Editor's Note: The following columns regarding indoor air quality and occupant productivity appear in the September issues of ASHRAE Journal and CIBSE Journal.

Do Indoor CO₂ Levels Directly Affect Perceived Air Quality, Health, or Work Performance?

BY WILLIAM FISK, FELLOW/LIFE MEMBER ASHRAE; PAMEL WARGOCZI, PH.D., ASSOCIATE MEMBER ASHRAE; XIAOJING ZHANG

This article summarizes the findings of 10 recent studies investigating whether increased carbon dioxide (CO₂) concentrations, with other factors constant, influence perceived air quality, health, or work performance of people.

Concentrations of CO₂ in occupied buildings exceed outdoor concentrations because CO₂ is a product of peoples' metabolism. Indoor CO₂ concentrations are indicators of the rates of building ventilation with outdoor air per person. A higher indoor CO₂ concentration is often considered an indicator of poorer indoor air quality (IAQ), although many factors unrelated to indoor CO₂ concentrations influence IAQ. When indoor CO₂ concentrations increase and decrease, concentrations of other indoor air pollutants emitted from indoor sources, particularly the bioeffluents from humans, may also increase and decrease. Increased indoor CO₂ concentrations have often been associated (correlated) with decreases in perceived air quality, with increases in acute health symptoms, and with reductions in aspects of human performance.¹⁻¹² Research prior to 2012, indicated that levels of CO₂ itself, with other conditions constant, had no significant impacts on peoples' health or performance unless the CO₂ concentrations far exceeded the levels found in buildings.¹³⁻¹⁰ The occupational limit for CO₂ in the U.S. is 5,000 ppm for a 40 hour workweek.¹¹ Therefore, the previously documented associations of indoor CO₂ concentrations with perceived air quality, health symptoms, and performance have been attributed to the other indoor air pollutants with changes in concentrations indicated by the changes in indoor concentrations of CO₂.

Since 2012, 10 studies¹²⁻²³ have investigated whether increases in moderate CO₂ concentrations, with other conditions constant, adversely influence perceptions of indoor air quality, health, or cognitive performance in humans. The study features are described in Table 5 in the IAQScience website.²⁴ These studies have been performed with subjects in research facilities enabling CO₂ concentrations to be modified by adding pure CO₂ to indoor air while maintaining all, or nearly all, other conditions constant. By providing high ventilation rates, these studies have maintained low concentrations of bioeffluents. All studies maintained subjects unaware of the CO₂ concentrations. All studies recruited healthy

William Fisk is a senior scientist at Lawrence Berkeley National Laboratory, Berkeley, Calif. Pamel Wargocz, Ph.D., is an associate professor at Technical University of Denmark, Lyngby, Denmark. Xiaojing Zhang is an assistant professor at Beijing University of Technology, Beijing, China.
adults, often college-age adults, as subjects. One study employed pilots16,21 as subjects, another employed submarine staff,18 and a third employed staff trained as astronauts.20 All but one of these studies18 measured changes in perceptual, health, or performance outcomes for each subject, with each subject exposed to multiple CO\textsubscript{2} concentrations. This design eliminated the potential errors that may occur when comparing different groups of subjects. One study18 employed a study design with three different groups of subjects, each group exposed to a different level of CO\textsubscript{2} in the indoor air.
these experiments. Five studies12,13,16,17,20 found SS decreases in aspects of cognitive performance, when CO\textsubscript{2} concentrations were increased and, in some instances, the performance decreases were quite substantial in magnitude. Concentrations of CO\textsubscript{2} as low as approximately 1,000 ppm, relative to 500 to 600 ppm, significantly reduced performance.13,17 Four of these five studies13,16,17,20 employed demanding tests of cognitive performance, either a 90-minute assessment of decision making via a test system called the strategic management simulation (SMS) or a 180-minute test of pilots’ performance in flight simulations. One of these studies20 found an SS reduction in decision-making performance at 1,200 ppm CO\textsubscript{2} relative to 600 ppm, but performance decreases were not found at 2,500 or 5,000 ppm CO\textsubscript{2}. Besides assessing performance in decision-making, this study also employed a battery of more traditional cognitive performance tests and performance in this battery of tests was generally not affected by CO\textsubscript{2} concentrations. The exception was a general trend toward reduced performance with 1,200 ppm CO\textsubscript{2} with the reduction in speed at 1,200 ppm being SS. The fourth study12 found a SS decrease in performance of a proof reading task but not in other tasks, when CO\textsubscript{2} levels were increased to 3,000 ppm, and proof-reading performance decreased only in one of two experiments. Five additional studies14,18,19,22,23 found that CO\textsubscript{2} levels had no SS effects on performance. Four of these studies14,19,22,23 used tests of task performance (e.g., arithmetic tasks, text typing, proof reading, memory) as well as tests of reaction time and attention. In one study,23 CO\textsubscript{2} levels as high as 5,000 ppm did not influence performance. One of these studies,19 was conducted at high indoor air temperature of 95°F (35°C) and increased CO\textsubscript{2} did not modify responses attributable to increased temperature. The fourth study18 found CO\textsubscript{2} levels as high as 15,000 ppm to not affect performance in the SMS test. Overall, among the 10 studies, three13,16,17 provide strong evidence of reductions in cognitive performance with increased levels of CO\textsubscript{2}. Two additional studies12,20 provide limited evidence of cognitive performance decreases with increased CO\textsubscript{2} levels, but also include

FRESHER, BETTER, HEALTHIER AIR.

As an industry leader in premium Indoor Air Quality systems, Lifebreath offers effective, energy efficient solutions for residential and commercial applications.

To learn more about our IAQ systems contact us today.

Visit Lifebreath.com to learn more! or call us at 1-855-247-4200

On your next project, trust Lifebreath.
evidence of CO₂ not affecting performance. The results of one additional study suggest a possible effect of increased CO₂. The mechanism by which increased CO₂ concentrations may affect cognitive performance was not clearly identified in any of the studies. A possible explanation is provided by another study, albeit one that increased CO₂ levels by restricting ventilation rate per person, hence concentrations of other bioeffluents increased when the CO₂ levels were higher. In this study, as subjects were exposed to levels of CO₂ increasing from approximately 400 to 3,000 ppm their forced expiratory volume in 1 second and forced vital capacity decreased. Using models and prior published data, with exposure to higher levels of CO₂, the authors predicted increases in arterial CO₂ partial pressure and corresponding increases in the bicarbonate content of the blood with a reduction in blood pH. The increased blood bicarbonate and reduction in blood pH was suggested as the explanation for a change in brain functioning when occupants are exposed to higher levels of CO₂.

Two papers hypothesized that the level of stress associated with the cognitive performance test might explain the discrepancies among findings. Higher CO₂ levels were associated with diminished performance primarily from studies with very demanding, likely stressful, tests of performance. In support of their hypothesis, they found a tendency for subjects to have higher salivary α-amylase concentrations, suggesting higher mental stress, when CO₂ concentrations were increased. Further support for this hypothesis comes from findings that pilots’ performance in flight simulations was reduced when their heart rate variability indicated a high level of stress. Also, two studies report some increases in blood pressure with exposure to higher CO₂ levels, suggesting higher levels of stress.

The authors of two papers hypothesized that the discrepancies among research findings when subjects took stressful cognitive performance tests was a consequence of the different types of subjects. In one paper, the authors suggested that the astronaut-like operations personnel and submariners might have been better able to compensate for effects of elevated CO₂ due to their
prior training. The authors of the other paper hypothesized that their subjects (submariners) might have been unaffected by CO₂ as a consequence of their prior regular occupational exposure to CO₂ at 2,500 ppm or higher concentrations.

Five of the studies investigated whether subjects’ perceptions of IAQ, e.g., acceptability of indoor air, was influenced by CO₂ concentrations. Only one study found that subjects reported air quality as less acceptable with 3,000 ppm, 4,000 ppm, and 5,000 ppm CO₂ relative to 600 ppm.

Six studies, reported in eight papers, investigated whether the level of CO₂ influenced health symptoms reported on questionnaires or health-related physiological outcomes such as blood pressure, pulse, respiration rate, markers of stress, and exhaled concentrations of CO₂. Four studies that included questionnaires on acute health symptoms, including fatigue, found that CO₂ level had no statistically significant effect on symptoms. One study reported that subjects were significantly more tired with 5,000 ppm CO₂ relative to 600 ppm CO₂. This study also found that blood pressure, respiration rate and volume, and mental effort (based on heart period variability) were increased with higher CO₂ concentrations. In contrast, other studies generally found no statistically significant effects of CO₂ levels on a broad range of physiological outcomes except for increases in the concentrations of CO₂ in exhaled air, called end-tidal CO₂, and two instances of increases in heart rate. In one study, heart rate decreased less during the exposure session with 3,000 ppm CO₂ vs. 500 ppm CO₂ while another study reported a SS increase in heart rate with exposure to 2,680 ppm CO₂ relative to 700 ppm CO₂. Another study found that levels of α-amylase, markers of mental stress, were higher with 3,000 ppm CO₂ compared to 380 ppm CO₂. Other research has shown that exposure of mice to 2,000 and 4,000 ppm CO₂ for two hours triggers an inflammatory response and vascular injury with generation of microparticles by immune system cells. Also, in human immune system cells, microparticle generation resulted from increased CO₂ exposures.

Main findings of this research are summarized below.

- There is very limited evidence that CO₂ levels below
Can simplicity in kitchen ventilation be taken too far?

We’ll let you know.

At Accurex®, we believe working with kitchen ventilation systems should be one of the easiest parts of designing and building commercial kitchens. So we do more than engineer and manufacture advanced, energy-efficient systems. We make it easy for you to specify Accurex products, by simplifying the process, being responsive and getting you information quickly. Discover how simple works, at ACCUREX.COM

© 2019 Accurex, LLC
THE CDU1200
THE MOST POWERFUL CDU ON THE PLANET.

- 1.2 MW (@ 4°C Approach) of controlled cooling distribution in a compact footprint
- Continued innovation in CDU technology to tackle growing server cooling demands
- Providing the reliability, redundancy, serviceability and quality required in the HPC market place

ServerCool is the market’s reference for designing and building cooling distribution units. Our footprint is global and our ability to deliver is unequaled.

www.servercool.com/contact-us/

5,000 ppm influence perceived air quality, acute health symptoms, or physiological outcomes other than end-tidal CO₂ and heart rate. The studies using mice and human immune cells (in vitro) indicate that higher CO₂ levels trigger inflammatory responses, but these findings have not yet been demonstrated in people.

- With respect to acute health symptoms and perceived air quality, the study results, with one exception, are consistent and find no effects at CO₂ below 5,000 ppm.
- The results of research on the effects of moderate CO₂ levels on human cognitive performance are not consistent. Some studies find effects of higher CO₂ concentrations on cognitive performance while other studies find no effects on this outcome.
- There is substantial, but still inconsistent, evidence that performance on challenging tests of decision-making and challenging flight simulations is worsened by CO₂ concentrations as low as 1,000 ppm. The mechanisms underlying the reductions in performance are unknown.
- Further research is needed to address the discrepancies among the current findings. Additionally, research to date has not investigated the effects of CO₂ on children, the elderly, and people with health problems. Also, the effects of long-term continuous or periodic exposures to elevated CO₂ levels has not been investigated. Finally, the extent to which CO₂ mediates the influence of other factors on health or performance requires more research.

References