof of concept tests, often in unoccupied test 
rooms or with HVAC equipment in occupied buildings over a short term period (3 hours to up to 90 days) 
[Sturzenegger et al., 2016].  Conclusions from these studies indicated that the costs for model development and 
engineering were too high to justify use of MPC, but that these costs could be reduced significantly if progress was 
made to develop an MPC software framework and supporting modeling tools. 
  
These development costs are being addressed explicitly by related research.  The Lawrence Berkeley National 
Laboratory (LBNL) has been working to develop such an open source framework based on Modelica modeling and 
optimization in JModelica.org [Åkesson et al. 2009] that enables real time testing of MPC for buildings, either in 
real-time connected to a building or, for development and performance testing, in simulation with an emulated 
building model controlled by the MPC controller, called MPCPy [Blum and Wetter, 2017]. A key focus of this 
development is to allow the use of reduced order models and simplified HVAC models, with a supporting library of 
MPC models being developed in collaboration with the International Building Performance Simulation Association 
(IBPSA) Project 1 [IBPSA 2018].  The objective of this framework and library is to make it easy for non-experts to 
quickly build a model for MPC that is then adapted during operation based on measured data, thereby significantly 
reducing setup time and required expertise.  Real-time use of this framework for field testing in full-scale testbeds 
and monitored building demonstrations is now underway within LBNL.  The U.S. Department of Energy’s (DOE) 
Building Technologies Office (BTO) has also been supporting tools that would enable energy analysis of MPC-
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based technologies through the transformation of its building energy simulation tools [SOEP, 2018].  DOE also 
recently started supporting development of test emulators and procedures for advanced control sequences including 
MPC in collaboration with IBPSA Project 1 [Blum et al. 2019].  
  
This study is an extension of prior breadboard prototyping and field testing research and development activities.  
Under synergistic DOE and California Energy Commission (CEC) supported research, LBNL developed and tested 
autonomous2 MPC controls for dynamic facades, then field tested the controls in the LBNL full-scale, outdoor, 
Advanced Windows Testbed to validate the underlying models, observe operations, and improve performance 
[Gehbauer et al., 2017; Coffey et al., 2012].  The present solution (described in Section 3.1) involves MPC 
algorithms that can be configured (and reconfigured at any time over the life of the installation) with a few inputs 
using a web-based interface then executed on low-cost distributed embedded controllers (e.g., Raspberry Pi).  A 
non-linear optimization solver is used to determine the tint states of a three-zone electrochromic window (i.e., 
window subdivided into three equal height horizontal bands that are controlled independently) at a 5-min time step 
over a 24-h prediction horizon using real-time sensor, weather forecast, and utility price data.  The 5-min control 
time step was chosen based on typical dynamics of the sky, impacting the visual comfort of the occupant, i.e., the 
rate of change in glare and tolerability of intermittent discomfort.  The 24-h prediction horizon was chosen based on 
a daily cycle of operation, where a continuous actuation of the thermal mass of the building was implemented, i.e., 
the initial state of charge of the thermal mass should be close to the final state of charge.  The control objective is to 
minimize time-of-use energy and demand cost (due to HVAC and lighting loads) within visual and thermal comfort 
constraints, with added penalties for outcomes that diminish daylight quality and view.  The solution relies on open 
source tools (Modelica, JModelica.org, Radiance) and the MPCPy open source framework.    
  
3. Method 
  
Simulations were conducted to evaluate the performance of an MPC controller relative to conventional manually-
operated shades and heuristic, rule-based control of a dynamic facade.  The following sections describe the MPC 
controller (Section 3.1) and “emulator” (Section 3.2) used to simulate the energy and non-energy performance of the 
state-of-the-art and MPC controllers.  Details of the modeled south-facing perimeter zone in a prototypical large 
commercial office building are given in Section 3.3.     
 
3.1. Controller 
 
This section outlines the latest advancements of the Dynamic Facade Control (DFC) agent, as part of the previously 
introduced agent-based control architecture for dynamic facades that was demonstrated to be feasible for real-time 
control in a full-scale outdoor testbed [Gehbauer et. al., 2017].  The DFC agent includes the MPC controller and 
supporting control modules that enables the advanced control of dynamic facades, such as electrochromic windows, 
within an optimization framework. Challenges for developing the agent were a) integration of the complex 
fenestration models required for accurate daylighting, solar heat gain, and glare calculations, and b) development of 
the overall control architecture needed to seamlessly integrate the MPC controller into existing or new buildings.  
Both of these challenges were addressed in the 2017 study.  The resultant DFC agent allows the addition of user 
constraints such as desired glare level, time-varying work plane illuminance setpoints, occupancy schedule, 
temperature setpoints for heating and cooling, and previously set maximum demands for time-of-use (TOU) 
optimization.  It accepts external data (sensors, weather forecasts), performs the optimization, then determines the 
control state of the devices for actuation.  The DFC agent was integrated with an “emulator” i.e., gold standard, 
validated building energy simulation engine (Section 3.2), where inputs and communication were modeled as in a 
real-world deployment enabling Controller-in-the-Loop (CIL) testing.  The following subsections describe the 

                                                           
2 “Autonomous” = Facade controlled for HVAC and lighting energy cost minimization but without explicit real time data 
exchange for control.   
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implementation of the DFC agent, integration of the Radiance tool in the MPC controller within the DFC agent, and 
the optimization workflow used to determine the optimal state and setpoints for final actuation.  
 
In this study, the control objective of the DFC agent was to minimize total energy cost based on California time-of-
use energy and demand rate schedules for large commercial buildings.  
 
3.1.1. Implementation approach 
 
The Dynamic Facade Control Agent is written in Python and implemented as a set of utility functions, wrapped in a 
class. This top-level class mpc_controller includes the instantiation of sub-modules necessary for control, including 
Radiance, JModelica.org, and PyFMI [PyFMI, 2018]. While PyFMI is a Python package for the interaction of 
models conforming to the Functional Mockup Interface (FMI) open standard [FMI, 2018], JModelica.org is a tool 
for the compilation, simulation, and optimization of Modelica models with a Python API, and Radiance is a stand-
alone tool for daylight analysis which is wrapped with a number of Python utility functions. After instantiation, the 
class is queried using a syntax similar to the FMI standard.  An external trigger class handles the real-time control of 
the agent to ensure timely control steps, which are set to 5-min intervals. On a trigger event the do_step function is 
called to query the control, and compute the control for the next time step by taking a 24-h prediction horizon into 
account. In the simplest case do_step only requires the current trigger as datetime format. However, depending on 
the configuration, further inputs such as previously set demand charges or building occupancy may be provided. 
Figure 1 shows the process flow of the triggered controller. 
 

 
 

Figure 1. Process flow of Dynamic Facade Control Agent.  
 
Steps for the process flow are as follows: 
 

1. The control step starts with a query of the zonal database to get the room configuration; e.g., dimensions, 
occupant view direction, site location, etc. If a change in any of these inputs is detected then the matrices 
and configuration files for Radiance are recomputed. 
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2. The Weather Forecast agent is queried to get the latest 24 h weather forecast of global horizontal, diffuse 
horizontal, and direct normal irradiation. The hourly forecast is then interpolated to match the current 
timestep of triggering, and used as input for Radiance to compute parameters related to the fenestration 
system. These forecasts include work plane horizontal illuminance (WPI), solar heat gain (SHG), and 
vertical illuminance (Ev) for each window zone and for each timestep of the forecast. The vertical 
illuminance quantity is used to calculate the simplified daylight glare probability index (DGPs, [Wienold, 
2009]) at the occupant’s viewpoint.  

3. If real-time data from a solar sensor is available, then the Real-time Solar agent is queried to get the latest 
measurements. These measurements are used to produce more accurate predictions, but only for the current 
timestep, and then passed to a function which scales the whole 24 h forecast, increasing the accuracy of the 
weather forecast.   

4. The last input queried, if it exists, is the Sensing agent which can provide additional updated state 
measurements such as room air temperature, occupancy, or HVAC status through the building management 
system (BMS).  

5. Construction details of the modeled zone are assumed to be unknown, so if the timestep is at the beginning 
of the hour, then automated model tuning is conducted to estimate RC parameters for the room load 
calculation (see Section 3.1.2.3.6).  Additional options allow inputs to be scaled or otherwise modified by a 
machine learning (ML) model, such as Random Forest, or Artificial Neural Networks, which enable self-
commissioning, self-calibration, and self-adaptation. However, these options were disabled for this 
simulation study.   

6. The next two steps of optimization and post-optimization are the computation of the control signal and are 
further described in the sections below.  

7. The control states or setpoints from the optimization are communicated with actuators of the dynamic 
facade and building by the Control agent. 

8. As a final step, all input and output information are stored in a Python-based database to record historic 
trends for debugging and to support ML models.   
 

3.1.2. Optimal control 
 
The concept of the introduced control uses an MPC approach where a model represents the physics of the system 
and an optimizer explores global optima of control inputs. These models for optimization are complicated to develop 
and involve several decisions with regard to complexity, linearity, continuity, and accuracy. This is where the 
developed tool chain engages to significantly simplify this process. 
 
3.1.2.1. MPC tool chain 
 
MPCPy is part of a tool chain to abstract these modeling details by providing a simpler user interface in Python to 
automatically generate optimization problems from Modelica models, as shown in Figure 2.  
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Figure 2. Model Predictive Control tool chain to optimize a Modelica model. 
 
The modeling starts with the commissioning or implementation of a model which represent the physics of the 
building. This could be a single window, a thermal zone, or a building with multiple zones. It is generated using 
Modelica and stored in the .mo file format. MPCPy facilitates the linkage between the Modelica model and 
JModelica.org by adding additional equations which represent the objective function (e.g., energy minimization or 
energy cost minimization) and constraints (e.g., temperature bounds for thermal comfort or limiting equipment 
capacities).  By doing so, it converts the Modelica .mo file into an Optimica .mop file. In the next step, it passes the 
Optimica file to JModelica.org where casADi [Andersson et. al., 2012] is used for the automated differentiation of 
equations and transfer to a non-linear optimization problem with direct collocation.  Finally, the problem is handed 
to the non-linear problem (NLP) solver IPOPT (Interior Point Optimizer) where it is used with the MA27 linear 
solver [HSL 2019].  IPOPT [Wachter and Biegler 2006] is the default solver out of a few supported solvers in 
JModelica.org and is designed to find local solutions for constrained NLP [IPOPT, 2018]. However, when provided 
with a convex problem then IPOPT should find the global solution.  Due to the nature of most NLP solvers, IPOPT 
requires all variables to be continuously differentiable for the first and second derivatives. This means that no 
discrete states, such as on/off binary variables or integer variables, are allowed. This potentially reduces the 
application of NLP solvers for HVAC control systems, where discrete control states are often used in logical IF 
conditions. However, to an extent, models can be reformulated to approximate the real system behavior.  
 
3.1.2.2. Method 
 
Controls based on MPC are typically used as slow-acting supervisory controllers, as they exploit the information 
from many sources to make global strategic decisions. Such supervisory knowledge is especially useful when 
optimizing for time-of-use rate structures, where a single 15-min peak defines the cost of demand charges for the 
entire month. Other MPC applications are those that have large time constants; e.g., a radiant slab, the chemical 
process industry, or applications where control has a high impact on the objective; e.g., shifting peaks from high 
price periods where mass must be charged in advance [De Coninck and Helsen, 2016] or start up of power plants 
[Sällberg et. al., 2012]. However, real-time, near-instantaneous control is typically conducted by a separate 
controller with different objectives. The approach in this project is to use MPC control as the real-time controller by 
implementing a fast-acting optimization, ultimately resulting in more optimal operation.  The challenge with this 
approach is the convergence time of the optimization, which increases exponentially with the number of timesteps 
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and complexity of the problem.  In a first implementation the convergence time was greater than the desired 
timestep for control. In order to avoid long, intensive optimizations, a multi-stage MPC framework was developed 
where the workload was separated into a supervisory major optimization and a minor optimization, enabling real-
time control (i.e., timesteps faster than 1 min).  
 
The major optimization, with a 24 h horizon and hourly time step, is computed first and the optimal result for the 
next hour is used as a target for the minor optimization, with a 1 h horizon and 5 min time step. The result from the 
minor optimization is implemented as real-time control; i.e., major and minor optimizations are performed each 1 
min in order to respond quickly to glare but address energy cost minimization over the 24 h horizon. This method 
can be described as a “zoom” function, where supervisory setpoints are passed to lower level optimizations with the 
same objectives, enabling smaller time steps to be implemented in the building in real-time. While this process 
requires two separate optimizations, the problems are much smaller, i.e., 24 and 12 timesteps respectively, in 
comparison to a single 24 h optimization with 5 min timesteps, totaling 288 timesteps. An example of the typical 
number of iterations and convergence times for a single day of field operation is shown in Figure 3.  
 
 

 
 

Figure 3. Typical convergence time and number of iterations before achieving convergence for the minor and major 
optimizations on a single day (June 3).   
 
 
It can be seen that the number of iterations and corresponding convergence time required increases for the major and 
minor optimization between nighttime, when conditions are relatively stable, and daytime: i.e., from 3 to 20 s and 
0.5 to 2 s, or 90 to 400 iterations and 50 to 100 iterations, respectively.  
 
3.1.2.3. Implementation 
 
The optimization uses the same base Modelica model and control architecture previously described in [Gehbauer et. 
al., 2017], but with some modifications to the penalty functions. Figure 4 shows the updated model used in this 
study.   
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Figure 4. Updated Modelica model used for Model Predictive Control.  
 
 
The room model consists of a number of sub-models, 17 time-varying inputs, and 12 outputs, as described in 
[Gehbauer et. al., 2017]. The inputs are: 

● Outdoor dry bulb temperature, in degrees Kelvin 
● Plug loads and internal gains (including people), in Watts 
● Lighting control signal, as a continuous signal from 0 to 1 
● Cooling control signal, as a continuous signal from 0 to 1 
● Heating control signal, as a continuous signal from 0 to 1 
● Clear window state inputs of the dynamic facade for WPI, SHG, and DGPs for each window zone, as 

determined by the Radiance three-phase method 
● Derivative of window control signals, which are optimization variables 
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Additions to the base model are a) the combination of the maximize daylight and view penalty, b) a re-definition of 
the DGPs penalty function, c) a derivative penalty, and d) the separation of electric power and penalty outputs.  An 
addition to the converted Optimica model is the integration of a time-of-use cost module.  These additions are 
described as follows.   
 
3.1.2.3.1. Maximize view penalty 
 
The function to penalize tinted states to allow for a better daylighting and view was revised to a single equation for 
all windows: 
 
𝑃𝑃𝑃𝑃𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑃𝑃𝑣𝑣 ∗ ∑ 𝑇𝑇𝑇𝑇𝑃𝑃𝑇𝑇𝐶𝐶𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶 − 𝑇𝑇𝑇𝑇𝑃𝑃𝑇𝑇(𝑧𝑧)3

𝑧𝑧=1   (1) 
 
where nv is the gain of the function, z is the window zone index, Tint(z) is the tint level (real number between 1 and 
4), and TintClear is the maximal tint state (i.e., 4). This formulation simplifies the problem while providing the same 
capability to tune the level of disruptive tinting. 
 
3.1.2.3.2. DGPs penalty 
 
The DGP penalty was revised due to long iterations, frequent infeasibilities and general complexity of the resulting 
problem. It was revised from a 22nd order exponent to a 10th order exponent by: 
 
𝑃𝑃𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑃𝑃𝑔𝑔 ∗ (𝐷𝐷𝐷𝐷𝑃𝑃𝐷𝐷 − 𝑜𝑜𝑜𝑜𝑜𝑜𝐷𝐷𝑃𝑃𝑇𝑇)𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑉𝑉𝑒𝑒𝑒𝑒  (2) 
 
where ng is the gain of the function, DGPs is the currently experienced glare level, offset is an offset to shift the 
penalty from regions with unacceptable glare, and exponent is the exponent of the penalty, describing the steepness 
of the gradient, with a typical value of 10. This modification significantly reduced the iteration time and increased 
the ability to find solutions. One explanation is the NLP optimization performed by JModelica.org was having 
difficulties handling steep gradients in non-convex problems that lead to local solutions.  
 
3.1.2.3.3. Derivative penalty 
 
The derivative penalty was introduced to dampen the operation of tinting to avoid disrupting the occupant. It 
required changing the shading input from a control signal (e.g., 1-4) to derivative signals with a starting point (e.g., 
4), and then temporal derivatives, denoted as d(Tint(z))/dt, to operate the dynamic facade. The resulting formulation 
of the penalty function is: 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝐷𝐷𝑉𝑉𝐶𝐶 = 𝑃𝑃𝑑𝑑 ∗ ∑ �𝑑𝑑𝑑𝑑𝑉𝑉𝑒𝑒𝑒𝑒(𝑧𝑧)
𝑑𝑑𝑒𝑒

�
2

3
𝑧𝑧=1  (3) 

 
where nd is the gain of the function, and the squared term is the derivative of the window zone throughout the 
optimization horizon. 
 
3.1.2.3.4. Separation of outputs 
 
In an initial implementation, the output was a single objective function variable, which lumped the electric power 
consumption and penalty function together into a single value. This was problematic because TOU rates are very 
sensitive to peaks, potentially distorting the impact of the penalty functions. It was therefore necessary to separate 
the outputs into electric power consumption and penalty values to allow accurate assignment of TOU rates only to 
the electric power consumption. 
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3.1.2.3.5. Time-of-use cost model 
 
Most commercial tariffs in California consist of two elements: the cost for energy in $/kWh and the cost for peak 
demand in $/kW. MPCPy was extended to add the cost of demand for a user-specified number of periods, which is 
typically three periods in summer and two periods in winter.  The general form of the monthly utility bill calculation 
is described by Equation 4 in discrete time, with 𝐵𝐵 in units of dollars ($): 
 
𝐵𝐵 = ∑ �𝜋𝜋𝑉𝑉,𝑒𝑒𝑃𝑃𝑒𝑒Δ𝑇𝑇� + ∑ �𝜋𝜋𝑑𝑑,𝜏𝜏 max(𝑃𝑃�𝜏𝜏)�𝑞𝑞

𝜏𝜏=1
𝑚𝑚
𝑒𝑒=0  (4) 

 
Here, the first term represents the energy cost over the month from time, 𝑇𝑇, from 0 to 𝑚𝑚.  In the first term, 𝜋𝜋𝑉𝑉,𝑒𝑒 is the 
cost of energy at time 𝑇𝑇, 𝑃𝑃𝑒𝑒 is the power consumption supplied to lighting, cooling, heating, and plug loads at time 𝑇𝑇, 
and 𝛥𝛥𝑇𝑇 is the time discretization interval, assuming that 𝑃𝑃𝑒𝑒 is constant over each interval.  The second term of the 
cost represents the sum of demand costs over a number of periods, 𝜏𝜏, from 1 to 𝑞𝑞, where each period is defined by 
certain hours within the days of the month.  The demand cost in each period is equal to the price of demand of the 
period, 𝜋𝜋𝑑𝑑,𝜏𝜏, times the maximum of the power consumption during the specific times of the period, which is a vector 
𝑃𝑃�𝜏𝜏.  While this is the calculation of the utility bill over the month, it is impractical to optimize an entire month of 
performance at each control step.  Therefore, the Equation 5 is transformed into the control optimization Problem Y 
to be solved at each control step: 
 
min
𝐷𝐷,𝑧𝑧

𝐽𝐽 = ∑ �𝜋𝜋𝑉𝑉,𝑒𝑒𝑃𝑃𝑒𝑒Δ𝑇𝑇� + ∑ �𝜋𝜋𝑑𝑑,𝜏𝜏𝑝𝑝𝜏𝜏�
𝑞𝑞
𝜏𝜏=1

𝑒𝑒𝑓𝑓
𝑒𝑒=𝑒𝑒𝑜𝑜

 (5) 

𝐷𝐷. 𝑇𝑇. 
 

𝑃𝑃𝑒𝑒 ≤ 𝑝𝑝𝜏𝜏 + �̂�𝑝𝑒𝑒,𝜏𝜏 where  �
�̂�𝑝𝑒𝑒,𝜏𝜏 = 𝑝𝑝𝑉𝑉𝑒𝑒𝑒𝑒,𝜏𝜏  ,∀𝑇𝑇 ∈ 𝜏𝜏,∀𝜏𝜏
�̂�𝑝𝑒𝑒,𝜏𝜏 = 𝑀𝑀 ,∀𝑇𝑇 ∉ 𝜏𝜏,∀𝜏𝜏   and 𝑀𝑀 ≫ 1 

𝑝𝑝𝜏𝜏 ≥ 0,∀𝜏𝜏 
 
Problem Y states that we seek to minimize 𝐽𝐽 by controlling 𝑃𝑃 and 𝑝𝑝.  Here, the first term of the objective is similar 
to that of Equation 4 and represents the energy cost for the specified time horizon 𝑇𝑇0 to 𝑇𝑇𝑓𝑓.  In the second term of the 
objective, we have performed a change of variable from Equation 4, where we replace the max function for each 
period with the variable 𝑝𝑝𝜏𝜏 and add a constraint that 𝑃𝑃𝑒𝑒 (excusing the added variable for now) must be less than 𝑝𝑝𝜏𝜏 
for each 𝑇𝑇 in the period 𝜏𝜏, resolving that 𝑝𝑝𝜏𝜏represents the max of 𝑃𝑃𝑒𝑒 during each period.  A second constraint requires 
that 𝑝𝑝𝜏𝜏be non-negative.   
 
We face two additional issues to resolve using this formulation.  The first is that specifying a dynamic control 
problem in Modelica and Optimica, prior to time discretization, 𝑃𝑃𝑒𝑒  is actually a continuous function of time 𝑃𝑃(𝑇𝑇), 
and so we need to enforce the constraint with 𝑝𝑝𝜏𝜏 only for times during the period, and otherwise hold no constraint 
on 𝑃𝑃(𝑇𝑇).  For this, we add �̂�𝑝𝑒𝑒,𝜏𝜏, which is defined as a constant for times during the period and a very large number, 
𝑀𝑀, otherwise, thereby only enforcing the constraint at times during the period.   
 
The second issue is the fact that for a given month, the demand costs are to achieve a specified ratio to the energy 
cost.  However, during a single time horizon of the MPC, say 24 h, the cost of demand will disproportionately 
outweigh the cost of energy over that time, since it is only one day’s worth of energy, rather than a full month’s 
worth.  Therefore, we must make the constant �̂�𝑝𝑒𝑒,𝜏𝜏 equal to an estimation of the peak demand during that period for 
the month, 𝑝𝑝𝑉𝑉𝑒𝑒𝑒𝑒,𝜏𝜏, which may either be a peak that has already been achieved during the month, or is predicted to be 
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achieved during the month in later days.  We note that in doing this, 𝑝𝑝𝜏𝜏 becomes the difference between the peak 
power during the time horizon and the estimated peak for the month.  If 𝑝𝑝𝑉𝑉𝑒𝑒𝑒𝑒,𝜏𝜏 is very high, the constraint is always 
true, and the optimal 𝑝𝑝𝜏𝜏 will reduce to 0, indicating that no additional cost will be added for demand during the time 
horizon for that period.  This makes sense, since the peak demand for the month for that period may have already 
been set by 𝑝𝑝𝑉𝑉𝑒𝑒𝑒𝑒,𝜏𝜏.   If 𝑝𝑝𝑉𝑉𝑒𝑒𝑒𝑒,𝜏𝜏is very low, the constraint will be enforced at the optimal, with the optimal 𝑝𝑝𝜏𝜏 reducing to 
the difference between the maximum of 𝑃𝑃𝑒𝑒 and 𝑝𝑝𝑉𝑉𝑒𝑒𝑒𝑒,𝜏𝜏.  This also makes sense, as the impact of demand on the 
objective function will only be the additional cost of increasing the peak demand for the month by 𝑝𝑝𝜏𝜏.  That is, only 
the marginal demand cost for each period during the time horizon is added to the energy cost of the time horizon.   
 
Viewing the energy cost of the time horizon as the marginal energy cost for that time horizon for the month, we 
notice that the resulting objective of Problem Y is to minimize the marginal cost of energy and demand.  The 
demand charge is applied to the peak 15-min period of the whole month, whereas the optimization horizon is 
typically less than this (e.g., 24 h in this study).  It is therefore advantageous to estimate the monthly peak demand to 
utilize available capacity for energy shifting, rather than demand reduction, if the peak demand is forecasted to occur 
sometime after the optimization horizon.  In Cutsem et al. 2019, the performance of including forecasted or already 
occurred peak demand was compared to one that took into account energy prices only (no demand charges), and to a 
more conventional one that considers the energy prices and demand cost at each optimization horizon.  The case 
study simulated the performance of office buildings (modeled simply) operating under two California tariffs with 
demand response events induced by critical peak pricing.  The study also compared the performance of the 
incremental formulation with and without estimations of peak demand.  The study found that the incremental 
demand formulation slightly reduced the monthly utility bill for the customer compared to the full demand, but 
significantly improved the energy-shifting responsiveness of the buildings to peak energy pricing during demand 
response events.  Accurate peak estimation only slightly further reduced the utility bill and improved energy shifting 
response, particularly in the beginning of the month.  However, while the option of incremental demand 
consideration was built into the controller, this initial study did not forecast monthly peak demand, hence this 
functionality was not utilized, and the full demand charge was added to the 24 h optimization horizon. 
 
3.1.2.3.6. Parameter estimation for the RC network   
 
The thermal response of the zone is modeled using a second-order resistance-capacitance (RC) greybox model, 
known as an R2C2 model, and is written graphically in Modelica (Figure 5). This model accounts for thermal mass 
effects by separately accounting for zone air volume thermal capacity and zone internal mass thermal capacity, 
which operate on faster and slower dynamic timescales, respectively.  This also accounts for the fact that the HVAC 
system has no direct activation of internal mass in an air-based system, requiring all charging and discharging to 
come as a result of temperature differences between the air and the mass.  Note that the HVAC heating and cooling 
powers are assumed to be 100% convective gains, while the internal heat gains are split between radiant and 
convective powers in accordance with a set of parameters kn.  These parameters are either statically (at initialization) 
or dynamically (periodically at runtime) estimated using data from the building.  Each input to the R2C2 model is 
assigned to a first-order calibration function, which can compensate for model errors from previous steps (i.e., 
Radiance for WPI and SHG, equipment load, and occupancy forecast).  
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Figure 5. R2C2 schematic diagram (above) and R2C2 model implemented in Modelica (below).  
 
The model parameters were tuned at the beginning of each hour using an optimization-based parameter estimation 
technique to minimize the error between modeled and “measured” historic zone air temperature from the detailed 
emulator model.  In this technique, the optimization problem is formulated so that the objective function is the 
squared error, the optimization variables are the tunable parameters, which are constant over the time period of the 
optimization, and the constraints are the model equations and minimum and maximum allowable parameters on the 
tunable parameters.  The method was implemented using the JModelica.org optimization package through the 
MPCPy framework.  The parameters tuned were R (resistance of air to outside), Rint (resistance of air to internal 
mass), and Cint (internal mass capacitance).  Note that the air thermal capacity (C) was calculated according to the 
density of air, specific heat at constant volume of air, and volume of the zone.  The prior 24-h period of 5-min 
measured data from the emulator, along with weather and internal load inputs, were used for the training period.     
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3.1.2.4. Optimization module 
 
In the simplest case of operation, the controller only requires the current timestep to perform the optimization, and 
returns an optimal control signal. If desired and available, additional inputs such as occupancy, internal loads, 
allowable temperature band, or previously set maximum demands, can be dynamically added to increase the model 
accuracy. The optimization workflow is as follows:  
 

1) The first step is to compute the input tables for JModelica.org which are non-alterable inputs such as 
weather forecast, Radiance computed window contributions to SHG, WPI, and DGPs, internal loads, and 
occupancy. Note that the latter two are only added if data are provided by the user.  

2) Another table includes the constraints for the optimization, such as minimum and maximum acceptable 
temperatures, WPI minimum setpoint, maximum DGPs level, and control band definitions for lighting, 
heating, cooling, and windows. Note that in order to avoid infeasible starting points (e.g., if the initial 
temperature is already out of the temperature comfort range), the constraints for the first timestep were 
bound to a deadband around the initial state.  

3) If TOU rates are used, then a third table with the applicable rates and the maximum demand charges 
(determined by prior operations) is provided.  

4) Finally, a table with an initial guess of control signals must be provided, i.e., window tint states, and 
heating, cooling, and lighting control signal. While for other optimization solvers this initial guess is 
crucial, IPOPT is very robust against initialization as long as the problem has a convex formulation. A test 
showed that the number of iterations could be reduced by half when providing a near optimal initial guess: 
by computing the Modelica optimization model as a simulation model. In this study, an external 
Proportional Integral (PI) controller was connected to control heating and cooling inputs to keep the 
temperature within the allowed temperature range. While the time savings for the convergence of IPOPT 
were less than 0.5 s, the computation of the simulation model took several seconds. The current framework 
was therefore initialized with a static initial guess of zero (or darkest tint state), avoiding the computation 
time of simulation models.   

 
Once all tables are passed to MPCPy, the major optimization is initiated. MPCPy handles all communication with 
JModelica.org, such as reading and writing of files, and returning the optimal solution. The Dynamic Facade Control 
agent checks the result for infeasibilities, and if an optimal solution is found, reads back the desired control state of 
dynamic facade and room temperature for the next hour. These values are then plugged into the constraints table for 
the minor optimization. The minor optimization is conducted in the same fashion as the major one, then optimal 
results for the next 5 min are returned to the agent.   
 
3.1.2.5. Post-optimization module 
 
As described earlier in this report, the NLP formulation does not allow discrete variables. The output from the 
optimization is a continuous value (real number between 1-4; e.g., electrochromic tint state of 3.7), not an integer 
(discrete state).  For some electrochromics (or other types of dynamic facades), the windows can only be controlled 
to a small number of discrete tint states. To determine the final discrete control value for the windows, a post-
optimization module was developed. Parametric simulations (e.g., for all possible combinations between the three 
window zones and tint states 3 and 4 for an example result of 3.7) were conducted for the first time step of the 
optimal result.  The discrete tint state (Tint 3 or 4) for actuation was then selected based on a set of heuristic IF 
conditions (Figure 6). 
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Figure 6. Process flow of post-optimization. The variable “n” refers to the number of remaining control options.   
 
Figure 6 shows the logical decisions made, which can be split into three sections: 

1) All cases are filtered for a predicted glare level of below 0.4 (threshold for “disturbing” glare). If none of 
the cases produce values below the DGPs threshold (i.e., the number of remaining control options n is 
zero), then the case with the lowest glare level is selected. 

2) A check is conducted to set the windows to the clear tint state (Tint 4) when the desired WPI setpoint is 
below 10 lx during the night. 

3) The remaining cases are filtered by a predicted WPI level from daylighting that is 15% higher than the 
setpoint. If such cases exist, then the one with the lowest daylighting level is selected.  Otherwise the case 
with the highest daylighting contribution is selected.   

 
Note that DGPs was computed at a seated eye height of 1.2 m (4 ft) looking normal to the window at a distance of 1 
m (3 ft) from the window. WPI was computed across a regular grid at 25 locations in the space, averaged, and used 
to compute lighting energy use and daylight quality (item 3 in the list above).   
  
3.2. Building emulator 
 
An emulator was developed to simulate and evaluate the performance of rule-based and MPC control of dynamic 
facade and HVAC systems for a single zone in a building (lighting was modeled to dim independently in response to 
available daylight or turn off during periods of vacancy).  The emulator consists of three main components: 1) 
controller, 2) detailed zone facade model, and 3) detailed zone thermal model.  The detailed facade and thermal 
model components represent real building performance using state-of-the-art modeling techniques to simulate solar 
heat gain, daylighting, and zone heat balance physics.  The controller uses environmental conditions and the 
simulated building state to provide shade position control signals (or in this study, electrochromic tint state) and 
zone temperature setpoints to the detailed models.  The detailed facade model takes the shade position control 
signals and environmental conditions and calculates the resulting glare, daylight illuminance, and solar heat gain 
components using Radiance.  The detailed thermal model takes the solar heat gain components and daylight inputs 
from Radiance, zone temperature setpoints, environmental conditions, and internal loads and calculates the new 
perimeter zone/ room thermal state.  The thermal model is from the Modelica Buildings Library, which has been 
validated in separate studies [Wetter et al. 2014, Nouidui et al. 2012a, Nouidui et al. 2012b].  To complete the 
calculations, the detailed thermal model uses a model developed in Modelica and an MPCPy systems object to 
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export the model as a Functional Mockup Unit (FMU), a model that complies with the FMI standard [FMI, 2018] 
using JModelica.org, define sources of data for inputs and parameters, and integrate its simulation into the emulator 
workflow.  These components are described in more detail as follows.   
 
3.2.1. Façade model 
 
The detailed facade model uses the Radiance three-phase matrix algebraic method [McNeil and Lee, 2013] to 
compute the simplified daylight glare probability (DGPs) index, daylight illuminance at the workplane (WPI), and 
solar heat gain (SHG) contributions from each of controlled zones of the facade system at each time step given 
inputs from the MPC controller on window or shade position.  The three-phase method involves pre-computing 
view, transmission, and daylight matrices for time-efficient use during run-time. View and daylight matrices are pre-
computed for each sensor location and each façade zone (e.g., electrochromic window subdivided into three 
horizontal control zones).  Transmission matrices are pre-computed using the LBNL WINDOW software 
[WINDOW, 2018].  
 
At each time step, a facade control signal (tint state) is delivered from the controller. The facade model selects the 
corresponding transmission matrix to compute workplane illuminance, DGPs, and solar loads for each window zone, 
which are then summed to values for the entire window.  
 
A grid of virtual sensors is generated on each interior surface (facing normal to the surface) to calculate its incident 
solar radiation. A view matrix is computed for each surface to each window zone.. The average of the grid sensor 
values is multiplied by the total area of the corresponding surface to represent total incident solar radiation.  To 
calculate absorbed energy at each glazing or shading layer, incident radiation on each surface of glazing and shading 
layers of the window is determined using the three-phase method then multiplied by the respective bidirectional 
absorption coefficient of the surface.   
 
 

 
 

Figure 7. Thermal emulator model in Modelica. 
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3.2.2. Thermal model 
 
The detailed thermal model, presented in Figure 7, uses components from the Modelica Buildings Library and 
Modelica Standard Library [Modelica Association, 2013] to perform a room heat balance calculation as well as 
other supporting functionality.  The component models in the Modelica Buildings Library have been individually 
tested and validated against accepted data and models found in the literature (as cited in Section 3.2).  The room heat 
balance calculation is performed using the Buildings.ThermalZones.Detailed.MixedAir component model.  It 
includes building construction properties, orientation, environmental inputs, power for the lighting system, internal 
heat gains, and heating and cooling supplied by the HVAC system.  Supporting functionality of the thermal emulator 
model includes lighting and HVAC system models and controllers to regulate the room temperature and light level.  
The lighting system is modeled as dimmable LEDs with linear power consumption.  The lighting controller provides 
the additional light required over daylight illuminance, calculated in Radiance and input to the model, to meet an 
illuminance setpoint.  The HVAC system is modeled as convective heating and cooling, at a fixed coefficient of 
performance (COP) and efficiency.  The HVAC controller utilizes a proportional feedback controller to maintain the 
room temperature between heating and cooling setpoints.  Heating is applied if the temperature is below the heating 
setpoint, cooling is applied if the temperature is above the cooling setpoints, and the system is idle if the temperature 
is between these setpoints (deadband). 
 
The window model used within the Buildings.ThermalZones.Detailed.MixedAir component, validated by WINDOW 
6 and laboratory measurements [Nouidui et. al., 2012] for glazing systems without shades, uses glass properties, 
solar radiation angle of incidence, and shade position to calculate the transmitted solar radiation through each glass 
layer, along with the radiation that is reflected by each glass layer and absorbed by each glass layer and the shade.   
As written in the Buildings Library, for the transmitted solar radiation passing into the room, it is assumed that all of 
the radiation strikes the floor and is bounced once to all surfaces in the room as a function of their view factors with 
the floor, including the interior glass layer of the window.  The radiation is then absorbed by each surface, including 
window glass layers, according to the absorptance of the materials and included in the remaining heat balance 
calculations of the room.  A modification was made in this study, however, to use Radiance to compute transmitted 
solar radiation as described in Section 3.2.1 above for complex shading systems.  The modification replaces the 
variables representing the transmitted solar radiation incident on each surface and absorbed by the glass layers with 
input variables that are calculated using the three-phase method at each time step.   
 
3.3. Simulation setup 
 
Analysis of MPC performance was conducted on a prototypical south-facing private office using the emulator 
described above.  The prototype was based on the DOE prototype large office building [Deru et al., 2011], updated 
to comply with the California Title 24 2016 Standard for building energy efficiency [CEC, 2015], and modified to 
match the zone geometry of the LBNL Advanced Windows Testbed.  The large office prototype is a 12-story 
building with a 73.2 by 48.8 m (240x160 ft) floorplate, where each perimeter and core zone is modeled with 
adiabatic surfaces.  In this study, a single perimeter office zone is modeled as 3 m wide, 4.6 m deep, and 2.7 m high 
(10x15x9 ft) space with a floor-to-floor height of 3.95 m (13 ft) and 3 m wide by 2.7 m high window (6.78 m2, 72.9 
ft2 area, window-to-exterior-wall ratio (WWR) of 0.59).  The visible surface reflectances of the walls, ceiling, and 
floor were 50%, 80% and 15%, respectively. The room was unfurnished.  The exterior wall assembly had a U-value 
of 3.9 W/m2K (0.65 BTU/h-ft2-°F).  The floor construction consisted of a 10 cm (4 in.) thick heavy weight concrete 
slab with a carpet and pad.  Internal loads were due to lighting (installed lighting power density of 8.6 W/m2 (0.8 
W/ft2)), equipment (10.82 W/m2, 0.97 W/ft2), and occupants (0.005 occupants/ft2).  The lighting controls were 
modeled to respond to occupancy and scheduled events (via the lighting schedule) and dim with an efficiency of 
0.24 W/lx to maintain a 350 lx setpoint in combination with daylight at the rear of the perimeter zone.  The HVAC 
system was modeled with a static coefficient of performance (COP) of 4 and heating efficiency of 1. Fan energy was 
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not implemented. Temperature control was implemented as a PID control loop for heating and cooling with a 
temperature band from 21.0 to 24.0°C during daytime hours and 15.5 to 26.5°C during night hours from 6 PM to 8 
AM local time.   
 
For the automated windows, an electrochromic window was modeled with three, equal height, independently 
controlled zones.  Each electrochromic zone could be switched to a) one of four discrete tint states instantly, or b) as 
continuously variable between the clear and darkest tinted states.  The EC zones were allowed to switch to any state 
at each time step in this initial study.  Center-of-glass window properties for the four discrete states were as follows: 
visible transmittance (Tvis) range of 0.01, 0.06, 0.18, and 0.60; solar heat gain coefficient (SHGC) range of 0.09, 
0.11, 0.15, and 0.41. The U-value of the window was 1.6 W/m2-K (0.28 BTU/h-ft2-°F).   The base case was defined 
with low-e, dual-pane windows (Tvis=0.62, SHGC=0.40, U-value=1.6 W/m2-K) and an indoor fabric roller shade 
(Helioscreen gray, 3% openness factor, total solar transmittance of 0.044 and front reflectance of 0.27).  To emulate 
a “manually-operated” shade, the shade was positioned so that its lower edge was at a fixed height of 0.91 m (3 ft) 
above the floor to control direct sunlight and glare and admit daylight.   
 
Simulations were performed for a clear sunny nine-day period in the summer and winter in two California climates, 
Oakland (moderate) and Burbank (moderate to hot). Hourly Typical Meteorological Weather (TMY) was used, 
where 5-min data was derived using a linear interpolation from hourly observations.      
 
The Pacific Gas and Electric E-19 time-of-use rate schedule [PG&E, 2018] was used to reflect existing electricity 
rates in California (“TOU1”).  This schedule has a monthly coincident peak demand charge based on the peak power 
consumption for different periods; i.e., for the highest priced summer period from noon to 6 PM,  the maximum 
power consumption for this time period and over all days in the month sets the monthly demand charge of $19.65 
per kW (summer). The other component of the E-19 tariff is a time-varying price for energy consumption, which is 
at its highest ($0.1606/kWh) during summer periods from noon to 6 PM.  Finally, a monthly non-coincident demand 
charge of $17.74/kW is added for the highest 15 min of use regardless of when the peak occurs in the month.  A 
second time-of-use rate schedule reflecting proposed updated PG&E commercial rates was also modeled (“TOU2”) 
with time-varying prices for energy consumption and demand (E-19R, CALSEIA 2018).  The non-coincident peak 
demand charge is $19.43 per kW and the energy price is $0.2152/kWh during summer peak periods from 5-10 PM.  
Note the shift in peak period from the afternoon to the late afternoon and evening hours.  The two rates are 
summarized in Table 1.  In order to preserve the ratio of monthly demand charge, which is based on the maximum 
peak over the whole month, and energy cost, which is based on the instant power consumption, weekly results for 
energy cost were extrapolated to four weeks, while the monthly demand charge was assumed to stay constant.    
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Table 1.  TOU1 and TOU2 time-of-use electricity rate schedules.   
            
  TOU1 (E-19)  TOU2 (E-19-R) 

      
Time-of-use Energy Charge  ($/kWh)   ($/kWh) 
Summer Peak $0.16055  Peak $0.21517 
 Partial Peak $0.11613  Partial Peak $0.14449 
 Off-Peak $0.08671  Off-Peak $0.11158 
Winter Peak   Peak $0.12935 
 Partial Peak $0.11004  Off-Peak $0.11029 
 Off-Peak $0.09401  Super Off-Peak $0.09384 
      

Demand Charge   ($ per kW)   ($ per kW) 
Summer Max Peak $19.65  Non-coincident $19.43 
 Partial Peak $5.40  Peak summer $0.48 
 Maximum $17.74    

Winter Part Peak $0.12    

  Maximum $17.74       

      
 

            
  TOU1  TOU2 

Summer 
(May-
Oct) 

Peak 12:00 PM - 6:00 PM, weekdays 
(except holidays) 

 Peak 5:00 PM - 10:00 PM every day 

Partial 
Peak 

8:30 AM - 12:00 PM, 6:00-9:30 
PM, weekdays (except holidays) 

 Partial 
Peak 

3:00-5:00 PM; 10:00 PM - 12:00 
AM, every day 

Off-Peak 9:30 PM to 8:30 AM, weekdays 
(except holidays) and weekends 

 Off-Peak All other hours 

Winter 
(Nov-
Apr) 

Peak None  Peak 5:00 - 10:00 PM, every day 
Partial 
Peak 

8:30 AM to 9:30 PM, weekdays 
(except holidays) 

 Off-Peak All other hours 

Off-Peak 9:30 PM to 8:30 AM, weekdays 
(except holidays) and weekends   Super 

Off-Peak 
10:00 AM - 3:00 PM, March-May, 
all days of week 

      
 
Four facade cases were modeled:  

1) The “base” case is defined as the typical existing condition in commercial office buildings where the low-e 
window is shaded with a manually-operated, indoor fabric roller shade (Helioscreen gray, 3% openness 
factor) positioned at a fixed height of 0.91 m (3 ft) above the floor.   

2) “Heuristic” is defined as a state-of-the-art, rule-based control algorithm, which was based on a prior field 
study of a commercially-available electrochromic window system in a large office building in Sacramento, 
California [Fernandes et al., 2017].  Each of the three EC window zones is progressively tinted so that the 
predicted transmitted illuminance is below a prescribed threshold.  Threshold values are 4000, 8000, and 
12,000 lux for the upper, middle, and lower control zones, respectively.  The intent behind the algorithm is 
to control sky glare, preserve daylight, and minimize cooling loads due to solar heat gains.   

3) “MPC1” control is defined by the model predictive control strategy described in Section 3.2.  MPC1-d and 
MPC1-c denote discrete state and continuous tinting of the electrochromics, respectively.  This case 
represents MPC control of the electrochromic window and lighting system to minimize TOU energy cost 
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due to HVAC and lighting over a 24-h prediction horizon, within glare, daylight quality and view 
constraints.  The thermal comfort range (as defined by thermostat settings) was set to be the same as the 
heuristic case.  In this scenario, the thermostat control was not integrated with the MPC controller, 
disabling any precooling capability.    

4) “MPC2” is defined as the MPC1 case with precooling, where MPC control of the thermostat is enabled. 
MPC2-d and MPC2-c denote discrete state and continuous tinting of the electrochromics,  
respectively.  Note that the air temperature is still maintained within the setpoint range for thermal comfort 
during occupied hours but because the setpoint range is broader during unoccupied hours, precooling could 
be implemented during early morning hours when energy costs are lower.  For this case, the top surface of 
the concrete floor is exposed (carpet and pad were removed) in order to increase access to the floor slab 
thermal mass.  While this action may slightly reduce peak HVAC demand alone, this case can be viewed as 
an integrated approach to enable and enhance load shifting through MPC control of HVAC, with the 
significant majority of any effect coming from the addition of MPC control of HVAC.  For the emulator 
thermal model using the room heat balance model from the Buildings Library, the heat transfer between the 
air and the floor surface is modeled as natural convection on a horizontal flat surface where the heat 
transfer coefficient, ℎ, is dependent on the temperature difference between the air and the floor, 𝛥𝛥𝑇𝑇, and a 
coefficient, 𝑘𝑘: 

  
 ℎ = 𝑘𝑘|𝛥𝛥𝑇𝑇|0.3333 where 𝑘𝑘 = 0.76 if the air is warmer and 𝑘𝑘 = 1.51if the air is cooler.  (6) 
 
The parameters for the penalty functions in the MPC models were chosen based on a manual tuning process, 
conducted for selected days in the summer.  For the DGPs penalty function, the parameters were gain, n, of 1, offset 
of 0, and an exponent of 6.  The gain, n, for the derivative penalty was set to 10 and the gain of the view penalty, n, 
was set to 0.  The parameters for the post-optimization were also chosen based on the same summer days.  The 
summer parameters were used for the winter period.   
 
4. Results 
 
Results from the emulator simulations of heuristic and MPC control are given in the following figures and tables.   
Figures 8-9 show the performance of the heuristic controller and MPC1-d controller over a sunny summer period in 
Oakland with the TOU1 rate schedule.  Zone warmup occurs over the first two days so data during this period 
should be ignored.  Under heuristic control, all three EC zones tint progressively down to full tint in proportion to 
incident solar irradiation.  Daylight illuminance is reduced at full tint, causing the electric lights to be turned on 
during mid-day hours, while solar heat gains are capped at about 100 W (SHGCmin=0.09).  Discomfort glare is 
maintained below the DGP BIN (borderline between imperceptible and noticeable glare) of 0.34. Loads occur from 
both solar gains and the electric lighting, resulting in a total peak electric load in the late afternoon of 203 W.  Under 
MPC1-d (d=discrete) control, the EC zones are not all fully tinted during mid-day such that the maximize daylight 
and view criteria are satisfied (1500-2000 lux), the electric lights are shut off, and discomfort glare is maintained 
below the DGP BND (borderline between noticeable and disturbing glare) of 0.38.  Solar heat gains peak at 275 W, 
but the total electric load (with no lighting) peaks at 164 W.  Monthly electricity cost with demand charges is $16.59 
(heuristic) and $14.27 (MPC1-d), a savings of 14%.  “Critical” peak demand (coincident demand) is reduced from 
203 W to 164 W (19%).  Note, savings are greater if the dynamic façade is able to provide continuous versus 
discrete state control.  Monthly electricity cost is reduced by 23% and peak demand by 28% when using the MPC1-c 
(c=continuous) versus the heuristic controller.  Overall, this example illustrates how the MPC1 controller is better 
able to weigh trade-offs between cooling and lighting energy use within constraints (glare) and qualitative 
requirements (daylighting and view) to provide a more optimal load shed response.       
 
When comparing the performance of the MPC1-c and MPC2-c controllers (Figures 10-11), there are small 
differences between the two EC switching patterns that result in a flatter load shape with MPC2-c control of solar 
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heat gains.  This complements the MPC2-c nighttime pre-cooling between midnight and early morning, allowing 
cooling to be shut off during the summer peak afternoon period.  Glare, daylight and view criteria are met with both 
controllers.  Monthly electricity cost is reduced from $12.81 to $11.91 (7%) and coincident peak demand is reduced 
significantly from 145 W to 117 W (20%) when MPC2-c is used instead of MPC1-c.  These results illustrate how 
the combined control of building envelope loads with HVAC thermostat control can provide further load-modifying 
DR above and beyond that of envelope-only MPC control.    
 
In this example, MPC2-c is intended to actively precool the space by thermally charging the concrete slab during the 
night, but is seen to be less effective due to model mismatch.  At 8 AM when occupancy begins (Figure 11 
“Temperatures”), the room air temperature sharply rises for the MPC1-c case, while the MPC2-c controller attempts 
to further charge the mass until around 10 AM.  While the room air temperature for the MPC2-c case also sharply 
rises afterwards, the cooling power (Figure 11 “Electric Loads”) is considerably lower than that of the MPC1 case 
from noon until 6 PM. The charged radiant slab provides cooling throughout the day and reduced peak load.  To 
better explain the effect of model mismatch, Figure 12 shows an example of the projected room air temperature 
produced by the MPC2-c major optimization (colored lines for a 24 h prediction horizon for each 5 min interval).  
The dotted lines indicate the temperature band setpoints passed to the emulator.  The black line shows the observed 
temperature from the emulator.  The setpoints can be distinguished as floating (i.e., setpoint is at comfort range) or 
actively controlled (i.e., when precooling).  It can be seen that until occupancy starts, the temperature tracks the 
projected temperatures.  However, at 8 AM local time (x-axis “06-03 07” or 7 AM on the plot, in Standard Time) 
when occupancy starts, the room air temperature rapidly rises, whereas the earlier MPC2-c projections (blue lines) 
indicate coasting throughout the day without the need for mechanical cooling during the peak periods of the day. 
This is a strong indicator of overestimated thermal mass.  Cost and demand savings indicated in the above 
paragraphs are therefore conservative.   
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Graphs from top: 
Outdoor solar irradiance (W/m2);  
Tint state of the three electrochromic 
zones (4 is clear, 1 is the darkest tint 
level);  
Average room workplane 
illuminance from electric lights and 
daylight (350 lux setpoint dotted 
line);  
Thermal loads from solar heat gains 
(does not include window 
conductive heat gains), internal 
loads from equipment and 
occupants, and electric lighting;  
Cooling, heating, lighting, and plug 
load power use (including envelope 
conductive loads);  
Room air and slab temperature 
(setpoint band shown with dotted 
line);  
Daylight glare probability (DGP);  
Total electric power use from 
cooling, lighting, and plug loads.   
The first two days can be ignored.  
Date label on the x-axis starts at 
midnight (Standard Time).    
All data are from the emulator 
simulations (15-min average from 5-
min modeled timestep).   

Figure 8.  Heuristic control over a nine-day sunny summer period, TOU1, Oakland.   
 



     25 

 
Figure 9.  MPC1-d control over a nine-day sunny summer period, TOU1, Oakland.   
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Figure 10.  MPC1-c control over a nine-day sunny summer period, TOU1, Oakland.   
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Figure 11.  MPC2-c control over a nine-day sunny summer period, TOU1, Oakland.   
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Figure 12. Example of projected room air temperature by the MPC2 major optimization and observed temperature 
from the emulator, in black. The colored lines show the projected MPC2 results for 24 h, for each 5-min control 
timestep, colored from violet in the morning to red in the evening.  
 
The total electricity use profile for the five control modes can be seen in Figure 13, where the MPC schemes are 
shown to have provided significant load-modifying benefits during the summer period relative to the state-of-the-art 
reference case and heuristic controller.  MPC1-d, MPC1-c, and MPC2-c were able to balance demands for both 
daylighting and solar heat gain control in proportion to energy and demand cost.  With MPC2-c, the load shift from 
peak afternoon to off-peak nighttime periods provided by precooling in combination with daytime solar control is 
quite evident in this plot.  Electric demand is nearly flat during the coincident peak period between noon and 6 PM 
(delineated by the dotted energy cost line).  With the TOU2 rate schedule which shifts the coincident peak period 
towards evening hours (Figure 13b), the profiles however are almost identical.  Small differences in load shape 
occur between MPC2-c with TOU1 versus TOU2 during the late afternoon hours just before 6 PM.  This is due to 
the non-coincident (NC) peak demand charge (highest 15 min of use regardless of when it occurs) imposed by both 
rate structures, which strongly suppresses demand over the entire 24 h period.    
 
There have been suggestions of eliminating NC demand charges so that incentives are more aligned with the 
wholesale electricity market requirements.  Simulations were conducted to better understand how such changes 
would affect the load shape provided by MPC controls.  If NC demand charges were eliminated, then the 
responsiveness of MPC control to coincident peak demand charges becomes much more apparent.  This effect is 
illustrated for MPC2-c in Figure 14 (orange line).  The morning peak of 225 W is due to morning cool down prior to 
occupancy; there is no pre-cooling at night to minimize peak loads in the morning period since there are only 
coincident demand charges for the 12-6 PM period.  If demand charges are entirely eliminated (green line), there is 
minimal pre-cooling. During 12-6 PM period, peak demand is increased by 9% if there are no NC demand charges 
and by 22% if there are no demand charges at all (Table 2).  This example demonstrates the flexibility of MPC to 
changes in utility rate structures that are likely to occur as California continues to adopt renewable energy.   
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Figure 13.  Total electricity demand versus time of day over a seven day sunny summer period for five control 
modes, Oakland for a) TOU1 (above) and b) TOU2 (below).  Energy cost is shown as a dotted line on the graph.   
 

 
Figure 14.  Total electricity demand versus time of day over a seven-day sunny summer period in Oakland.  MPC2-c 
control is based on the TOU1 E-19 schedule, E-19 without non-coincident charges, and E-19 without any demand 
charges.  Energy cost is shown as a dotted line on the graph.   
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Table 2. Monthly total energy cost ($) and peak demand (W) with and without coincident (C) and non-coincident 
(NC) demand charges for a south-facing perimeter zone with MPC2-c control and various TOU1 rate schedules 
during the summer, Oakland.    

                

 Monthly cost ($)  Critical peak demand 
  Demand Energy Total   W W/ft2 (%) 

E19 5.513 6.394 11.908  116.45 0.78  
E19, no NC demand charges 3.294 6.487 9.781  126.61 0.84 9% 
E19, no NC or C demand charges   6.555 6.555   142.36 0.95 22% 

        
 
Total monthly energy and demand cost, peak demand, and percent savings for the five original control strategies 
relative to the base case are given in Figures 15-16 and Table 3.  Monthly data were derived from the seven-day 
modeled period.  Compared to state-of-the-art heuristic control, MPC1 and MPC2 strategies reduced TOU1 total 
energy cost by 9-28% and coincident peak demand was reduced by up to 0.58 W/ft2-floor or 19-43% on sunny 
summer days in Oakland.  Similar savings were achieved for the hotter, Burbank climate in Southern California.  
 

 
 
Figure 15.  Total monthly electricity and demand cost (left) and percent savings (right) relative to the base case for a 
13.9 m2 (150 ft2) south-facing perimeter zone in Oakland (above) or Burbank (below) given TOU1 or TOU2 utility 
rate schedules.   
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Figure 16.  Critical coincident peak demand (left) and percent savings (right) relative to the base case for a 13.9 m2 
(150 ft2) south-facing perimeter zone in Oakland (above) or Burbank (below) given TOU1 or TOU2 utility rate 
schedules.   
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Table 3.  Total monthly energy and demand cost ($), coincident peak demand (W), and cost and demand savings 
(%) relative to the base case and heuristic controls.   

                        

 Oakland  Burbank 
Case Summer  Winter  Summer  Winter 
  TOU1 TOU2   TOU1 TOU2   TOU1 TOU2   TOU1 TOU2 

Monthly total energy cost ($) 
Base 18.202 14.004  14.887 15.881  20.063 15.348  16.181 17.240 
Heuristic 16.592 11.991  11.731 12.532  18.789 13.546  12.612 13.480 
MPC1-d 14.273 10.883  9.749 10.506  16.364 12.056  10.421 11.204 
MPC1-c 12.814 9.555  9.333 10.057  14.868 12.174  10.158 10.694 
MPC2-c 11.908 9.662  9.157 9.928  14.865 10.848  9.698 10.489 

Cost savings relative to the base case (%) 
Heuristic 9% 14%  21% 21%  6% 12%  22% 22% 
MPC1-d 22% 22%  35% 34%  18% 21%  36% 35% 
MPC1-c 30% 32%  37% 37%  26% 21%  37% 38% 
MPC2-c 35% 31%  38% 37%  26% 29%  40% 39% 

Cost savings relative to heuristic control (%) 
MPC1-d 14% 9%  17% 16%  13% 11%  17% 17% 
MPC1-c 23% 20%  20% 20%  21% 10%  19% 21% 
MPC2-c 28% 19%   22% 21%   21% 20%   23% 22% 

Critical peak demand  (W) 
Base 208.18 140.47  307.33 214.35  237.05 170.90  339.68 234.24 
Heuristic 203.27 80.00  225.56 139.05  234.33 118.34  259.27 151.62 
MPC1-d 164.44 82.40  197.83 144.22  196.49 121.24  204.64 153.63 
MPC1-c 145.44 73.74  189.88 134.74  174.63 107.87  206.34 133.54 
MPC2-c 116.45 51.62  185.90 129.82  170.87 84.03  187.53 130.62 

Peak demand savings relative to the base case (%) 
Heuristic 2% 43%  27% 35%  1% 31%  24% 35% 
MPC1-d 21% 41%  36% 33%  17% 29%  40% 34% 
MPC1-c 30% 48%  38% 37%  26% 37%  39% 43% 
MPC2-c 44% 63%  40% 39%  28% 51%  45% 44% 

Peak demand savings relative to heuristic control (%) 
MPC1-d 19% -3%  12% -4%  16% -2%  21% -1% 
MPC1-c 28% 8%  16% 3%  25% 9%  20% 12% 
MPC2-c 43% 35%   18% 7%   27% 29%   28% 14% 

            
 
Monthly energy cost savings for the winter and summer periods were projected to a full year, assuming that the 
simulated sunny weeks were representative for each period.   

● If the decision involves whether to use heuristic versus MPC controls (i.e., incremental cost of 
electrochromic windows is not included), then the projected annual energy cost savings between heuristic 
and MPC1-c is $0.51/ft2-window-yr.  With an added cost for the MPC controller hardware of $39 per 
curtainwall unit ($0.54/ft2-window) [Gehbauer et al. 2018], the simple payback period is 1.1 years.   

● If the decision involves whether or not to use autonomous MPC1 versus integrated MPC2 controls, then the 
projected annual energy cost savings between MPC1-c and MPC2-c is $0.09/ft2-window-yr with a simple 
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payback of 6 years, assuming the same incremental cost ($0.54/ft2-window).  Costs for enabling thermostat 
control and access to sensor data needed to tune the R2C2 network are assumed to be included as part of 
the base HVAC control system.   

 
The computation time needed for the optimization is an important criterion for practical realization of real-time 
control in buildings.  The control timestep was defined as 5 min, which is the time window for the optimization to 
complete.  Figure 17 shows total control evaluation times for the different control strategies and seasons. 
 

 
Figure 17.  Total control solving times for strategy with (MPC2) and without (MPC1) integration with the HVAC 
system. Whiskers are defined at 25th and 75th percentile. 
 
It can be seen that at any time, the solving times are well below the 5-min threshold, with a maximum at about 25 s.  
The summer season appears more challenging to solve, which can be attributed to the higher cost impact of 
electricity consumption, and the more complex three-stage TOU tariff, in comparison to the two-stage tariff in 
winter.  The occupancy comfort may also contribute to the faster solving times, by a more restricted solution space 
due to low winter sun angles.  The difference between the integration with HVAC, MPC2, and without integration, 
MPC1, are on average 4 s.  It is to note that MPC1, on average, takes longer to compute than MPC2, which is non-
intuitive, i.e., MPC2 with its integration with the HVAC system was expected being more complex to solve.  
However, in this development of the controller, the implementation of MPC1 was the same as MPC2, but MPC1 
was constrained to allow very little temperature change approximating a constant setpoint.  This method of 
constraining the controller was likely the root of the increased solving times for MPC1. 
 
5. Discussion 
 
5.1. Performance bound assumptions for the MPC simulation results 
 
The introduced MPC optimization framework utilizes as much information as possible to provide optimal control. 
For this simulation study, inputs for forecasted weather, occupancy and internal loads were provided to the MPC 
controller. These inputs were the same as those passed to the emulator, assuming perfect knowledge of these 
quantities. As real-world deployment will show higher deviations, the presented MPC control performance is given 
as the best case scenario with respect to external disturbances.  
 
On the other hand, the room model of the MPC controller was created solely from simple room and window 
dimensions which were entered through the user interface. The resistance-capacitance (RC) thermal model in the 
controller, which is typically parameterized through the user interface, represents a much simplified model of the 
Modelica model in the emulator and therefore represents, to some degree, the expected model mismatch in a field 
deployment. Overall, the results can be considered somewhere between a best case scenario and a well-tuned field 
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setup. Further analysis on the impact of uncertainties and model mismatch will need to be conducted to quantify 
impacts on the actual operations and energy cost. 
 
Another simplification made was the exclusion of expected or previously set demand charges, which shifts the 
weight of the objective function towards peak demand reduction.  While the results already show significant energy 
and peak demand savings, a future implementation including forecasted or previously set demand charge would 
rectify the relationship between peak demand and energy, to potentially further decrease cost.   
 
5.2. Convexity of control optimization problem 
 
Strictly speaking, the MPC problems solved in this study are non-convex, since the equality constraints defined by 
the model are nonlinear.  The nonlinearity comes from the exponential functions [Gehbauer et. al., 2017] used to 
relate window tint level to daylighting, glare, and solar heat gain values (i.e., transmission levels decrease 
exponentially with tint states 1-4).  Converting the problem to one that is convex would require linearization of this 
exponential relationship.  Defining a single linear approximation significantly reduces the accuracy of the model, 
while defining a piecewise linear approximation changes the optimization problem to a nonlinear integer 
programming problem.  With the current non-convex formulation, finding a global optimal is not guaranteed.  
However, the results of the simulations in this study empirically show the improved performance with the MPC 
controller over the heuristic.  An exploration of alternative optimization problem formulations and their influence on 
the resulting control performance and computational requirements is planned for future work. 
 
5.3. Model mismatch in the MPC controller 
 
One key issue associated with the general field of model predictive controls is degradation in performance due to 
model mismatch.  This term describes the difference in expected performance between that of the MPC controller 
and the actual simulated and real world, observed performance. Typically a measurement of error, i.e., root mean 
square error, is defined to evaluate the quality and accuracy of MPC models. However, for optimization purposes, 
the evaluation of individual component model performance is confounded since the models are used in combination 
with other models to determine the final control state. A model with moderate performance could lead to the same or 
very close performance as a perfect model, if the model’s performance metric is defined as the objective of the 
optimization. One reason is the compensation of errors by the aggregation of the component models in the objective 
function, where one model error could compensate for another model’s error. Another reason why accuracy limits of 
component models are hard to determine is the re-iteration through the optimization, when formulated as MPC. One 
example could be a reduced order thermal model in the form of an R2C2 network. If projected for one hour, the 
model performance might be moderate to poor. But if the state of the model is periodically updated  the current 
room temperature, e.g., at each 1- or 5-min timestep, then the performance might be significantly better.  
 
For the introduced Dynamic Facade Control agent, the objective of minimizing total energy cost using TOU rates 
was defined, where the controller must lower or shift thermal loads to avoid expensive peak demand charges. 
Accurate projections over several hours are therefore necessary, which then defines the requirements for the model.  
The final model performance must therefore be evaluated based on the defined objective. As indicated above, the 
evaluation gets even more complex with multiple sub- or component models.  For illuminance and glare, the 
Radiance three-phase method was used for both the MPC controller and the emulator.  However, the emulator 
geometric model was more detailed than that used for the MPC controller, surface reflectance data were matched to 
that of the full-scale LBNL Advanced Windows Testbed facility, and finally models were fit to polynomial tint 
functions to feed the MPC model.  All of these differences resulted in differences in predicted and actual 
performance.  The primary source of discrepancies between the MPC controller and emulator were the models used 
to predict solar heat gain and room thermal response.  To improve the thermal response model, a continuous tuning 
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process was implemented where the R and C parameters are periodically tuned, i.e., every hour, based on the latest 
data recorded from the building.  Further work is needed however to improve controller accuracy.   
 
5.4. Suitability of the modeling framework 
 
The introduced tool-chain of JModelica.org and MPCPy is a convenient and straightforward method to design or 
parameterize a Modelica model and then optimize the model for a defined objective. Each execution of the tool-
chain, with the predefined model, takes environmental conditions and other optional user inputs, to compute an 
optimal solution. This solution can be described as static, where changing environmental conditions, internal 
conditions, or supervisory operation are not taken into account. In order to allow for dynamic adaptation, the static 
optimization can be re-evaluated with updated inputs. This dynamic adaptation is typically referred to as model 
predictive control. However, the remaining challenge is the actual implementation as a building controller, with the 
open questions of implementation of optimal setpoints, integration of occupant feedback, resilience against internal 
or external disturbances, and finally the necessary effort for system integration. 
  
The level of abstraction in the introduced tool-chain might benefit the building designer to parameterize predefined 
models, but complicates the development of models. One issue is the lack of support for binary variables to 
implement conditional control statements. JModelica.org currently only supports three solvers, the open-source 
Interior Point OPTimizer (IPOPT), proprietary We Optimize Really Huge Problems (WORHP) algorithm, and an 
implementation of the Nelder-Mead algorithm. IPOPT and WORHP are both large-scale nonlinear solvers, which do 
not support integer or binary implementations, while the Nelder-Mead algorithm is a derivative-free numeric 
algorithm that is inefficient for control optimization problems [Wetter et al. 2016].  In other optimization languages, 
such as General Algebraic Modeling System (GAMS) or the Python-based Pyomo, solvers are freely chosen based 
on the problem defined. This is considerably more flexible, but on the other hand requires the user to manually enter 
the system of equations and constraints to be solved. If binary variables are necessary, users can typically choose 
between two options: mixed-integer linear programming (MILP) and mixed-integer nonlinear programming 
(MINLP). While it is possible to approximate nonlinear models as linear systems, to benefit from the efficiency 
boost of solving linear system, this work focuses on nonlinear models. The only option to utilize binaries in such an 
environment would be a MINLP implementation.  This conversion would solve several issues with the current 
implementation, where for example tint states are discrete quantities, but are reflected as continuous signal within 
the NLP implementation. This requires an additional step of heuristic selection in the conversion, which leads to 
suboptimal control of the assets. Another issue which was noted in the development of the framework is the difficult 
debugging due to the many layers of abstraction. While optimization problem equations are implemented directly in 
other tools, JModelica.org requires a system of differential-algebraic equations (DAE) be implemented in 
Modelica.  The DAE system is then discretized in time and transformed to optimization problem equations, 
redefined in a format readable by the solver. Additional abstraction added by the MPCPy framework can make error 
debugging or the simple tracing of signals significantly more difficult than in other optimization tools.  Finally, the 
solver IPOPT exploits the first and second derivatives, which requires the objective and constraints to be twice 
continuously differentiable.  In addition, while the solver can provide local solutions only, it will provide global 
solutions for convex problems.  It is therefore desirable to formulate the optimization problem as convex.  The levels 
of abstraction provided by Modelica libraries in model implementation and JModelica.org in generating 
optimization problems from Modelica models can make it difficult to analyze the final structure of the internally 
generated optimization problem.  This turned out problematic when developing new model structures or during 
debugging, because of the lack of insight into the actual optimization problem which is finally solved by IPOPT. 
  
The tradeoff between the complexity of the optimization problem and time resolution of the control signal to be 
implemented requires a definition of the maximal allowable time per iteration. This is equal to the real-time criteria, 
or smallest time step necessary to fulfill the control operation. The initial design focused on user comfort, such as 
glare and daylighting where time constants are typically slow, with reaction times on the order of minutes. The 
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controller was therefore designed to meet the criteria, with a design timestep of 5 min.  However, the further 
advancement of the controller to incorporate thermal load management and consideration of TOU prices, decreased 
the reaction time to less than a minute.  The current computation takes around 20 s per timestep to meet this 
stringent requirement.  However, this timing test is performed using a standard desktop computer with significantly 
more computing power than the target platform which is an embedded controller.  Further tests with the deployed 
controller on the target platform will have to be conducted, to ensure the real-time criteria are met.  In addition, the 
criteria itself would have to be redefined to ensure highest comfort and lowest energy cost at any level of 
disturbance.   
  
6. Conclusions  
 
A simulation study was conducted to evaluate the load modifying potential of dynamic facades in support of 
California's overarching goal to reduce greenhouse gas emissions by 40% below 1990 levels by 2030.  The study 
evaluated two prototype model predictive controllers, one with precooling, the other without, using an emulator to 
evaluate resultant perimeter zone energy demand.  The emulator was based on validated models from the Modelica 
Buildings Library and the Radiance three phase matrix algebraic method.  Energy use costs resulting from the MPC 
controllers were compared to that of state-of-the-art heuristic control of a three-zone electrochromic window 
(SHGC=0.09-0.41, Tvis=0.01-0.60) in a south-facing perimeter office zone in Oakland and Burbank, California.  
Two time-of-use utility rate structure were used in the analysis: the TOU1 coincident peak summer period was 12-6 
PM while the TOU2 period was 5-10 PM.      
 
The MPC1 controller was designed to minimize total energy and demand costs through control of the 
electrochromic window and dimmable lighting system.  MPC1 reduced total perimeter zone energy costs by 13-23% 
(TOU1) and 9-20% (TOU2) compared to heuristic control on clear summer days in Oakland and Burbank.  Energy 
costs were reduced by similar percentage savings on sunny winter days.  Critical peak demand was reduced by 0.26-
0.39 W/ft2-floor (19-28%) in the 15-ft deep perimeter zone during the 12-6 PM summer period (TOU1) compared to 
heuristic controls.  Continuous tint control of the electrochromic yielded significantly greater savings compared to 
discrete (stepped) tint control.   
 
The MPC2 controller was designed to minimize total energy and demand costs through control of the window, 
lighting, and HVAC thermostat, assuming that the top surface of the concrete floor slab was uncarpeted and directly 
exposed to the room air.  Energy cost savings during sunny summer conditions were 21-28% (TOU1) and 19-20% 
(TOU2) compared to heuristic control.  Critical peak demand was reduced by 0.42-0.58 W/ft2-floor (27-43%) in the 
15-ft deep perimeter zone during the 12-6 PM summer period (TOU1) in Oakland and Burbank compared to 
heuristic controls.  Winter savings were similar.  If the non-coincident peak demand charges are removed from the 
utility rate structure, then the MPC2 controller was demonstrated to adapt to the TOU1 and TOU2 coincident 
demand charges.  This example provided evidence of the substantial power of MPC controllers to generate load 
shape and shift capabilities under an evolving electricity market.        
 
Daylight requirements and glare constraints were met with both the MPC1 and MPC2 controllers.  The heuristic 
controller resulted in significantly lower daylight illuminance (<350 lux) and therefore poorer daylight quality in the 
space.  The MPC controllers provided both discomfort glare control, useful daylight (350-2000 lux), and view, both 
constraints of which can be tuned by the end user throughout the life of the installation.  Solar heat gains were also 
controlled to minimize HVAC loads.  Passive solar heating strategies and thermal comfort were not investigated in 
this study but their inclusion in MPC control could further reduce GHG emissions by offsetting the need for natural 
gas.   
 
The MPC controller proved to be a very complex optimization problem because of the breadth of the parameters 
included in the optimization and the number of potential solutions given the three zone electrochromic, four discrete 
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tint states, dimmable lighting and thermostat control over a 24-h prediction horizon, and fast control time step 
needed for glare control.  This project addressed many challenges regarding runtime, convergence, and infeasibility.  
Solving these challenges was hindered in part by the high level of model abstraction that occurred when Modelica 
models were automatically converted to an optimization problem by a variety of third-party tools.  The optimization 
problem was divided into major and minor optimization processes to reduce runtime and complexity of the 
optimization model to be solved.  Several options were investigated to improve the likelihood of finding an optimum 
and reduce the possibility of infeasible outcomes.  A simulation model was used to determine the initial guess of the 
control solution prior to optimization but was found to require more runtime compared to optimizations without the 
provision.  A static initialization of the optimization solver IPOPT was provided instead.  Because a gradient-based, 
non-linear optimization solver was used, conversion from discrete control states to continuous control for 
optimization then back to discrete control was necessary.  This conversion resulted in less than optimal results.  
Model mismatch will occur between the MPC controller and real-world conditions and a solution for automated 
tuning of model parameters was implemented.  Likely sources of model discrepancies were identified and model 
improvements were suggested for future work.   
 
A considerable amount of effort was expended to develop, debug, and test new models for use in the emulator.  The 
Radiance three-phase method was implemented and the resultant solar radiation on room and window layer surfaces 
was integrated within the facade and room thermal heat balance calculations (building on an initial implementation 
made by [Noudui et al. 2012]).  New methods were developed for optimizing control with time-of-use energy and 
demand rate schedules.  Further work is needed to quantify the benefits of integrated dynamic facade control with 
precooling given an improved thermal network model and greater access to thermal energy storage by the HVAC 
system.  Considerable work is needed to develop robust, reliable and cost-effective commercial MPC solutions.  The 
prototype technology described in this study will be further developed to address the challenges of scaling up to the 
real-world context.   
 
Based on this study, we conclude that there can be significant benefits from using model predictive controls above 
and beyond that of state-of-the-art dynamic facade controls.  The magnitude of energy cost and peak demand 
reductions however are strongly dependent on the specific application, how the utility rates are structured, and how 
rates will evolve over the life of the installation.  Given uncertainty in the electricity markets, the decision by 
industry to invest in MPC controls for dynamic facades and its valuation in the market will most likely not be based 
solely on whether its levelized cost is competitive against other DR resources.  It will more likely be based on a 
complex mix of arguments that include energy efficiency, load-modifying DR, projected site energy cost savings, 
capital cost reductions, possible improved comfort, health, and indoor environmental quality, increased user amenity 
and satisfaction, and improved facility operations, all of which lead to greater market competitiveness in the real 
estate market.    
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