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Appendix A. 2004 SC-3A Customer Survey 

 
1. Please confirm your contact information. 

 
1. Name ___________________________________________________ 

2. Organization ___________________________________________________  

3. Title  ___________________________________________________ 

4. Address ___________________________________________________ 

  ___________________________________________________ 

5. Phone _____________________ 6. Fax _____________________ 

7. Email ___________________________________________________ 

 

The following questions pertain to your facilities that receive electricity service from 
Niagara Mohawk Power Corporation (NMPC) under the SC-3A rate classification. 

 
2. On a normal summer weekday, during which of the following time periods is your 

facility’s electricity use highest? (CHECK ONLY ONE)  
 

  1.  8 a.m. – 12 noon 

  2.  12 noon – 6 p.m. 

  3.  6 p.m. – 10 p.m. 

  4.  10 p.m. – 8 a.m. 

  5.  Do not know 

 
3. Which of the following best describes how often you monitor the next day’s hourly 

electricity prices? (CHECK ONLY ONE) 
 

 1. Routinely, most days Skip to Question 5 

 2. Weekly 

 3. Only during periods of hot weather 

 4. Only during NYISO emergency program events - EDRP and/or ICAP/SCR 

 5. Rarely 

 6. Other (please specify): ___________ 

 7. Do not know 
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4. Why do you not monitor prices more frequently? (CHECK ONLY ONE) 
 

 1. Unaware that prices change hourly 

 2. Limited resources to do so 

 3. Limited technology to do so 

 4. My electric service contract with a competitive supplier (ESCO) makes 
monitoring hourly prices irrelevant  

 5. Other (please specify): __________________ 

 6.  Do not know 

 

Questions 5 through 12 refer to your facility’s experience over the past five years during 
summer weekdays. 
 

5. If you have reduced electricity use or turned on on-site generation in response to high 
hourly electricity prices, how high were prices when you responded? (check only one) 

    

$0.10/ 
kWh 

$0.20/ 
kWh 

$0.50/ 
kWh 

$0.75/ 
kWh 

$1.00/ 
kWh 

Have not 
responded 
to prices 

Do not 
know 

       
 

6. If you have reduced electricity use or turned on on-site generation in response to NYISO 
emergency program events, why have you done so? (check all that apply) 

 
 1.  To earn EDRP or ICAP/SCR curtailment incentive payments 

 2.  To avoid paying penalties for not responding to ICAP/SCR events 

 3.  My organization considers it a civic duty to help keep the electric system 
secure 

 4.  NYISO emergencies coincide with high SC-3A prices 

 5.  Other (please specify): __________________________________________ 

 6.  My facility has not responded to NYISO emergency events 

 7.  Do not know 

 
7. If you have reduced electricity use or turned on on-site generation in response to public 
appeals and/or mandates to reduce electricity consumption, why have you done so? (CHECK 
ALL THAT APPLY)  

 
 1.  My organization is required or expected to comply with public appeals 

 2.  My organization considers it a civic duty to respond to public appeals 
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 3.  Public appeals coincide with high SC-3A prices 

 4.  Other (please specify): __________________________________________ 

 5.  My facility has not responded to public appeals 

 6.  Do not know 

 
8. When you have reduced electricity use or turned on on-site generation, how has your 
facility changed its electricity use (check all that apply): 

 
 1.  Electricity use was shifted: consumption was reduced and made up at another 

time (e.g., equipment use was rescheduled to later in the day or the next day) 

 2.  Electricity use was foregone: consumption was reduced and not made up at 
another time 

 3.  Turned on on-site generation 

 4.  I have not reduced or shifted electricity use nor turned on on-site generation 

 5.  Do not know 

 
9. In the table below, please indicate which specific equipment or end-uses have been 
affected when you reduced electricity or turned on on-site generation and how (CHECK ALL 
THAT APPLY):      
 

Actions Undertaken to Reduce Electricity Use 
Equipment and 
End-Uses Shifted Foregone 

Turned on 
on-site 

generation 

Have 
not 

curtailed 

Do not 
have this 

equipment

Do not 
know 

Lighting       
Air conditioning       
Plug loads (e.g., 
office equipment, 
vending 
machines) 

      

Process 
equipment/ 
production lines 

      

Water pumping       
Refrigeration       

 
 

10. Over the past 5 years, has your facility experienced major changes in electricity 
consumption? (CHECK ALL THAT APPLY)  

 
 1.  Yes - My facility has increased production over this time period 

 2.  Yes – My facility has decreased production over this time period 
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 3.  Yes – My facility has invested in equipment to reduce overall electricity 
consumption 

 4.  Yes – Other changes (please describe): ___________________________ 

 5.  No 

 6.  Do not know 

 
11. If some portion of your load has been shifted, which of the following time periods was it 

most often rescheduled to? (CHECK ONLY ONE) 
 

 1.  The day before the curtailment 

 2.  Earlier or later the same day as the curtailment 

 3.  The day after the curtailment 

 4.  Some later time 

 5.  My facility has not shifted load 

 6.  Do not know 

 
12. If some portion of your load has been foregone, which best describes the impact on your 

facility’s operations? (CHECK ONLY ONE) 
 

 1.  No impact 

 2.  Slight inconvenience or employee discomfort 

 3.  Significant inconvenience or employee discomfort 

 4.  Business operations must be adjusted 

 5.  Other (please specify:) ___________________________________ 

 6.  My facility has not foregone load 

 7.  Do not know 
 
13. What barriers has your organization experienced in responding to high hourly electricity 

supply prices? (CHECK ALL THAT APPLY)  
 

 1.  Insufficient time or resources to pay attention to hourly prices 

 2.  Managing electricity use is not a priority 

 3.  The cost/inconvenience of responding outweighs the savings 

 4.  Institutional barriers in my organization make responding difficult 

 5.  My organization’s management views these efforts as too risky 

 6.  Inflexible labor schedule 
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 7.  Negative previous experience with day-ahead hourly pricing 

 8.  Flat-rate or time-of-use (TOU) contract makes responding unimportant 

 9.  Other (please specify): _______________________________________ 

 10.  No barriers have been encountered 

 11. Do not know 

 
14. How does your facility intend to mitigate SC-3A price variability in the next two to three 

years? (CHECK ALL THAT APPLY)  
 

 1.  Secure a time-of-use or flat-rate contract for electricity supply from an 
alternative supplier (ESCO) 

 2.  Secure a financial hedge so that my facility does not have to worry about high 
prices 

 3.  Continue to reduce load when prices are high, as I have in the past 

 4.  Adjust operations to allow for greater capability to respond to high SC-3A 
prices 

 5.  Invest in control and other load management technologies to enhance my 
ability to respond to high SC-3A prices 

 6.  Invest in on-site generation to adjust electricity use 

 7.  My facility does not intend to respond to SC-3A price variability 

 8.  Do not know 

 
15. In the future, how high would hourly SC-3A electricity prices have to be for your 
facility to reduce electricity use below normal levels or turn on on-site generation? (CHECK 
ONLY ONE) 

   

$0.10/ 
kWh 

$0.20/ 
kWh 

$0.50/ 
kWh 

$0.75/ 
kWh 

$1.00/ 
kWh 

$2.00/ 
kWh 

Would not  
change use 
at any price 

Do not 
know 

        
 
The following questions ask about energy management technologies installed at facilities 
served by NMPC, specifically:  

Energy Management Control Systems (EMCS): control systems that optimize operations 
of end-use equipment, usually HVAC, through a series of sensors, communicators and 
controllers 
Peak Load Management Devices: devices that control the electric demand of HVAC 
equipment, lighting, process loads, motors or drives 
Energy Information Systems (EIS): integrated systems of software, data acquisition 
hardware, and communication systems used to manage electricity use over a variety of 
end-uses in a single facility or across several remotely managed facilities  
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16. Has your facility installed an Energy Management Control System (EMCS) or peak load 

management devices?  
 

 1. Yes 

 2. No     Skip to Question 19 

 3. Do not know     Skip to Question 19 
 

17. For what purpose(s) are your facility’s EMCS and/or peak load management devices 
used? (CHECK ALL THAT APPLY) 

 
 1.  To respond to high hourly prices 

 2.  To reduce overall electricity bills 

 3.  To reduce peak-demand charges 

 4.  Facility/process control automation 

 5.  Other (please specify): __________________________________________ 

 6.  Do not know 

 
18. During which summers have you used your EMCS and/or peak load management devices 

for these purposes? (CHECK ALL THAT APPLY) 
 

 1.  Summer of 2000 

 2.  Summer of 2001 

 3.  Summer of 2002 

 4.  Summer of 2003 

 5.  Summer of 2004 

 6.  Do not know 

 
19. Has your organization installed an Energy Information System (EIS) in the past five 

years? 
 

 1. Yes 

 2. No     Skip to Question 22 

 3. Do not know     Skip to Question 22 

 
20. For what purpose(s) is your facility’s EIS used? (CHECK ALL THAT APPLY) 

 
 1.  To respond to high hourly prices 
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 2.  To reduce overall electricity bills 

 3.  To reduce peak-demand charges 

 4.  Facility/process control automation 

 5.  Other (please specify): __________________________________________ 

 6.  Do not know 

 
21. During which summers have you used the EIS for these purposes? (CHECK ALL THAT 

APPLY) 
 

 1.  Summer of 2000 

 2.  Summer of 2001 

 3.  Summer of 2002 

 4.  Summer of 2003 

 5.  Summer of 2004 

 6.  Do not know 

 

22. Does your facility have on-site generation (e.g., self-generation, cogeneration or 
emergency generators)? 

 
 1. Yes 

 2. No     Skip to Question 24 

 3. Do not know     Skip to Question 24 

 

23. For what purpose(s) is (are) your facility’s on-site generator(s) used? (CHECK ALL THAT 
APPLY) 

 
 1.  To respond to high hourly prices 

 2.  To reduce overall electricity bills 

 3.  To reduce peak-demand charges 

 4.  Emergency backup / reliability 

 5.  Cogeneration 

 6.  Other (please specify): __________________________________________ 

 7.  Do not know 

 
The following questions pertain to how you purchase electricity at your facilities served by 
NMPC under the SC-3A rate classification. 
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24. On average, what percent of your facility’s total annual operating costs do your energy 

costs (e.g. electricity, natural gas, fuel oil, etc.) account for? (check only one) 
 

 1. Less than 1% 

 2. Between 1% and 3% 

 3. Between 4% and 6% 

 4. Between 7% and 10% 

 5. Between 11% and 20% 

 6. Greater than 20% 

 7. Do not know 

 
25. On average, what percent of your facility’s total annual operating costs do your electricity 

costs account for? (check only one) 
 

 1. Less than 1% 

 2. Between 1% and 3% 

 3. Between 4% and 6% 

 4. Between 7% and 10% 

 5. Between 11% and 20% 

 6. Greater than 20% 

 7. Do not know 

 
26. Has your facility ever purchased electricity from an alternative supplier (ESCO)? 

 
 1. Yes 

 2. No     Skip to Question 29 

 3. Do not know     Skip to Question 29 

 
27. During which of the following summers did your facility buy electricity from an ESCO 

under a time-of-use or flat-rate contract? (check all that apply) 
 

 1.  Summer of 2000 

 2.  Summer of 2001  

 3.  Summer of 2002 

 4.  Summer of 2003 

 5.  Summer of 2004 
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 6.  My facility was not on this type of rate during these time periods 

 7.  Do not know 

 
28. During which of the following summers did your facility buy electricity from an ESCO 

under a contract in which prices change hourly? (check all that apply) 
 

 1.  Summer of 2000 

 2.  Summer of 2001  

 3.  Summer of 2002 

 4.  Summer of 2003 

 5.  Summer of 2004 

 6.  My facility was not on this type of rate during these time periods 

 7.  Do not know 

 
29. In the last five years, if you have not bought electricity exclusively from ESCOs, please 

indicate why not (CHECK ALL THAT APPLY): 
 

 1.  Could not find a hedged (flat-rate) contract 

 2.  Could not find an ESCO willing to serve my organization 

 3.  ESCO offers have been too expensive 

 4.  The savings offered by ESCOs have not been enough to justify the switch 

 5.  Institutional barriers in my organization make switching difficult 

 6.  Prefer NMPC’s prices 

 7.  Prefer NMPC’s reputation 

 8.  Prefer NMPC’s service 

 9.  Unavailability of long-term contracts 

 10. Contract(s) with NYPA limit(s) my organization’s interest  

 11. Believe that contracts with NYPA prevent me from choosing an ESCO  

 12. Other (please specify): ___________________________________________ 

 13. My organization has bought electricity exclusively from ESCOs since 1999 

 14. Do not know 

 
30. In the future, what would prompt you to buy electricity from an ESCO? (CHECK ALL THAT 

APPLY) 
 

 1.  More interest by ESCOs in serving my facility 
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 2.  Better priced ESCO flat-rate or time-of-use offerings than those currently 
available 

 3.  Better priced ESCO Day-Ahead Market indexed offerings than those currently 
available 

 4.  More information or education on how to evaluate ESCO offers 

 5.  More interest/support from my organization’s management 

 6.  Higher forecasted SC-3A electricity prices 

 7.  More volatile forecasted SC-3A electricity prices 

 8.  Other (please specify): _______________________________________ 

 9.  Nothing could induce my organization to switch (why?): 
________________________________________________________ 

      ________________________________________________________ 

 10.  Do not know 

 
31. Currently, the default SC-3A commodity price varies from hour to hour but is provided to 

you on a day-ahead basis. Suppose that in the future the default SC-3A commodity price 
was instead provided to you at the beginning of each hour and was effective for the load 
consumed in that hour (e.g. no advance notice of prices). What would you do? (CHECK 
ONLY ONE) 

 
 1.  Continue buying commodity service from NMPC 

 2.  Continue buying commodity service from an ESCO  

 3.  Switch to an ESCO for an alternative commodity service 

 4.  Consider offers from an ESCO for an alternative commodity service 

 5.  Do not know 

 
32. During which of the following summers did your facility purchase a financial product 

that hedged electricity price volatility (e.g. a contract for differences, swap, etc.)? (check 
all that apply)  

 
 1.  Summer of 2000     Skip to End 

 2.  Summer of 2001     Skip to End 

 3.  Summer of 2002     Skip to End 

 4.  Summer of 2003     Skip to End 

 5.  Summer of 2004     Skip to End 

 6.  My facility did not have a financial hedge during these time periods 

 7.  Do not know 
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33. Which of the following have influenced your decision not to buy a financial hedge?  

(CHECK ALL THAT APPLY) 
 

 1.  Not sure what a financial hedge is or why I would need one 

 2.  Could not find an institution that offered a financial hedge 

 3.  Offered hedges were too expensive 

 4.  Institutional barriers in my organization make procuring financial hedges 
difficult 

 5.  My organization is comfortable managing risk without a financial hedge 

 6.  My facility already had a flat-rate or TOU supply contract 

 7.  Other (please specify): ___________________________________________ 

 8.  Do not know 
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Appendix B. The Generalized Leontief Demand Model, Theoretical and Empirical 
Specifications and Interpretations 

B.1 Introduction 
 
The purpose of this appendix is to provide an overview of the conceptual approach and 
empirical model used to quantify the response in electricity usage by industrial and 
commercial customers to hourly varying, day-ahead electricity prices in Niagara 
Mohawk’s SC-3A electricity rate. The conceptual model is based on the modern 
economic theory of the derived demand for inputs by profit maximizing and/or cost 
minimizing firms. This conceptual foundation is reported in detail by Goldman, et al. 
(2004); it is therefore only summarized in this appendix. While relying on the same 
conceptual model, the empirical demand specification for this current study is 
substantially different. It is based on a flexible Generalized Leontief (GL) cost function, 
rather than the more restrictive Constant Elasticity of Substitution (CES) specification. 
 
By allowing price response to vary with the level of prevailing prices, this flexible 
demand model facilitates the understanding of RTP participants’ response to RTP prices 
in two important ways. First, we are able to structure a specific statistical test for the 
hypothesis that a firm exhibits no price response. Second, the GL demand specification 
allows estimates of demand response to vary across price levels. Therefore, for those 
firms that are price responsive, we can also test the hypothesis that a firm’s willingness to 
shift electricity between high-and low-priced periods increases as the prices in the high-
priced periods rise.1 Once separate demand models are estimated for each customer, it is 
possible to test this second hypothesis by pooling the individual customer estimates of 
demand response and estimating two additional models. In the first of them, we model 
estimates of demand response as a function of the ratio of peak to off-peak prices, 
including additional variables that are available for all customers. In the second model, 
we are also able to quantify the separate effects on average price responsiveness of 
additional customer-specific characteristics and circumstances that were collected 
through a self-administered customer survey.  
 
After a brief review of the electricity demand model, the GL model is described in detail, 
along with a strategy for empirical estimation and a geometric, intuitive interpretation of 
the range in possible demand response accommodated by the flexible specification. 
Finally, the econometric issues related to model specification and the testing of important 
hypotheses are addressed.  
 
B.2 The Electricity Demand Model 
 
The model for electricity demand in this study is consistent with the modern economic 
theory of the firm. It provides the theoretical underpinnings for the initial empirical 

                                                 
1 In contrast to most other studies of RTP customer demand response, we define daily peak and off-peak 
pricing periods rather than treat electricity in every hour as a distinct commodity.  Several alternative  peak-
period specifications are employed in our empirical estimation in order to test which best characterizes 
customer behavior. 
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evaluations of RTP-type services by Caves, et al. (1984), and more recently by King and 
Shatrawka (1994) and Schwarz, et al. (2002).2 According to this theory, firms are 
assumed to maximize profits (or minimize the cost of producing a given level of output), 
and electricity usage is modeled according to a sequential, three-level profit or cost 
function that is assumed to be separable in electricity usage.3 At the first level, weekday 
electricity usage is allocated between peak and off-peak time periods, which reflect 
differences in the price of electricity, the value of electricity, or both. The second level 
allocates monthly usage between weekdays and weekends. The third, and final, level 
determines overall electricity expenditures as a proportion of total costs, reflecting the 
relative demand for electricity in relation to all other inputs in the production process. 
 
In this study, we focus the demand model specification on the first stage – the allocation 
of daily electricity usage between high-price (peak) and low-price (off-peak) hours.4 To 
facilitate an analysis of electricity demand response to RTP prices from this perspective, 
it is necessary to develop an appropriate definition of the electricity commodity. 
 
B.2.1. Defining the Electricity Commodity 
 
Because of the continuous nature of electric service and usage, defining the hours that 
constitute the peak and off-peak periods in electricity demand models is generally treated 
as an empirical question, driven by the prices customers face and the circumstances by 
whichthey use and value electricity. Studies of price response to time-of-use (TOU) rates 
typically utilize pooled data for customers participating in different TOU rates, or data 
are pooled across several treatments, where prices or the definition of the peak period 
vary by the experimental design (Caves, et al. 1984; Patrick 1990; Braithwait 2000).  
 
To establish the definition of distinct electricity commodities in one of the most detailed 
studies ever undertaken, Caves, et al. (1987) identified six separate commodities for 
customers facing a six-hour peak-pricing period of 9 A.M – 12 noon and 1 P.M. – 4 P.M. 
These peak hours were then further divided into two separate commodities—one two-
hour commodity (11 A.M – 12 Noon and 1 P.M – 2 P.M) and one four-hour commodity 
(9 A.M. – 11 A.M. and 2 P.M. – 4 P.M). Other hours in the day were aggregated into four 

                                                 
2 The model is conceptually similar to the consumer demand model discussed by Braithwait (2000). 
3 For a production function or utility function to be weakly separable in any partition of its arguments, the 
marginal rate of substitution between any two inputs or goods in a separable subset is independent of all 
inputs or goods that are not in the subset (Chambers 1988, pp. 45-46).  In other words, any function in n 
variables, f(x) = F(x1, … ,xn), that is separable in a partition x1 through xm, where xi is a vector representing 
a subset of the n variables, can be written as f(x) = F( f1(x1), … , fn(xn)).  Each of the sub-functions can be 
treated as an aggregate input or consumption bundle—essentially a production or utility function in and of 
itself.  Therefore, it is legitimate to think of production or consumption occurring in two steps.  To use the 
example of a production function, inputs in the sub-vector are combined to create the aggregate inputs in 
the first step.  In the second step, these aggregate inputs are used to produce the output from the macro 
production function.  The practical implication is that choice of cost minimizing input levels within any 
sub-function depends only on prices for those inputs in the sub-function.  Thus, input demands and price 
response elasticities can be derived from the sub-function alone.   
4 Caves, et al. (1984) estimate a demand model that includes all three stages of electricity demand. It is 
perhaps the only study that looks at all three stages of electricity demand, and one of only a handful of 
studies that consider more than just the within-day energy demand. 
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separate commodities, all priced the same. They argued that this sub-aggregation of the 
peak is needed to characterize “needle peaking” behavior. Extending this structure to 
RTP-type programs with hourly prices would require 24 separate electricity commodities, 
one for each hour of the day.  
 
This specification would be warranted if industrial and commercial customers could in 
fact adjust usage on an ongoing basis to changing hourly prices. However, there is 
compelling evidence that firms implicitly characterize the day as being comprised of a 
peak and an off-peak period (Neenan, et al. 2003). While the exact specification of the 
peak hours is firm specific, common business practices, driven in large part by traditional 
rate structures, support utilizing a single specification to capture most of the variation in 
usage.  
 
Consistent with this line of reasoning, we analyze the price response behavior of NMPC’s 
RTP customers by estimating the demand model for several alternative specifications of 
the peak period that differ in length. To gain insights into which hourly aggregates firms 
view as distinct commodities, we focus the discussion on a specification that best 
represents the data.  
 
B.2.2 The Model of Daily Demand for Electricity in Peak and Off-Peak Periods 
 
Since the focus is on the first stage in the decision process described above, our empirical 
demand model deals only with the allocation of daily electricity usage between high-price 
(peak) hours and low-price (off-peak) hours. It is generally thought that electricity use in 
these two periods are valued differently by the firm. In contrast, it may also be the case 
that peak and off-peak electricity inputs are complementary to the firm and could in fact 
be demanded in nearly fixed proportions. To formulate this demand model, we define a 
firm’s production function that is separable in electricity inputs as:  
 
(1) Q = F(x1, x2,…,xn , E(kp, ko)), 
 

where Q is the output of the firm, xi are inputs other than electricity and kp and ko are 
electricity used in peak and off-peak periods, respectively.  
 
Electricity is assumed to be separable from other production inputs. Therefore, this sub-
function E = E(kp, ko) represents an aggregate electricity input; a firm can produce a 
given level of output by combining different amounts of peak and off-peak electricity that 
yield a given level of the electricity aggregate, say E0, needed by the firm to produce its 
output. In considering the use of peak and off-peak electricity, there are four cases that 
should be distinguished. The particular case that applies to any individual customer 
depends not only on the technical aspects of certain production processes, but also on 
behavioral considerations. The situation can also vary depending on circumstances, such 
as when certain firms decide to reduce what might be termed “discretionary” energy use. 
In this case, the rate at which firms substitute off-peak for peak electricity could be called 
“state dependent”. These four cases are described graphically here. In later sections, these 
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individual cases are related directly to the estimated parameters of the GL demand 
models.  
 
Case 1 is where peak and off-peak electricity are substitute inputs in production, depicted 
in Figure 1. This case is what most would think of as the normal situation regarding a 
firm’s ability to substitute peak and off-peak electricity.  
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The curve E0 in Figure 1 represents those combinations of peak electricity (Kp) and off-
peak electricity (Ko) that produce an energy aggregate, E0, needed to support the firm’s 
desired (and constant) output. At an initial ratio of peak to off-peak electricity prices 
(given by the price line in Figure 1 labeled Pp/Po),5 the firm would minimize the cost of 
producing E0 by using Kp1 and Ko1 of peak and off-peak electricity, respectively. This is 
point A in Figure 1. If there is an increase in the peak period price of electricity to Pp

* > 
Pp, the price line gets steeper and if the firm is to continue to produce E0, the minimum 
cost way of doing so is by using more electricity off-peak and less on-peak (e.g. Kp2 < 
Kp1 and Ko2 > Ko1). This is at point B in Figure 1, and it is the increase in the peak price 
of electricity that leads to a decrease in the ratio of peak to off-peak electricity usage. It is 
this change in the ratio of peak to off-peak electricity use that measures the firm’s price 
responsiveness. This change in input intensity is related to the slope of the curve, E0. The 

                                                 
5 For this given set of prices. Pp and Po, the price line represents all combinations of Kp and Ko that can be 
purchased for a fixed budget. 
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measure of this change in the ratio of input use in percentage terms is commonly called 

the elasticity of substitution, and it is often denoted by σ. In our case, σ measures the 
percentage change in the ratio of peak to off-peak electricity use to a one percent change 
in the ratio of off-peak to peak electricity. As the curvature or slope of E0 becomes more 
pronounced, a firm’s price responsiveness, as measured by the elasticity of substitution 
falls, and as the curve E0 becomes flatter, the price responsiveness increases. Finally, in 
this particular case, we have drawn the curve E0 so that it never crosses either axis. Thus, 
regardless of how high the peak price rises relative to the off-peak price, production 
always requires some peak electricity. Technically, this is the case where 0 < σ < ∞.  
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In this study, one extreme case, where σ = 0, is of particular interest, and it is depicted in 
Figure 2. In this case, there is no possibility for substituting peak for off-peak electricity 
regardless of the relative prices of peak and off-peak electricity. This means that output 
can only be produced using these two electricity inputs in fixed proportions, and peak and 
off-peak electricity are called perfect complements. The equal output curve, E0, is the 
rectangle (Figure 2). At point A in the figure, the electricity aggregate, E0, is produced 
using Kp1 and Ko1 units of peak and off-peak electricity, respectively. The fixed 
proportions nature of production is reflected in the rectangular curve E0 in the following 
way. If Kp is increased above the level Kp1 while holding Ko at Ko1, we would move to 
the right horizontally along the curve E0. Since we remain on the curve E0, the electricity 
aggregate and output are constant, and the extra peak electricity would be of no use to the 
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firm. A similar argument can be made for trying to increase output by increasing the 
amount of off-peak electricity without any increase in peak usage.6
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The third case is depicted in Figure 3. As in Case 1 above, peak and off-peak electricity 
are substitute inputs in production, and the curve E0 in Figure 3 still represents those 
combinations of peak electricity (Kp) and off-peak electricity (Ko) that produce an energy 
aggregate, E0, needed to support the firm’s desired (and constant) output. At an initial 
ratio of peak to off-peak electricity prices (given by the price line in Figure 3 labeled 
Pp/Po), the firm would minimize the cost of producing E0 by using Kp1 and Ko1 of peak 

                                                 
6 The other extreme, where σ = ∞, is of little interest in the study of the substitutability of off-peak for peak 
electricity. We include a short discussion here for completeness only. This is the case where peak and off-
peak electricity are called perfect substitutes. In this case, rather than the E0 curve being convex to the 
origin as it is in Figure 1, the E0 curve is instead a straight line with a negative slope that intersects both the 
horizontal and vertical axes. In this case, a certain number of units of off-peak electricity can always be 
substituted for one unit of peak electricity to keep the electricity aggregate at E0 and output constant. The 
flatter this straight line is, the fewer is the number of units of off-peak electricity needed to substitute for 
one unit of peak electricity. If the ratio of peak to off-peak prices happens to be the same as the slope of this 
line, then any point on the line represents a minimum-cost combination of peak and off-peak electricity to 
keep E at E0. However, if the price-ratio line becomes steeper, representing a relative increase in price of 
peak electricity, then only off-peak electricity is used in production. Alternatively, if the price-ratio line 
becomes less steep, representing an increase in the off-peak price, then only peak electricity would be used 
in production.  
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and off-peak electricity, respectively. This is point A in Figure 3. In contrast to the 
situation in Figure 1, we see that in this case the E0 cuts the vertical axis at point B. 
Although off-peak electricity is substituted for peak electricity as the price of peak 
electricity rises, there is a price (say Pp

*), at which peak electricity is “priced out of the 
market”, and peak usage drops to zero (point B in Figure 3). There are perhaps a small 
number firms with production processes that accommodate such dramatic substitution 
possibilities and are able to forgo all electricity use during peak periods when peak prices 
are extremely high. However, we focus on this case because it may depict very well the 
behavior of firms with significant on-site generation. Regardless of the price of peak 
electricity these firms may still require peak electricity as an input, but as the price of 
peak electricity rises to a certain level, the demand for peak power from the grid falls to 
zero (point B in Figure 3). The firm continues to receive its off-peak power from the grid, 
but now relies completely on its on-site generation to supply its peak electricity needs.7  
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The fourth case of interest is also more descriptive of a behavioral response to high peak 
electricity prices than it is of a pure technical relationship usually depicted by input 
demand models. This case is depicted in Figure 4, and it is the case where demand for 
peak electricity depends on prevailing circumstances (“state dependent” if you will). For 

                                                 
7 As is seen below, this situation is accommodated within the framework of the GL model, but it cannot be 
modeled by the CES function. 
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example, there are some firms that when prices of peak electricity reach a certain p
they shed some “discretionary” load (e.g., maintain output but ask customers and 
employees to forgo normal comfort levels so lights and/or air conditioning can be turn
down). Thus, by shedding discretionary load as the price of peak electricity rises, this 
firm moves from point A on the E

oint, 

ed 

d employees (e.g., by moving up the 
0 curve to point C with a peak usage of Kp3 > Kp2). 

or E 
a 

L 

 regardless of the firm’s output 
vel, electricity usage, and the price of electricity.  

.2.2.1 The CES Specification 

04), a 
onstant elasticity of substitution (CES) functional form was used. It has the form: 

)    E =  [ δ (kp) -ρ+ (1-δ) (ko)-ρ ] -1/ρ  

ases 

icity of substitution is constant 
gardless of the levels of energy use or levels of output.  

 
 price ratio (the ratio of off-peak to peak price) and the 

arameters δ and σ. That is: 

                                                

0 curve to point B on the E1 curve, in effect shedding 
more peak load (from Kp1 to Kp2) than would be possible if production levels were to be 
maintained at normal comfort levels for customers an
E
 
More is said about the range in elasticities of substitution below. However, based on this 
general discussion, it is clear that in order to estimate firm’s change in peak and off-peak 
electricity use in response to price changes, we need only specify a functional form f
= e(kp, ko) and estimate it empirically. Perhaps the most critical factor in selecting 
functional form is that it be able to reflect a wide range in price responsiveness as 
measured by the elasticity of substitution. As is seen below, both the CES and the G
models have this capacity. However, the GL model has the added flexibility of not 
imposing the same elasticity of substitution for a firm
le
 
B
 
In much previous literature, including two recent studies of customer demand response in 
new competitive markets by Neenan, et al. (2003) and Charles River Associates (20
c
 
(2
 
In this function, E is an aggregate electricity input that exhibits constant returns to scale 
(Moroney 1972; and Ferguson 1969). That is, if electricity use is increased by the same 
proportion in both peak and off-peak periods, the value of the energy aggregate incre
by that same proportion. The parameter δ reflects the natural peak Kwh intensity of 
production. The parameter ρ is a transformation of the elasticity of substitution between 
peak and off-peak electricity use, σ = 1/(1 + ρ).8 This elast
re
 
Neenan et al. (2003) have shown that this elasticity of substitution is also a convenient 
measure of the price responsiveness of electricity demand between peak and off-peak 
periods.9 In particular, they show that the ratio on peak to off-peak electricity use is a
function of the inverse of the
p

 
8The algebra needed to derive this relationship, along with the derivation of the elasticity of substitution, is 
found in Fergurson (1969, pp. 103-04) and is not repeated here.   
9This involves solving the first-order conditions to the constrained optimization problem for minimizing the 
cost of producing a given output for the factor demands and substituting them back into the direct cost 
function. This procedure allows one to write the indirect cost-minimizing cost function in terms of output 
and input prices only. 
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(3)    kp / k0 = {[ δ /(1 - δ) ]  [p0 / pp ]}σ. 

 obtain an 
nimum-variance estimate of σ using ordinary least squares (OLS) 

gression:  

)    ln [ kp / ko ] = σ ln [ δ /(1 - δ) ] + σ ln [p0 / pp ] + ln ε. 

asticity 

l 

eak 

o of 

e changes by more than one percent as the inverse price ratio changes by one 
ercent. 

e of 

. 

in 
-peak 

we 
) specification. In 

oing so, however, we encounter some challenges in estimation.  
                                                

 
One attractive feature of this model is that we can multiply the right-hand-side of this 
equation by an appropriate error term (ε), take the logarithms of both sides, and
unbiased, mi
re
 
(4
 
Furthermore, from this transformed, logarithmic relationship, it is clear that the el
of substitution, the parameter σ, measures the proportional change in the ratio of 
electricity use in peak and off-peak periods due to a percentage change in the inverse 
price ratio (e.g., ∂ ln [ kp / ko ]/ ∂ ln [p0 / pp ] = σ). For this production function to be wel
behaved, Ferguson (1969) shows that the elasticity of substitution must lie between the 
extremes discussed above (e.g., ∞ ≥ σ ≥ 0).10 To reiterate from above, if σ = 0, then p
and off-peak electricity must be used in fixed proportions. The higher σ is, the more 
responsive energy use is to changing in relative prices between peak and off-peak 
periods. For example, if σ < 1, then as the price ratio changes by one percent, the rati
peak to off-peak energy use changes by less than one percent. For σ > 1, the ratio of 
energy us
p
 
While this CES model is easy to estimate in logarithmic form and one of its parameters 
has a natural interpretation as a demand response elasticity, one potential disadvantag
the CES specification is that the elasticity of substitution is constant—invariant with 
respect to initial peak relative to off-peak electricity usage or to the initial relative prices
This is inconsistent with the view by some that when peak usage is high relative to non-
peak usage, a customer may find it more difficult to shift load in response to a change 
relative prices. It is also thought by some that a firm’s ability to shift load to off
declines as more and more load is shifted. In addition, the CES specification is 
inconsistent with the view that a customer’s willingness to respond to price increases at 
times of very high peak prices.11 Since we are interested in studying these two issues, 
must turn to an alternative, more flexible Generalized Leontief (GL  

d
 

10This relationship shows that σ is the proportional change in the use of electricity in the peak period 
relative to the off-peak period (holding output, in this case the electricity aggregate, constant), as the 
inverse price ratio increases or decreases by one percent (Ferguson 1969, pp. 103-04).   
11 A nested extension of this CES form was used originally by Herriges, et al. (1993) to characterize 
customer demand for electricity, where consumption within days is weakly separable from consumption 
across days. Schwarz, et al. (2002) also adopted a modification of this model to obtain intra-day and inter-
day price responses. Despite this particular feature, there are two primary reasons we gave no further 
consideration to this nested CES model. First, this model still forces intra-day response elasticities to be 
constant; thus the model does not have the needed flexibility to allow for daily differences in intra-day 
response elasticities. Second, we focus our attention on intra-day price response because in the responses to 
our customer survey, the vast majority of the customers indicated that they did not shift from one day to 
another.     
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B.2.2.2 The Generalized Leontief Specification  

 
) 

 the 

 that determines the substitutability of 
lectricity among different periods of the day.  

ct 

e 
y 

the 
lasticity of substitution among electricity use during different times of the day. 

n the 
eneralized 

eontief (GL) function, then we have for peak and off-peak periods:13

)   C = E {∑i
  ∑j dij (pi pj) ½ } ; 

e 
te, changes in the same proportion as well. We 

lso require that dij = dji, for symmetry. 

only two periods, 
(peak, p, and off-peak, 0), the corresponding GL model is given by:

 
This model of electricity demand is based on the Indirect Generalized Leontief Cost 
Function. To begin its development, one must, as in the case of the CES model, specify a
firm’s production function that is separable in electricity inputs as given in equation (1
above (i.e., Q = F(x1, x2,…,xn, E(k1,…,ko)),where Q is output, xi are inputs other than 
electricity and k1 through kn are electricity used in periods 1 through n, respectively). 
Because production is assumed to be separable in electricity inputs, we can specify
function F as above, where the electricity inputs can be combined according to an 
aggregator function E. This is essentially being able to specify a sub-function within F. 
Any combination of kp and ko that yields the same value for E is equally productive in 
producing Q. It is the nature of this sub-function
e
 
Appealing to duality theory (Shephard 1970), we can also, in theory, specify the indire
cost functions associated with both the production function Q and the sub-function E 
above.12 Because of the assumption that the function is separable in electricity inputs, w
are again only concerned with the indirect cost function associated with the electricit
aggregate’s sub-function. From that sub-function, we can derive expressions for 
e
 
If we assume that the underlying aggregator function for E is linear homogeneous i
electricity inputs (ki) and that the indirect cost function C is a flexible g
L
 

 (5
 
E is a measure of effective electricity as given by the electricity sub-function. This 
function is linear homogeneous in all prices, which is a requirement for a well behaved 
indirect cost function. That is, if all prices are changed in the same proportion, then C, th
cost of producing the electricity aggrega
a
 
Since we are interested in a model that can capture price response for 

14

                                                 
12 This involves solving the first-order conditions to the constrained optimization problem for minimizing 
the cost of producing a given output for the factor demands and substituting them back into the direct cost 

d 

n 
 to off-peak 

function. This procedure allows one to write the indirect cost-minimizing cost function in terms of output 
and input prices only. 
13 Diewert (1974) shows that if the generalized Leontief function (or any cost function) can be decompose
is this form, then the underlying aggregator function for E reflects a constant returns to scale technology. 
Put differently, this implies that total cost of the electricity aggregate is equal to a unit cost function (the 
term in { } in equation (6)) multiplied by the level of the energy aggregate. Furthermore, this specificatio
implies that the “isoclines” are linear rays out of the origin and that for a given ratio of peak
electricity prices, the ratio of peak to off-peak electricity use will be invariant with respect to the output 
level. Obviously, when the price ratio changes, the ratio of input use will change as well. 
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(6) C = E {dpp pp

1/2 p0
1/2 + dp0 pp

1/2 p0
1/2 + d0p p0

1/2 pp
1/2 + d00 p0

1/2 p0
1/2} 

 
B.2.2.3 Deriving the Elasticity of Substitution  
 
Since the elasticity of substitution in this model is not constant as it is in the CES model, 
it is not equal to one of the parameters in equation (6). It must be derived in the following 
way. From Shepherd (1970), we know that optimal demands for peak and off peak 
electricity can be determined by differentiating (6) with respect to each price: 
 
(7) ∂C/∂pp = kp = E [dpp + dp0 (p0 / pp) ½ ]. 
 
(8) ∂C/∂p0 = k0 = E [d00 + dp0 (pp / p0) ½ ] 
 
To develop a measure for the price responsiveness in the GL indirect cost function, we 
must also begin by deriving what is known as the Allen (1938) partial elasticities of input 
substitution, which, for any indirect cost function such as the one in equation (6), are 
equal to:15

                                                                                                                                                 
14 In conducting this analysis, there were a number of other second-order flexible forms that might have 
been used in the empirical specification. One such commonly used flexible form, the translog (TL) model 
(Boisvert 1982 and Chambers 1988) would have avoided estimating any equations that are non-linear in the 
parameters.  The TL model relies on estimating a set of electricity cost share equations that are linear in the 
model parameters and does not require observations on the electricity aggregate. While this TL form was 
particularly attractive from an estimation perspective, this alternative was not pursued because as Caves 
and Christensen (1980 a, b) point out, the TL model does not perform well when substitution elasticities are 
likely to be small, or when there are likely to be small shares or large relative differences among shares. 
This is partly true because the translog has the Cobb-Douglas form (a form that embodies considerable 
input substitution possibilities) as a special case. Patrick and Wolak (2001) found this to be problematic in 
an application of customer demand for electricity under real time pricing, and Diewert and Wales (1987) 
encountered similar difficulties in an earlier study using aggregate U.S. industrial data. Patrick and Wolak 
(2001) argue that the GL model is superior to the TL model because it has a fixed-coefficient Leontief 
technology as a limiting case, and therefore, it can reflect rather modest substitutions possibilities. 
However, these authors also note that if one imposes global concavity, the GL model loses some of its 
flexibility—in particular all inputs must be substitutes. To circumvent these difficulties related to both the 
TL and GL models, Patrick and Wolak (2001) and Taylor et al. (2005) employ a Generalized McFadden 
(GM) cost function that is “…second-order flexible, yet suited to capture small positive and negative 
elasticities of substitution between electricity demands across load periods within a day” (Patrick and 
Wolak, 2001, p. 27). Despite these theoretical advantages to the GM model, the computational burden is 
increased substantially as well. Their need to accommodate both positive and negative elasticities of 
substitution results from their specification of more than two demand periods. However, our empirical 
model specifies only two demand periods. In this case, any model in which global concavity is either 
assumed, or imposed, requires that the inputs be substitutes. Therefore, the primary issue that led to their 
selection of the GM model is of no concern in our present application of the GL indirect cost model.   
15 As discussed originally by Allen (1938, pp. 508-09), the partial elasticity measures the degree to which 
the demand for factor j changes as the price of factor i changes. If σij > 0, and the price of factor i increases, 
then the use of factor j increases, thereby taking part in the replacement of factor i in production. The two 
factors are said to be competitive. If, on the other hand, σij < 0, the two factors are complements, and as the 
price of one of them rises, the demand for both falls. Competitiveness between factors is, on the whole the 
more general case; one factor cannot be complementary with all others. In the two-input case, direct 
elasticity of substitution (which measures the percentage change in factor intensities as the inverse price 
ratio changes by one percent) is equal to the Allen partial elasticity of substitution.  
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(9)   σp0 = Cp0 / [Cp C0], 
where the subscripts refer to the first- and second-order partial derivatives of C with 
respect to electricity inputs kp and k0. Fortunately, in the two-input case such as we have 
here, the direct elasticity of substitution (which measures the percentage change in fa
intensities as the inverse price ratio changes by one percent, holding a firm’s output
constant) is also equal to the Allen partial elasticity of substitution. Thus, although 
denoted somewhat differently, the measure of price response give

ctor 
 

n by equation (9) is 
irectly comparable to that derived from the CES model above.  

valuating equation (9) for the GL cost function given in equation (6), we have: 

0)   σp0 = ½ [C dp0 (pp p0) –1/2 ] / [E ap a0 ],  

ed by dividing the electricity demand equations in 
quations (7) and (8) by E. That is: 

1)   ap = kp / E = dpp + dp0 (p0 / pp) ½    

2)   a0 = k0 / E = d00 + dp0 (pp / p0) ½ . 

 
 

 see if the underlying function is well behaved. These are given by (i and j = p 
nd 0): 

3)  σii = -½ [C ∑j≠i dij (pj 
–1/2 pi

-3/2) ] / [E ai
2 ].  

.2.2.4 Estimating the Generalized Leontief Function 

n 

gy 

he parameters of the cost function (6) from the ratio 
p and a0. That is, we can estimate: 

4)  [ ap / a0 ] = [ kp / k0  ] = [dpp + dp0 (p0 / pp) ½ ] / [ d00 + dp0 (pp / p0) ½ ],  

of both sides for estimation purposes. We have the following 
garithmic specification: 

d
 
E
 
(1
 
where ap = kp / E and a0 = k0 / E are the peak and off-peak energy proportions of the 
electricity aggregate, which are deriv
e
 
(1
 
(1
 
Finally, although they do not have a terribly meaningful interpretation in this application,
we also need to estimate the Allen own partial elasticities of substitution, so that we can
check to
a
 

 (1
 
B
 
Normally, to estimate the parameters of this cost GL function, one need only assume an 
additive error structure associated with the input share equations (11) and (12), and the
estimate them as a system of equations where there are across-equation restrictions to 
ensure symmetry of the parameters. Unfortunately, because E in our case is the ener
aggregate and cannot be observed directly, it is impossible to employ this strategy. 
However, using full information maximum likelihood (FIML) methods within PROC 
MODEL in SAS, one can estimate t
a
 
(1
 
In this form, the equations are extremely non-linear in the parameters, and it might be 
best to take the logarithms 
lo
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ln [ ap / a0 ] =  ln [ kp / k0  ] =  ln{[dpp + dp0 (p0 / pp) ½ ] / [ d00 + dp0 (pp / p0) ½ ]}.  

 
d.

an 

ij, and force the adding up restrictions to ∑i ∑j dij = 1 to normalize to a 
nit E0 curve.  

.2.2.5 Calculating Elasticities of Substitution 

 

s are substituted into equations (10) and (13) 
 obtain for each data point estimates of:  

6)   σp0 = ½ [(C/E)fit dp0
* (pp p0) –1/2 ] / [ (ap)fit (a0)fit],   

17)   σpp = -½ [(C/E)fit dp0
* (p0

1/2  pp
–3/2) ] / [ (ap)fit

 2 ], and 

8)   σ00 = -½ [(C/E)fit  d0p
* (pp

1/2  p0
–3/2) ] / [ (a0)fit

2 ]. 

e 

on; 

ow no guarantee 
at the function is well behaved--e.g., ∞ > σ0p ≥ 0 (Ferguson 1969).

.2.2.6 Interpreting the Coefficients in the GL Demand Model: Their Relationship to σ0p  

e 
model parameters, dpp, d0p, and d00.17 A sufficient condition for the GL function to be 

                                                

 
This strategy will not get rid of the non-linearities, but it will convert each equation into
the differences between two logarithms within which there are coefficients imbedde  

Whether SAS deals with that kind of non-linearity better than these quotients is 
empirical question.  Within PROC MODEL, we can also impose the symmetry 
restrictions on d
u
 
B
 
Regardless of which transformation is easiest to estimate, we can use the results to 
calculate the elasticities of substitution from equations (10) and (13). This is done by 
substituting the estimated parameters, denoted dij* (for i and j = p and 0), from equation 
(14) or (15) into equations (11) and (12) to calculate (ap)fit and (a0)fit at each data point. In
turn, these estimated expressions are substituted into equation (6) to obtain estimates of 
(C/E)fit. Finally, these estimated expression
to
 

 (1
 

 (
 
(1
 
As stated above, in this two-input case, the cross Allen partial elasticity of substitution 
(17) is equivalent to the direct elasticity of substitution which measures the proportional 
change in the ratio of peak to off-peak electricity use due to a one percent change in th
inverse price ratio (Ferguson 1969).16 By examining equations (16) through (18), one 
major advantage of using the GL function is apparent. In contrast to the CES model, the 
elasticity of substitution for the GL model can now vary from observation to observati
it can also vary with price ratios, the energy aggregate, and the cost minimizing input 
levels. The trade-off necessary to gain this flexibility is that there is n

 th
  
B
 
Whether or not the cost function is well behaved depends on the estimated values of th

 
16 This relationship shows that σ is the proportional change in the use of electricity in the peak period 
relative to the off-peak period (holding output, in this case the electricity aggregate, constant), as the 
inverse price ratio increases by one percent (Ferguson 1969, pp. 103-04).  
17 For the most general case, where the parameters d00, dpp and d0p are allowed to take on any possible 
value, the resulting cost function need not be non-negative for all factor prices.  Thus, in this case, it is 
necessary to ensure that at each data point the estimated cost function is monotonically increasing and 
strictly quasi-concave in input prices.  To do this, we must verify that the fitted values for all the input-
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well behaved is that all parameters be non-negative (Diewert 1974). Perhaps more 
important for our purposes, a necessary condition for the function to be well behaved is 
that d0p, must be greater than or equal to zero. There are three cases of empirical interest, 
given this restriction on d0p (Diewert, pp.503-504), and they can be related to the types of 
demand response depicted in Figures 1 and 2 above.  
 
Case 1: If dpp, d0p, and d00 are all non-negative, then peak and off-peak electricity are 
substitutes and the substitution possibilities are characterized by the curve in Figure 1.  
 
Case 2: If d0p takes on an extreme value of zero, then for the function to be well-behaved, 
dpp ≥ 0 and d00 ≥ 0, with at least one strict inequality. The significance of this case is that 
the GL model reduces to the ordinary two-factor Leontief production function that is 
characterized by fixed factor proportions as in Figure 2 above. Here, peak and off-peak 
electricity are perfect complements and the firm has no opportunities for input 
substitution. Since this situation may indeed characterize a number of firms, it is 
important that this GL model encompasses this possibility. Because this situation is 
captured by one of the coefficients in the model, we can develop a formal test of the 
hypothesis of fixed proportion electricity demand. The details of the test are discussed 
below.  
 
Case 3: For this case, we have dpp < 0, d0p> 0, and d00 > 0. Here, we can still trace out the 
curve representing input combinations that can keep output constant, but there is a price 
of peak electricity, pp

* that makes the peak to off-peak price so large that peak electricity 
is no longer used. This happens when p0/pp < dpp

2/d00
2. This situation is depicted in Figure 

3, where the constant electricity aggregate curve E0 intersects the vertical axis. This 
situation cannot be modeled by the CES function. While it is perhaps unlikely that many 
firms can forgo all electricity use during peak periods when peak prices are extremely 
high, the fact that the GL model can identify this type of behavior suggests that this 
flexible model is capable of capturing the entire range of price responsive behavior.  
 
B.3 Empirical Specification of the GL Model and Econometric Considerations 
 

                                                                                                                                                 
output equations are positive and that the nxn matrix of the σij substitution elasticities is negative semi-
definite at each observation (Berndt, 1991, p. 465 and p. 493).  
   The test to verify that this matrix in negative semi-definite is related to a well-known adding up condition 
for the Allen (1938. pp.504-05) partial elasticities of substitution. In the multi-factor case, this adding up 
condition ensures that the substitution relationships are more numerous and more important than the 
complementary relationships.  
    For the two-factor, the inputs must be substitutes: the adding up relationship implies:  Sp σ0p = - S0 σ00 
and S0 σ0p = - Sp σpp, where the S’s are corresponding cost shares.  Berndt (1991) shows that the right hand 
side of the second relation is equal to the negative of own price elasticity of demand for peak electricity, 
holding output and all other input prices constant. The left-hand term is the corresponding cross-price 
elasticity of off-peak demand with respect to peak price, holding output and all other input prices constant. 
Thus, as the peak price is increased, the percentage increase in off-peak electricity usage equals the 
percentage decrease in peak electricity usage. It follows that if total actual off-peak demand is greater than 
total on-peak demand, then as peak price is increased, the increase in total off-peak demand will be larger 
than the decrease in peak demand. Thus, total daily electricity usage will increase. 
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In the 2004 analysis of Niagara Mohawk’s SC-3A customers, a CES response function 
was estimated to provide empirical estimates of elasticities of substitution between peak 
and off-peak electricity (Goldman, et al. 2004). In that study, responses from a survey 
were used to determine if the elasticities of substitution differed systematically by 
customer characteristic. Since the CES model restricts elasticities of substitution to be 
constant for any individual firm, the most efficient way to identify the importance of 
these firm characteristics was to estimate one model for all customers by pooling the data 
across customers and accounting for the effects of specific firm characteristics by 
introducing a series of additional variables that are the product of the price ratio and a 
series of 0-1 “dummy variables which are assigned a value of 1 if the firm has the 
particular characteristic. This model estimation was accomplished in a straightforward 
fashion in SAS.  
 
Because of the non-linear nature of the equations to be estimated for the GL model, it is 
not possible to account for these firm effects by including a series of 0-1 “categorical” 
variables into a model that is estimated using the data pooled across all customers. 
Furthermore, even if such a strategy were possible, it would not exploit the full flexibility 
of the GL model. Therefore, to exploit the flexibility of the GL model, where elasticities 
of substitution can differ across days for a single firm, we employ the following 
estimation strategy:  
 

1) Estimate a demand model for each customer;  
2) Calculate the substitution elasticities for each data point for each firm; 
3) Pool the estimated elasticities for all firms and all data points; and  
4) Estimate a second model from this pooled data set where the daily elasticities of 

substitution between peak and off-peak electricity are a function of daily peak to 
off-peak electricity price ratios and a variety of individual firm characteristics.  

5) Estimate a third model to relate the average elasticities of substitution by firm to a 
number of individual firm characteristics. 

 
In estimating the elasticities of substitution between peak and off-peak electricity use, we 
exploit the flexibility of the GL demand model by estimating a separate model for each 
firm.18 This entire estimation strategy is similar to the one used by Taylor and Schwarz 
(1990). In his study, Patrick used a GL demand model to estimate household demand 
response by customer, and used a second regression to relate customer characteristics to 
the degree of price responsiveness.  
 
B.3.1 Demand Model Specification 
 
To conduct our estimation, we specify the following GL model for each individual firm 
as follows: 

                                                 
18 Other efforts to model demand response have also relied on estimated demand models for individual 
firms, although the functional forms have been different than the one used here (e.g., Schwartz et al., 2002, 
Patrick and Wolak 1997). In several cases, the analyses were based on functional forms that did not allow 
the substitution elasticities to vary across days for each firm (e.g. Caves, et al. 1984 and Charles River 
Associates 2004). 
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(19)     ln [ kpt,f / k0t,f ] =  (wf ) Wtf +{ ln [ (hpf) (Htf) + (dpp,f)  +(dp0,f) ( p0t,f / ppt,f )1/2 ] }– 
{ln [(h0f) (Htf) + (d00,f) +(d0p,f) ( ppt,f / p0t,f )1/2 ] }+ εt,f, 
 
where, for each weekday, t, and firm, f, we define: kpt,f = actual peak kWh; k0t,f =  actual 
off-peak kWh; ppt,f = average hourly peak price / kWh; and p0t,f = average hourly off-peak 
price/kWh.  

 
The effect of weather is accounted for in two distinct ways. The variable Wtf is a 
continuous variable reflecting cooling degrees (e.g., the difference between the average 
peak period temperature and 65). This variable enters as an intercept shifter, thus 
controlling for differences in peak to off-peak usage during days that are unusually warm. 
The second weather variable is Htf is another weather index. It is a binary (0,1) variable 
to distinguish hot (Htf = 1) from cool days (Htf = 0). We used the average Temperature 
Heat Index (THI) derived by the National Weather Service during the peak period hours 
to distinguish hot (Avg. THI ≥ 85) from cool (Avg. THI < 85) days.19 By including this 
variable in the model, we account for differences in the model parameters on hot vs. cool 
days. This happens because the estimated coefficients on this variable affect the size of 
the estimated parameters of the model (e.g. d00,f and dpp,f), but only on hot days. In turn, 
these parameters affect the size of the estimated elasticities of substitution. The process 
by which these coefficients are changed on hot days is discussed in the next section. 

 
In the estimation, dp0,f = d0p,f to ensure the required symmetry among estimated 
coefficients. We also require that d00,f + dpp,f + d0p,f + dp0,f =1 and hpf = h0f, which 
normalizes the coefficients to reflect a one unit curve for the energy aggregate.20

 
B.3.2 Calculating Elasticities of Substitution by Firm 
 
Since we do not pool the data across firms, we have separate estimates for the 
coefficients, d00,f, dpp,f, d0p,f, and dp0,f for each firm, f. We use the estimates of these 
individual demand model parameters to derive a set of firm-specific estimates of 
substitution elasticities according to equations (16), (17), and (18) and the procedures 
outlined in the previous section. It is important to be quite specific about how the effect 
of hot days is captured in these estimates of the elasticities of substitution. As above, let a 
* denote an estimated parameter. From equation (19), we can now think of two of the 
parameters to be estimated in this model as dpp,f

*
 = (hpf) (Htf) + (dpp,f) and d00,f

*
 = (h0f) (Htf) 

+ (d00,f). Thus, for hot days (when Htf = 1), the coefficients that are substituted into 
equations (16, 17, and 18) for calculating the elasticities of substitution are dpp,f

*
 = (hpf) + 

(dpp,f) and d00,f
*

 = (h0f) + (d00,f). In contrast, for cool days (when Htf = 0), the estimated 
coefficients being used in equations (16, 17, and 18) for calculating the elasticities of 
substitution are simply d00,f

*
 = dpp,f and dpp

*= d00,f. 
 

                                                 
19 The weather index is constructed from temperature and dew point values for five weather stations located 
in the utility’s service territory. See Goldman, et al. (2004) for details on the construction of the index. 
20Although the parameter estimates changed if this adding up condition were set to a number different from 
1, the estimates of the elasticities of substitution were invariant to the specification. 
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B.3.3 Some Econometric Issues in Estimating the GL Function 
 
There are two important econometric issues that were of some concern in estimation of 
the GL function. The first has to do with whether or not the prices in this demand model 
(equation (19)) are endogenously determined with peak and off-peak loads. The second 
has to do with whether or not there is autocorrelation between the error terms in equation 
(19), and in the subsequent equations for steps 4 and 5 of the overall estimation strategy. 
The final issue is the extent to which there is heteroskedasticity in the error structures of 
the equations for steps 4 and 5 of the overall estimation strategy. Each issue is discussed 
in turn. 
  
B.3.3.1 Exogenous Prices and Loads 
 
In equation (19), the logarithm of the ratio of peak to off-peak load is the dependent 
variable, whereas the off-peak and peak prices of electricity appear on the right hand side 
as explanatory variables, often called regressors. Most econometric methods assume that 
the regressors in a model are exogenous, or independent of each other, and are also not 
simultaneously determined with the dependent variable. In our case, this would mean that 
prices are being determined simultaneously along with peak and off-peak load. If the 
regressors are not exogenous, then by including an endogenous variable (that is 
correlated with the equation’s error term) on the right hand side of the equation, the 
estimated residuals of the model are affected, and the parameter estimates are no longer 
unbiased, and their standard errors are no longer consistent (minimum variance). This 
leads to an underestimation of the standard errors and could lead to the t-ratios being 
biased upward. The consequence would be to reject some null hypotheses when it was 
unwarranted. 
 
This issue can arise in any economic model of aggregate supply and demand when, as is 
often believed, prices and quantities are simultaneously determined. However, the issue is 
not thought to be a serious one when the model is dealing with the input demand at the 
firm level. When firms are small relative to the total market, it is reasonable to assume 
that they are price takers.21 A second reason for believing that this issue is not important 
in this case is the fact that in making their energy use decisions, these SC-3A customers 
face 24-hour prices determined the day before in the day-ahead market. Thus, while their 
demand response decisions to high prices may affect prices on the same day in the real 
time market, their decisions can have no effect on the prices in the day ahead market that 
were determined the day before. Since customers face prices on which to base their 
decisions on hourly electricity usage that are established the day before, the price 

                                                 
21 In a price dependent zonal supply model of the new unregulated New York electricity market, Cappers 
(2004) argues that real time load is highly correlated with the error term, and its inclusion on the right-hand 
side of the model would affect the estimated residuals. For this reason, he employed the method of 
instrumental variables by estimating real time load as a function of a heat index and some cyclical variables 
for each zone. The estimated loads, now uncorrelated with the supply equation’s error term, were then used 
as regressors in the supply models.  
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variables used in the firm-level electricity demand model specified here are truly 
exogenous.22  
 
B.3.3.2 Autocorrelated Error Terms 
 
Standard regression models are generally based on the assumption that the error term of 
any observation is not influenced by the error term of any other observation. Formally, 
this means that the error terms are uncorrelated, and E(εI, εj) = 0 for j ≠ i. However, for 
each of our customers, we have a time series of data--the daily observations of peak and 
off-peak prices and loads are arrayed chronologically, and there is good reason to think 
that relative loads are likely to persist from day to day. Alternatively, it may also be the 
case that due to high prices, or other disturbances, that the effects on peak to off-peak 
demand may continue for a few days. In each of these cases, there may be some 
systematic relationship between the error terms. That is, E(εI, εj) ≠ 0 for j ≠ i. For this 
case, Gujarati (1995) shows that although the OLS estimators are unbiased and 
consistent, they are no longer minimum variance. In addition, even though the OLS 
estimators remain unbiased and consistent, the confidence intervals derived from them 
using the variances corrected for autocorrelation are likely to be wider than when using a 
GLS estimator. Thus, in our analysis, we test for autocorrelation, and apply the 
appropriate correction if warranted. This appropriate correction for a model that is non-
linear in the parameters is accommodated within PROC MODEL in SAS. 
 
B.3.3.3 Accounting for Heteroskedasticity  
 
Another usual assumption in regression analysis is that disturbance terms for all 
observations in the model are independently and identically distributed (i.e., E(εi

2) = σ2, 
for all i). In this application, some firms may exhibit zero or near zero estimated price 
responsiveness over all days, while others may exhibit quite a large average price 
response, but the daily variation around the mean price response may be rather large as 
well. Therefore, it may be reasonable to expect that the variance of the disturbance term 
in the equation (from step 4 of the estimation strategy) in which the estimated elasticities 
of substitution (pooled across all customers) are regressed on the ratio of prices and some 
limited firm characteristics are indeed not equal across firm or across observations within 
firms. That is, it may be that the elasticities of substitution are proportional to those 
factors that make a firm more or less price responsive on a particular day.  
 

                                                 
22 The modeling framework and rationale is similar to that used by Neenan, et al. (2003) in estimating 
prices in the day-ahead market. In the present case, quantities demanded by firms are determined by 
exogenous day-ahead prices, as set out in the terms of the SC-3A contract between Niagara Mohawk and 
the SC-3A customers. Similarly, an analogous situation applies in the day ahead electricity market in New 
York due to the nature of the market rules. In the day ahead market, Load Serving Entities (LSEs) and other 
market participants are required to submit a fixed bid load, the load they are willing to purchase in the day 
ahead market at any price. Once this load for all customers has been received, the NYISO determines 
hourly prices in the day that minimize the cost of meeting fixed bid load by solving its day ahead unit 
commitment algorithm. Thus, these fixed bid loads are truly exogenous at the time the day ahead prices are 
determined.  
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This characteristic of the error structure in a regression model is known as 
heteroskedasticity (Gujarati 1995). Although the coefficients remain unbiased, the 
estimators of the parameters are no longer minimum variance. That is, unless 
heteroskedasticity is recognized, the t-ratios associated with the coefficients may be 
biased, and in turn so are the t-ratios used for testing hypotheses about the significance of 
the effects of certain variables. Therefore, in both the second and third equations in the 
analysis (the regressions using pooled data to explain the effect of price levels on the 
elasticities of substitution and differences in average substitution elasticities), we test for 
heteroskedasticity using a generalized White’s test (Greene 1990, pp. 399-428). In the 
cases where there is heteroskedasticity, we use the generalized method of moments to 
derive the appropriate correction and re-estimate the model. The tests and the re-
estimations are accomplished within SAS.  
 
B.3.4 Elasticity of Substitution Regression Model Specification 
 
Once we have the estimated daily elasticities of substitution from each of the individual 
demand models, we pool the data across customers in order to test the hypotheses that 
price responsiveness is related to the level of electricity prices and other individual firm 
characteristics.  
 
The basic regression equation specifies that the elasticities of substitution are a function 
of the peak to off-peak price ratio, the percent current use of maximum demand and 
business class. These variables are also specified in the model as intercept and/or slope 
shifters to account for the interaction among these characteristics. The model is specified 
as for day t and firm f):23

 
(20) σtf  = α + β1 [ ppt,f / p0t,f ] + β2 Man* [%MaxDt,f] + β3 Man*[ ppt,f / p0t,f ] 

+ β4 Gov/Ed* [%MaxDt,f] + β5 Gov/Ed*[ ppt,f / p0t,f ] +β6 PW* [%MaxDt,f] 
+ β7 PW*[ ppt,f / p0t,f ] + β8 C&R* [%MaxDt,f] + β9 C&R*[ ppt,f / p0t,f ] + 
utf,   

 
where [ ppt,f / p0t,f ] = ratio of peak to off-peak electricity prices on day t for firm f; Man = 
0-1 variable—1 for manufacturing firms, 0 otherwise; Govt/Ed = 0-1 variable—1 for 
government/education firms, 0 otherwise; PW = 0-1 variable—1 for public works firms, 
0 otherwise; C&R = 0-1 variable—1 for commercial and retail firms, 0 otherwise; 
%MaxDt,f = % peak use on day t for firm f is of maximum demand for firm f in the year 
for which day t is an observation; and utf is a random error term.  
 
B.3.4.1 Interpreting the Coefficients 
 
The important hypotheses about the effects on the elasticity of substitution of electricity 
of the ratio of peak to off-peak prices and firm characteristics are reflected in the 
expected signs of the coefficients for each of the variables in equation (20). These 
                                                 
23 In the empirical analysis, a first-order autoregressive process is incorporated into the model to correct for 
autocorrelation of the residuals. The reason for this correction is discussed in the previous section in 
conjunction with estimating the GL demand model.  
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specific hypotheses are discussed along with the empirical results below. In this section, 
we instead discuss in more general terms how to interpret the coefficients.  
 
In general, the interpretation of the estimated coefficients in equation (20) is consistent 
with those in any linear regression model. For continuous variables, such as the peak to 
off-peak price ratio, the regression coefficient, β1, reflects the marginal change in the 
elasticity of substitution, σ, due to a unit increase in the variable (e.g., an increase in the 
peak to off-peak price ratio from 1.5 to 2.5). Formally, we have:  
 
(21) ∂ σtf  / ∂ [ ppt,f / p0t,f ] = β1. 
 
Since there are some categorical 0-1 variables used to identify any systematic differences 
in price responsiveness among firms in various categories, such as business class, the 
coefficient β1 actually measures the effect of changes in the price ratio on the elasticities 
of substitution for a reference group of customers. In our model, this reference group of 
firms contains firms in the health care industry. By including these categorical variables 
as interaction terms with the price ratio, the effects of the price ratio on the elasticities of 
substitution are allowed to differ for other groups of customers from that of the reference 
group. for manufacturing firms, for example, the elasticity of substitution differs from 
that of the reference group of firms (e.g. firms in the health care industry in our case) by 
an amount β2. For government/education firms the elasticity of substitution differs from 
that of the reference group of firms (e.g. firms in the health care industry in our case) by 
an amount β5.  
 
Since some of the variables in the model are formulated by multiplying a 0-1 categorical 
variable by a more conventional, continuous variable, it is perhaps useful to highlight the 
interpretation of the coefficients associated with these variables. We can illustrate by 
considering the combined effect of the peak to off-peak price ratio and the percent peak 
use is of maximum peak demand on the elasticity of substitution, σ, for manufacturing 
firms. These combined effects are captured in the following three terms. That is, the 
elasticity of substitutions for manufacturing firms differ from that of the reference group 
(e.g., firms in the health care industry) by an amount equal to:  
 
(22) β2 Man* [%MaxDt,f] + β3 Man*[ ppt,f / p0t,f ], 
 
To determine the total amount by which σ for manufacturing firms differs from other 
firms, one need only evaluate expression (22) for (Man = 1) and the appropriate values of 
[%MaxDt,f] and [ppt,f / p0t,f ] for the day of interest, t, and manufacturing firm of interest, f. 
Normally, these combined effects are summarized by calculating expression (22) at the 
mean and the extremes of these two continuous variables. Expression (22) also reveals 
the changes in σ due to marginal changes in both [%MaxDt,f] and [ ppt,f / p0t,f ]. That is, 
the σ for manufacturing firms is also increased by an amount β2 as peak electricity use 
increases by 1% relative to maximum peak demand and by an amount β3 as the ratio of 
peak to off-peak price increases by one unit. For Man = 1, these two relationships are 
derived formally by: 
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(23) ∂ σtf / ∂ [%MaxDt,f]  = Man * β2, and  
 
(24) ∂ σtf / ∂ [ppt,f / p0t,f]  =  β1 +Man * β3.24

 
We can isolate the differences in the elasticity of substitution for government and 
educational firms (Govt/Ed = 1) in a similar way by examining the coefficients in the 
following expressions:  
 
(25) β4 Gov/Ed* [%MaxDt,f] + β5 Gov/Ed*[ ppt,f / p0t,f ]; 
 
(26)     ∂ σtf / ∂ [%MaxDt,f]  = Govt/Ed * β4, and  
 
(27)    ∂ σtf / ∂ [ppt,f / p0t,f]  =  β1 + Govt/Ed * β5. 25

 
Summarily, we can isolate the differences in the elasticity of substitution for public works 
firms (PW = 1) by examining the coefficients in the following expressions:  
 
(28) β6 PW*[%MaxDt,f] + β7 PW*[ ppt,f / p0t,f ]; 
 
(29) ∂ σtf / ∂ [%MaxDt,f]  =  PW * β6, and  
 
(30) ∂ σtf / ∂ [ppt,f / p0t,f]  =  β1 + PW* β7.26  
  
Finally, we can isolate the differences in the elasticity of substitution for commercial and 
retail firms(C&R = 1) by examining the coefficients in the following expressions:  
 
(31) β8 C&R* [%MaxDt,f] + β9 C&R *[ ppt,f / p0t,f ]; 
 
(32) ∂ σtf / ∂ [%MaxDt,f]  = C&R* β8, and  
 
(33) ∂ σtf / ∂ [ppt,f / p0t,f]  =  β1 + C&R * β9.27

                                                 
24 The coefficient β1 is in this equation for the marginal effect of price to reflect the effect of the price ratio 
on the elasticity of substitution for health care firms, the reference group. The coefficient β3 measures the 
differential effect of the price ratio for the manufacturing group, but the combined effect is the sum of the 
two coefficients.  
25 The coefficient β1 is in this equation for the marginal effect of price to reflect the effect of the price ratio 
on the elasticity of substitution for health care firms, the reference group. The coefficient β5 measures the 
differential effect of the price ratio for the government/education group, but the combined effect is the sum 
of the two coefficients. 
26 The coefficient β1 is in this equation for the marginal effect of price to reflect the effect of the price ratio 
on the elasticity of substitution for health care firms, the reference group. The coefficient β7 measures the 
differential effect of the price ratio for the public works group, but the combined effect is the sum of the 
two coefficients. 
27 The coefficient β1 is in this equation for the marginal effect of price to reflect the effect of the price ratio 
on the elasticity of substitution for health care firms, the reference. The coefficient β9 measures the 
differential of the price ratio for the manufacturing group, but the combined effect is the sum of the two 
coefficients. 
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B.3.5 Average Elasticity of Substitution Regression Specification 
 
The regression specified in equation (20) is designed to test some important hypotheses 
about the effect of the prices and relative usage on firms’ elasticities of substitution. 
However, although the GL model allows for elasticities of substitution for a firm to vary 
by day, we are also interested in how firm characteristics affect the average ability of 
firms to respond to price. We can accomplish this by again by pooling data for the 
average elasticities of substitution across firms, and regressing the averages on individual 
firm characteristics, particularly those derived from the survey. The model has the form:  
 
(34)   σf  = α + β1 C&R + β2 Man + β3 Health+ β4 Gov/Ed +β6 EDRP + β8 EMCS + β9 
MON-F    
+ β7 SCR + β10 GEN + β11 ELECT-INCR + β12 Avg-P-NP-KW +utf,     
 
where, C&R = 0-1 variable—1 for commercial and retail firms, 0 otherwise. Man = 0-1 
variable—1 for manufacturing firms, 0 otherwise; Govt/Ed = 0-1 variable—1 for 
government/education firms, 0 otherwise; Health = 0-1 variable—1 for health care firms, 
otherwise; EDRP = 0-1 variable--1 for firms in EDRP, 0 otherwise; SCR = 0-1 variable--
1 for firms in SCR, 0 otherwise; EMCS = 0-1 variable--1 for firms with EMCS 
equipment, 0 otherwise; MON-F = 0-1 variable--1 for firms that monitor load frequently, 
0 otherwise; EDRP = 0-1 variable--1 for firms with on-site generation, 0 otherwise; 
ELECT-INCR = 0-1 variable--1 for firms indicating that electricity usage has risen over 
the sample period, 0 otherwise; EDRP = a continuous variable for the average peak to 
off-peak load. 
 
B.4 Aggregate Demand Response 
 
The theoretical discussion and mathematical and empirical models in this appendix relate 
primarily to methods by which one can estimate a customer’s load reduction in response 
to changes in the ratio of peak to off-peak electricity prices. Other models are specified to 
identify the effect of customer characteristics on both average levels of price 
responsiveness and day-to-day changes in price responsiveness. From the information 
generated using these methods, it is also possible to estimate the aggregate demand 
response. This aggregate demand response has important policy significance, as it 
provides an indication of the response forthcoming from the entire group of customers 
during times of high prices, which are also often coincident with those times when the 
system is near capacity.  
 
To generate this aggregate demand response, we begin by estimating each firm’s peak 
period load reduction for a change in the peak period price of electricity by using that 
firm’s average estimated elasticity of substitution. As shown in Footnote Error! 
Bookmark not defined., the “adding up” conditions on the Allen partial elasticities of 
substitution that are required of a well-behaved indirect GL cost function allow one to 
derive an estimate for the own-price elasticity of demand for constant output and other 
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input price levels. For a given percentage change in the peak price relative to its average 
level (the term in [ ] ), the firm f’s peak period load reduction, DRp,f, would be: 
 

(35) DRp,f = { (σf * S0,f) * [ (pp,f* - Avg. pp,f ) / Avg. pp,f] } * Avg. kp,f, 
 
where σf is firm f’s average elasticity of substitution for peak and off-peak electricity 
usage, S0,f is firm f’s share of total electricity cost spent on off-peak electricity, and Avg. 
kp,f is firm f’s average peak electricity usage.  
 
To derive an aggregate level of demand response, we sum each firm’s level of demand 
response for the same change in the peak price. By simulating each firm’s demand 
response over a wide range of peak period prices, it is possible to create an aggregate 
demand response curve that indicates the estimated amount of demand response that the 
analyzed SC-3A customers would provide during the peak period for any given level of 
peak price.
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Appendix C. Empirical Estimates of NMPC’s SC-3A Customers’ Response to Day-
Ahead Market Electricity Prices 

In this Appendix, we present the full set of empirical results from this study of SC-3A 
customers’ price response. The main findings are also included and discussed in Chapter 
3 of the main report and policy implications are discussed in Chapter 5. For those 
interested in additional detail, this appendix provides it.  
 
There are three primary sets of empirical results that correspond to the three estimated 
equations described in Appendix B. The first involves estimates of substitution 
elasticities between peak and off-peak electricity use derived from separate demand 
models estimated for each customer. The second and third sets of results are derived from 
heuristic regression models. The first regresses daily elasticities against prices, price 
ratios and load conditions to answer questions about the character of price response. The 
second regresses customer-average elasticities against customer-level characteristics and 
circumstances. 
 
A detailed breakdown of the customer accounts included in the three stages of this study 
is provided in Table 1. While load and price information were available for 146 SC-3A 
accounts, only the 119 accounts that were known to have faced hourly varying prices 
were included in the analysis (see Appendix B for the rationale behind this decision). Of 
these 119 accounts, only 55 answered the survey and could be included in the second 
regression model. 
 

Table 1. SC-3A Customer Accounts, 2000-2004 

Business Class
Number of 
Accounts

Peak 
Demand 

(MW)
Number of 
Accounts

Peak 
Demand 

(MW)
Number of 
Accounts

Peak 
Demand 

(MW)

Number 
of 

Accounts

Peak 
Demand 

(MW)
Commercial / Retail 17 55 17 49 8 24 47 49
Gov't / Education 44 206 34 166 16 82 47 49
Health Care 17 78 8 38 2 5 25 13
Manufacturing 46 233 44 221 23 127 52 57
Public Works 22 70 16 40 6 15 38 38
Totals 146 642 119 514 55 253 46 49

With Complete Survey 
Responses - % of 

Total on SC-3A Rates 

Customers Paying SC-3A Prices

TotalAll SC-3A Customers
With Complete Survey 

Responses

 
 
C.1 Estimates of Customer Price Responsiveness  
 
We analyzed the price response behavior of NMPC’s RTP customers by estimating the 
GL demand model (from equations (19) and (16) in Appendix B) for several alternative 
specifications of the peak period that differ in length and by time of day. We focused on 
summer weekdays, and initially defined six separate peak periods, as follows:  
 

• two five-hour peaks, 11:00 a.m. to 4:00 p.m. and 12:00 noon to 5:00 p.m.; 
• two four-hour peaks, 12:00 noon to 4:00 p.m. and 1:00 p.m. to 5:00 p.m.; and 
• two three-hour peaks, 1:00 p.m. to 4:00 p.m. and 2:00 p.m. to 5:00 p.m.  
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The load-weighted average and range in firm-level elasticities of substitution of peak for 
off-peak electricity for the 119 accounts are provided in Table 2; the firms are grouped 
according to business class. Recall that the elasticity of substitution is defined as the 
percentage change in the ratio of peak to off-peak electricity usage due to a one percent 
change in the ratio of off-peak to peak prices.  
 

Table 2. Load-Weighted Elasticities of Substitution of Off-Peak for Peak Electricity 
by Customer Class and Peak-Period Definition 

Business Class Min Avg Max Min Avg Max Min Avg Max
Commercial / Retail 17 0.01 0.02 0.02 0.06 0.07 2.06 0.05 0.07 1.93

Gov't / Education 34 0.01 0.02 0.03 0.04 0.06 2.99 0.06 0.08 1.75
Health Care 8 0.00 0.01 0.01 0.03 0.03 0.03 0.03 0.03 0.03

Manufacturing 44 0.00 0.07 0.09 0.12 0.12 0.13 0.12 0.12 0.14
Public Works 16 0.00 0.09 4.63 0.01 0.02 0.02 0.01 0.01 0.02
All Accounts 119 0.01 0.04 0.35 0.07 0.08 1.33 0.07 0.09 0.88

Business Class Min Avg Max Min Avg Max Min Avg Max
Commercial / Retail 17 0.01 0.03 0.04 0.05 0.06 1.43 0.05 0.06 1.49

Gov't / Education 34 0.00 0.04 0.05 0.07 0.08 1.21 0.09 0.10 0.42
Health Care 8 0.00 0.04 0.05 0.03 0.04 0.04 0.03 0.04 0.04

Manufacturing 44 0.00 0.07 0.09 0.12 0.12 0.14 0.15 0.16 0.18
Public Works 16 -0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02
All Accounts 119 0.00 0.05 0.06 0.08 0.09 0.63 0.10 0.11 0.38

Note:Firm-level individual elesticities of substitution summarized here are estimated from demand model (equation (19)) and 
equation (16).

Peak Periods

Peak Periods

Number of 
Accounts

12:00 noon to 5:00 p.m. 1:00 p.m. to 5:00 p.m. 2:00 p.m. to 5:00 p.m.  

Number of 
Accounts

11:00 a.m. to 4:00 p.m. 12:00 noon to 4:00 p.m. 1:00 p.m. to 4:00 p.m. 

 
 
There are several important patterns to note. For the 119 customers as a group, the 
average price responsiveness is remarkably similar regardless of the peak period. The 
load-weighted average elasticity of substitution ranges between 0.04 and 0.09 in all but 
one of the peak periods. For the 2-5 p.m. peak period, the average elasticity of 
substitution is slightly higher (0.11). On average and regardless of the definition of the 
peak period, differences by business class are more pronounced. They are generally 
highest for manufacturing, ranging from a low of 0.07 for manufacturing for the 11:00 
a.m. to 4:00 p.m. peak to 0.16 for the 2-5 p.m. peak. The elasticities for the 
government/education sector range from a low of 0.02 to a high of 0.10 for these same 
peak periods. On average, the price responsiveness of commercial/retail customers is 
somewhat below that for government/education customers. This difference is largest for 
the 2-5 p.m. peak period (average elasticity is 0.06 vs. 0.10). 
 
There are, however, also some systematic differences as the length of the peak period 
increases (Table 2 and Figures 1 and 2). First, there is quite a bit of consistency in the 
elasticities of substitution for peak periods of 3 and 4 hours in length, regardless of when 
the peak ends, although the elasticities are generally nearly the same or somewhat lower 
for all business classes for the 4-hour peak. With the exception of healthcare (for the peak 
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periods ending at 5:00 p.m.), and public works (for the peak ending at 4:00 p.m.), price 
response in all other sectors falls dramatically in moving from the 3-or 4-hour peak to the 
5-hour peak. As the peak period expands in length, there are fewer adjacent hours in 
which to shift load to minimize the effect on output.  
 
For all subsequent analyses and results, the 2-5 p.m. peak period was used. 
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Figure 1. Average Elasticities of Substitution for Peak Periods Ending at 4:00 p.m. 
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Figure 2: Average Elasticities of Substitution for Peak Periods Ending at 5:00 p.m. 
 
Among the strengths of the GL demand model are its ability to accommodate variations 
in elasticities across firms and days and its ability to identify customers that are 
completely non-responsive (zero elasticities). As evidenced by the ranges in the load-
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weighted elasticities of substitution by business class and peak period (Table 2), the 
differences among customers’ elasticities are substantial.  
 
The distribution of customers’ average elasticities are shown by customer account and 
non-coincident peak load in Figures 3 and 4. Thirty-two of the 119 firms (about 28%) 
have zero elasticities of substitution (e.g. they have rectangular constant output curves 
and are not price responsive, Case 2 in Appendix B). Another nine customers (about 8%) 
have elasticities averaging less than 0.01, and 33 (about 28%) have elasticities of 
substitution between 0.01 and 0.05. Just under 20% (33 firms) have elasticities of 
substitution between 0.05 and 0.10. The remaining 18% are quite price-responsive, with 
elasticities of substitution above 0.10.28 It is the firms in these final two groups that 
account for the vast majority of SC-3A customers’ aggregate price response.29
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Figure 3. Distribution of Accounts by Elasticity of Substitution 
 
As emphasized in Appendix B (Case 3), it is through the use of this GL methodology that 
we are also able to identify firms, perhaps with on-site generation, where peak electricity 
may well be “priced out of the market” at very high peak prices. Of the 119 customers, 
we found four government/education and one commercial/retail customer with this 
characteristic. The ratios of peak to off-peak prices at which their usage of peak 
electricity is “priced out of market” range from lows of 7 and 15, to highs of 95 and well 
over 100. As might be expected, all five of these customers have on-site generation, and 
they are among the 11 customers with elasticities of substitution greater than 0.20 (Figure 
3). 
 
Firms with zero elasticities of substitution account for about 24% (87 MW) of the 119 
SC-3A customers’ combined non-coincident maximum demand (Figure 4). Those with 
                                                 
28 Because of the flexibility of the GL model, it is necessary to check to see if estimated demand functions 
are well-behaved at each data point for all firms that have something other than rectangular isoquants..  
Using procedures discussed in Section A.2.2.6, we performed these checks and found that at each data 
point the estimated cost function is monotonically increasing and strictly quasi-concave in input prices.   
29 To identify firm characteristics that are related to an ability to respond to price and to the lack of an 
ability to do so, we do not eliminate non-price responsive firms from the subsequent analysis. 
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elasticities of substitution between zero and 0.01 represent 6% (23 MW) of maximum 
demand. Another 34% (124 MW) is accounted for by firms with elasticities of 
substitution between 0.01 and 0.05. The remaining 18% (65 MW) of maximum demand 
is accounted for by the final two groups of relatively price responsive customers 
(elasticities of substitution above 0.10). Firm electricity usage is thus distributed over 
these price response categories in proportions similar to firm numbers. This is contrary to 
the notion that price response is positively related to the firm’s usage level.  
 

0

20

40

60

80

100

120

140

Zero
Elasticity

(0.00)

Very
Inelastic
(< 0.01)

Low
Elasticity

(0.01 - 0.05)

Medium
Elasticity

(0.05 - 0.10)

High
Elasticity

(0.10 - 0.20)

Very High
Elasticity
(> 0.20)

M
ax

im
um

 D
em

an
d 

 (M
W

) N=119

 
Figure 4. Distribution of Load by Elasticity of Substitution 
 
Some subject customers, in addition to facing daily prices, were enrolled in NYISO 
demand response programs, which offer inducements to reduce load on very short (two-
hour) notice. Figure 5 displays the distribution of NYISO program participants and non-
participants by substitution elasticity category.30 Not surprisingly, the firms with the 
highest elasticities of substitution show disproportionately high levels of participation. 
However, some customers with relatively low elasticities of substitution (under 0.05) or 
even zero elasticities participated in the NYISO programs. This apparent anomaly is 
discussed in Chapters 3 and 5. 
 

                                                 
30 Beginning in 2001, the NYISO demand response programs have been offered every summer. Customers 
generally enroll for six-month terms.  
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Figure 5. Distribution of Accounts by Elasticity of Substitution and NYISO DR 
Program Participation 
 
To control for the effects of weather on electricity use and price responsiveness, two 
variables were included in the GL demand model (equation (19) in Appendix B). Table 
3a shows the number of customers in each business category for which the coefficients 
on these two weather variables are significantly different from zero, along with the 
number of firms with “significant” coefficients that are positive and negative. Overall, the 
weather intercept shifter was significant for 58 (49%) of the 119 firms but the slope 
shifter, which indicates a direct effect of weather on price response, was significant for 
only 32 (27%) of the 119 firms. Including the intercept weather effect, to measure the 
coincidence of high prices and high peak to off-peak loads, was critical as it provided a 
“correction” for almost half of the firms. The coefficient was positive and significant for 
52 of these 58 firms. For them, the ratio of peak to off-peak load is higher during hot days 
than on cool days. For six firms, the coefficient was negative and significant, indicating 
that the ratio of peak to off-peak usage was lower during hot days. This particular effect 
of weather on peak to off-peak usage also differs substantially across business sectors. 
This effect was statistically significant for a larger percentage of firms for those sectors 
wherein firms conduct service businesses from office buildings or in a campus setting. 
The coefficients on the intercept terms are significant for more than 65% of firms in the 
healthcare, government/education, and commercial/retail sectors. In contrast, less than 
25% of the manufacturing and 40% of the public works firms appear to be sensitive to 
weather in the sense that there is a change in peak to off-peak usage during hot days.  
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Table 3a. Weather Variables Included in GL Model 

Business Class Positive Negative Positive Negative
Commercial/Retail 12 1 4 3 4 10

Government/Education 22 1 11 0 8 26
Health Care 6 0 2 1 3 4

Manufacturing 7 3 34 2 7 35
Public Works 5 1 10 0 4 12

Totals 52 6 61 6 26 87

Weather Intercept
Statistically Sig. Statistically 

Insig.

Weather Slope
Statistically Sig. Statistically 

Insig.

 
 
The effect of weather on price response intensity is both less extreme and less diverse 
across business sectors. For only two sectors (commercial/retail and healthcare) do more 
than 40% of the firms have statistically significant “slope” variable coefficients. A 
quarter or less of firms in the other sectors exhibit a relationship between weather and 
price response. Although weather appears to be an important factor affecting price 
response for these firms, the signs on these estimated parameters cannot be interpreted 
directly. In some cases, the average elasticity is higher for firms for which this particular 
weather variable is statistically significant, and lower for others. 
 
Although it is impossible to disentangle the separate effects of these two weather 
variables on the estimated elasticities of substitution, the net effect of both can be 
determined by calculating the average elasticities of substitution for each firm for both 
“hot” and “cool” days (i.e. the weather intercept is set at its daily value, but “hot” days 
are defined as those days when the binary slope variable for weather takes on a value of 
“1”;”cool” days are when this variable takes on a value of “0”). Table 3b shows the load-
weighted average elasticities of substitution for hot and cool days by business class.  
 

Table 3b. Impact of Weather on Price Response by Business Sector 

Business Class Cool Hot
Commercial / Retail 0.05 0.10

Government / Education 0.10 0.12
Health Care 0.04 0.04

Manufacturing 0.16 0.15
Public Works 0.02 0.02

Total 0.109 0.113

Avg. Elasticity of 
Substitution

 
 
It is evident that the inclusion of these weather variables in the GL model specification 
has a definite effect on the elasticities of substitution. The difference in the overall load 
weighted average elasticities of substitution across all firms is relatively small—0.113 for 
hot days compared to 0.109 on cool days. However, this is not true across all business 
classes. For example, when comparing hot days with cool days, the sectors with heavy 
reliance on cooling loads (commercial/retail and government/education) exhibit a marked 
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increase in their elasticities of substitution. Manufacturing firms, on the other hand, 
appear to become less price responsive on hot days, but only slightly so. There is no 
appreciable difference in average elasticities of substitution for the other two business 
classes for hot and cool days.  
 
C.2 Factors Affecting Price Response 
 
This section discusses the results of two additional regression equations that investigate 
factors that affect daily and customer-average elasticities. The first includes all 119 
customers that have faced SC-3A rates sometime during the study period. In contrast, the 
second regression uses data collected from the survey as explanatory variables and 
therefore includes only the 55 customers for which survey responses are available. For 
purposes of comparison, and in an attempt to understand how general our results are, we 
also estimate the first regression using data from only the 55 customers.  
 

Table 4. Characteristics of Modeled Customers 

Business Class
Commercial / Retail 17 49 0.06 8 24 0.03
Gov't / Education 34 166 0.10 16 82 0.13
Health Care 8 38 0.04 2 5 0.05
Manufacturing 44 221 0.16 23 127 0.06
Public Works 16 40 0.02 6 15 0.01
Totals 119 514 0.11 55 253 0.07

Number of 
Accounts

Peak 
Demand 

(MW)

With Complete Survey ResponsesCustomers Paying SC-3A Prices
Load-Wgt. 

Avg. 
Elasticity

Peak 
Demand 

(MW)
Number of 
Accounts

Load-Wgt. 
Avg. 

Elasticity

 
Table 4 contains information about the 119 firms and the sub-set of 55 firms. This sub-set 
represents about 46% of the 119 firms, and about 49% of the peak demand. The 
healthcare and public works sectors are under represented in the sub-set of 55. The load-
weighted average elasticities of substitution for the sub-sample are 36% lower than the 
larger group’s average, and the sub-sample exhibits significantly lower average 
elasticities for the commercial/retail and manufacturing sectors, and higher elasticities for 
the government/education sector than the respective larger samples. 
 
C.2.1 Factors Affecting Daily Elasticities of Substitution 
 
The first of the two regression equations uses the price ratio and the firm’s usage as a 
percentage of maximum demand as variables to explain day-to-day differences in the 
estimated firm-level elasticities of substitution. By including interactive terms made up of 
the product of the price ratio and the business sector and the demand percentage, the 
effects of these factors on price response by business activity are estimated. The 
definitions of the variables used in this regression are presented in Table 5. Although this 
discussion (and the discussion in Chapter 3) focus on the results of the regression model 
based on data for all 119 firms, a model based on data from the 55 firms is also reported 
in Table 6.  
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Table 5. Definitions of Explanatory Variables 
Variable Definition

Intercept
Public Works 0-1 Variable, 1 if firm is in Public Works, 0 otherwise
Comm/Retail 0-1 Variable, 1 if firm is Commercial or Retail, 0 otherwise
Manufacturing 0-1 Variable, 1 if firm is in Manufacturing, 0 otherwise
Gov/Ed 0-1 Variable, 1 if firm is in Government or Education, 0 otherwise
Public/Health 0-1 Variable, 1 if firm is in Public Health, 0 otherwise
% Max Dmnd Daily peak electricity usage as % of corresponding year's max 

demand
Price Ratio Ratio of Peak to Off-Peak Prices
Event 0-1 Variable, 1 if an NYISO EDRP event was declared, 0 otherwise
EDRP 0-1 Variable, 1 if firm participates in NYISO's EDRP, 0 otherwise
SCR 0-1 Variable, 1 if firm participates in NYISO's ICAP/SCR program, 0 

otherwise
Increased Energy 0-1 Variable, 1 if survey respondent said energy use increased 

over the 2000-2004 period, 0 otherwise
Monitor Prices Freq. 0-1 Variable, 1 if survey respondent said the firm monitors 

electricity prices frequently 
Use EMCS 0-1 Variable, 1 if survey respondent said the firm uses its EMCS 

equipment, 0 otherwise
Have On-Site Gen 0-1 Variable, 1 if survey respondent said the firm has on-site 

generation, 0 otherwise  
 
For each sample there are two regressions shown in Table 6, labeled “GLS” (generalized 
least squares) and “GMM” (generalized method of moments) models. Ultimately, it is the 
“GMM” models that are of interest, because they include a correction for autocorrelation. 
In effect, we can think of the estimation process as involving two steps. The first is to 
estimate the “GLS” model. This model includes an AR(1) process to deal with the 
autocorrelation that was apparent from examining the data and is due to a time-dependent 
persistence of similar elasticities of substitution from one day to the next. The high 
degree of fit, as measured by the R2 values for both the “GLS” models are the result of 
this correction for autocorrelation Once this correction has been done, any variations 
around this strong persistent trend due to the explanatory variables in the model are 
reflected in the resulting parameter estimates. 
 

Table 6. Estimated Daily Elasticity of Substitution Regression Model Results 

Variable
Parm. 
Est. t-Stat

Parm. 
Est. t-Stat Parm. Est. t-Stat

Parm. 
Est. t-Stat

Pk Off-Pk Price Ratio (PR) -0.0034 -0.69 -0.0040 -5.49 -0.0025 -1.06 -0.0028 -8.92
Commercial/Retail * PR 0.0004 0.07 0.0005 0.63 0.0184 6.15 0.0199 4.22
Manufacturing * PR 0.0018 0.35 0.0023 2.27 0.0014 0.55 0.0016 2.34
Gov't/Education * PR 0.0162 3.13 0.0185 3.90 0.0228 8.69 0.0241 3.44
Public Works * PR 0.0014 0.25 0.0019 2.30 0.0009 0.31 0.0010 2.80
Daily  % of Max Demand (MD) -0.0680 -13.79 -0.0702 -1.92 -0.0375 -10.29 -0.0513 -1.99
Commercial/Retail * MD 0.0621 6.55 0.0651 1.79 0.0511 8.00 0.0646 2.43
Manufacturing * MD 0.0659 11.42 0.0674 1.85 0.0352 8.74 0.0487 1.89
Health Care * MD 0.0692 3.66 0.0718 1.97 0.0378 3.44 0.0514 2.00
Public Works * MD 0.0676 9.29 0.0695 1.91 0.0373 6.95 0.0509 1.97
AR(1) 0.4348 56.04 0.4341 5.48 0.4674 87.62 0.4657 8.82
R-Squared 0.98 0.98 0.99 0.99
Durbin Watson Statistic 2.14 2.14 2.13 2.13
White's Test Statistic 5,516 13,022

GLS Model
Survey Sub-Sample (55)

GLS Model GMM Model
Full Sample (119)

GMM Model
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While the results of the “GLS” models looked extremely encouraging, we were, as 
suggested in Appendix B, concerned about heteroskedasticity of the error structure 
because of the wide variation in daily elasticities of substitution for some firms. Thus, we 
performed a White’s test for heteroskedasticity and found the White’s statistic to be 
significantly different from zero in both “GLS” Models. The second step of the 
estimation, therefore, was to correct for this problem of heteroskedasticity by re-
estimating the model using the generalized method of moments (hence the “GMM” name 
on the second models). While the procedure correcting for heteroskedasticity does 
generally change the estimated coefficients, the effect is often expected to be minor. This 
proved to be the case in both models. However, the primary purpose in correcting for 
heteroskedasticity is to ensure that the standard errors on the coefficients (and therefore 
the t-statistics) are unbiased. Based on this correction, most of the t-ratios increased, 
while some others declined. In the fnal “GMM” models, all but one estimated coefficient 
(for the sample of 55) are all significantly different from zero. It is also encouraging that 
the corresponding estimated coefficients for each of the “GMM” models have the same 
sign and are of similar magnitude. The overall performance of the “GMM” model for the 
sample of 119 does slightly outperform the one for the sample of 55, particularly in terms 
of the size of the t-ratios. One possible interpretation of these results is that by including 
more firms in the sample, we are able to measure the effects of the variables on price 
responsiveness with greater statistical precision.  
 
Since many of the variables are interaction terms, an effective way to interpret the results 
is to estimate the changes in the elasticities of substitution for a particular change in one 
of the explanatory variables—in this case the price ratio and the percent of maximum 
demand. Using the estimated coefficient for the “GMM” model for the 119 customers 
from Table 6, the effects of changes in the price ratio and in usage relative to maximum 
demand are summarized in Table 7 for the full sample of 119 customers and in Table 8 
for the sub-set of 55 survey respondents.  
 

Table 7. Marginal Changes in Elasticities of Substitution by Business Class: 119 
Customer Sample 

Business Class
Number of 
Accounts

Average 
Elasticity Elasticity

% Change 
from Avg. Elasticity

% Change 
from Avg.

Commercial/Retail 17 0.115 0.132 14.8% 0.116 1.2%
Gov't/Education 34 0.159 0.180 13.4% 0.154 -3.2%
Health Care 8 0.035 0.032 -8.1% 0.035 0.0%
Manufacturing 44 0.087 0.086 -1.4% 0.087 -0.3%
Public Works 16 0.018 0.017 -9.5% 0.018 -0.2%
Total 119
a A marginal change in the peak to off-peak price is having the price ratio change from 2 to 
3. 
b A marginal change is use increasing from say 0.6 of maximum demand to 0.7 of maximum 
demand 

Elasticity of Substitution for a Marginal 
Change in:

Peak to Off-peak Price 
Ratioa

Proportion Use of 
Max Demandb

 

   A-50



 

 

Table 8. Marginal Changes in Elasticities of Substitution by Business Class: 55 
Customer Sub-Sample 

Business Class
Number of 
Accounts

Average 
Elasticity Elasticity

% Change 
from Avg. Elasticity

% Change 
from Avg.

Commercial/Retail 8 0.054 0.051 -6.3% 0.054 -0.9%
Gov't/Education 16 0.181 0.196 8.0% 0.174 -3.9%
Health Care 2 0.052 0.048 -7.6% 0.052 0.3%
Manufacturing 23 0.060 0.058 -2.8% 0.059 -0.5%
Public Works 6 0.021 0.019 -10.0% 0.021 -0.3%
Total 55

b A marginal change is use increasing from say 0.6 of maximum demand to 0.7 of maximum 
demand 

a A marginal change in the peak to off-peak price is having the price ratio change from 2 to 
3. 

Elasticity of Substitution for a Marginal 
Peak to Off-peak Price 

Ratioa
Proportion Use of Max 

Demandb

 
 
For each business sector, the number of accounts and the un-weighted average the 
elasticity of substitution values are reported by sector in the left-hand part of the Table 7. 
To the right of these values, Table 7 is separated into two sections. The first section 
provides for each sector the impact on that sector’s average elasticity of substitution (and 
the % change for the average) for a unit increase in the price ratio, say from a ratio of 2:1 
to 3:1. This provides an indication of the extent to which elasticities of substitution larger 
for higher peak prices than for lower ones.31 A positive percentage change indicates that 
price response increases as the peak price increases; a negative percentage change 
indicates that price responsiveness falls as the peak price increases. 
 
The commercial/retail and government/education sectors both exhibit increased price 
responsiveness at higher peak prices: the former increases by 14.8% and the latter by 
13.4% in response to a 50% increase in the peak price (holding the off-peak price 
constant). These firms can be expected to decrease peak usage more at very high market 
prices than at moderately high prices. Healthcare and public works customers, on the 
other hand, show the opposite result; their price response drops by 8.1% and 9.5%, 
respectively, as the price ratio increases in our example by 50%. The manufacturing 
sector’s price response appears to be nearly immune to changes in the nominal peak 
price.32  
                                                 
31 Although it is the price ratio that is changing, one can still use these results to infer something about 
changes in price responsiveness as the peak price changes, ceteris paribus. This is due to the fact that the 
price ratio can increase when the peak price increases while there is no change in the off-peak price. To 
illustrate, one might use an example of off-peak price at $0.05/kwh and a peak price of $0.10/kwh. This 
gives a price ratio of 2. If the peak price increases to $0.15/kwh, then the price ratio goes from 2:1 to 3:1. 
The same would be true of initial prices of $0.10/kwh off peak and $0.20/kwh on peak, with a peak price 
increase up to $0.30/kwh. 
32 The data in Table 8 can be interpreted in a manner similar to those in Table 7. It is encouraging that with 
the exception of the commercial/retail sector, the signs and the relative magnitudes of the percentage 
changes in the elasticities of substitution are quite similar to those from Table 7. It is important to note that 
the sign of the effects differ between the two samples only for the commercial/retail sector, and this is the 
one sector in which there is a statistically insignificant coefficient on one interaction term involving the 
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The remaining section of Table 7 shows the impact on the sector’s average elasticity of 
substitution of a 10% increase in the amount of load a customer uses on a given day 
relative to its maximum (summer) peak demand. A positive value indicates that the 
ability to reduce load in response to increases in the peak to off-peak price ratio increases 
as the firm approaches its summer peak demand. A negative percentage change suggests 
the opposite – that customers are less able to reduce load in response to relative increases 
in peak price as they approach their peak demand.  
 
The impact of the size of the firm’s load relative to its peak usage level on the response 
elasticity is very small for all sectors but the government/education sector. In that sector, 
firms reduce their ability to respond to relative price increases by just over 3% as their 
load increases from 60% to 70% of their peak summer demand.33  
 
C.2.1.1 Impact of Nominal Prices on Daily Elasticities  
 
In specifying the regression models displayed in Table 6, the daily elasticities of 
substitution for all firms were regressed on the peak-to-off peak price ratio and the 
proportion of maximum demand at which the firm was operating on a given day. By 
specifying this equation in terms of the price ratio, we maintain consistency with the GL 
functional form used to estimate the elasticities of substitution. This model specification 
essentially constrains the size of the effect on the elasticity of substitution from a change 
in the peak price to be the same as for a change in the off-peak price, but one effect is the 
inverse of the other. In so doing, the marginal effects reported in Tables 7 and 8 in a pure 
sense reflect changes in the elasticities of substitution as the price ratio changes.  
 
However, these marginal changes could also be interpreted in terms of changes in just the 
peak price, if one assumes that the off-peak price remained unchanged. Even though this 
is, from a technical point of view, also a correct interpretation, it is sometimes difficult to 
convey the equivalence of a change in the price ratio if it is due only to a change in the 
peak price. Therefore, a model that relates daily differences in the elasticities of 
substitution directly to the peak prices was also estimated. Results from these regressions 
and their marginal effects are reported for both customer samples in Tables 9, 10, and 11. 
The relative performances of the four models in Table 9 are very similar to those in Table 
6 in the sense that those based on data for the 119 customers are slightly more robust than 
for the sample of 55 customers. Furthermore, the correction for heteroskedasticity 
improves these results as well. Therefore, it is sufficient to focus this discussion on fourth 
model in Table 9: the “GMM” model for the full, 119 customer sample.  
 

                                                                                                                                                 
price ratio. This insignificant coefficient appears in the model based on the sub-sample of 55 firms. Thus, 
by being able to include more firms in this regressions, we were able to isolate this effect with greater 
statistical precision.   
33 Taken in aggregate, these results seem counterintuitive in that government/education customers are more 
responsive on hot days and as prices rise, but are less responsive as they approach their maximum demand.  
This can be rationalized by observing the lack of coincidence of high prices, hot days, and high loads for 
these customers - a finding that runs counter to conventional wisdom for this class of customers.  
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Table 9. Estimated Daily Elasticity of Substitution Regression Results Using 
Nominal Peak Prices 

Variable Parm. Est. t-Stat Parm. Est. t-Stat Parm. Est. t-Stat Parm. Est. t-Stat
Peak Price  (PR) -0.0034 -0.69 -0.0068 -2.36 -0.0052 -0.46 -0.0060 -4.25

Commercial/Retail * PR 0.0004 0.07 0.0000 -0.01 0.0231 1.74 0.0272 3.25
Manufacturing * PR 0.0018 0.35 0.0012 0.39 0.0024 0.20 0.0034 1.79

Gov't/Education * PR 0.0162 3.13 0.0424 2.92 0.0803 6.60 0.0886 2.40
Public Works * PR 0.0014 0.25 0.0006 0.18 0.0010 0.08 0.0014 0.83

Daily  % of Max Demand (MD) -0.0680 -13.79 -0.0708 -1.92 -0.0396 -10.81 -0.0534 -2.04
Commercial/Retail * MD 0.0621 6.55 0.0649 1.76 0.0573 8.92 0.0719 2.65

Manufacturing * MD 0.0659 11.42 0.0680 1.84 0.0373 9.22 0.0509 1.93
Health Care * MD 0.0692 3.66 0.0697 1.88 0.0388 3.54 0.0523 1.99

Public Works * MD 0.0676 9.29 0.0702 1.90 0.0394 7.31 0.0530 2.02
AR(1) 0.4348 56.04 0.4365 5.50 0.4693 88.08 0.4675 8.84

R-Squared 0.98 0.98 0.99 0.99
Dubin Watson Statistic 2.14 2.14 2.13 2.13

White's Test Statistic 5,516 14,012

GLS Model
Survey Sub-Sample (55)

GLS Model GMM Model
Full Sample (119)

GMM Model

 
 
In comparing this model with the corresponding one in Table 6, we see that the signs on 
the corresponding terms are the same across both. Since the peak price is in the 
numerator of the price ratio, the direction of change in the elasticity of substitution is the 
same for a change in each corresponding variable containing a price term. The same is 
true for each of the variables containing a “Max Demand” component. It is only the 
magnitude of the effects that differ. These differences are best seen by comparing the 
results from Tables 7 and 10.34 The differences in the magnitudes of the effects of the 
“Max Demand” variables across models are very small. However, this is not true for the 
variables containing the price ratio (from Table 7) and the peak price (from Table 10). 
Although the direction of the change is the same, the magnitudes of the effects are 
generally smaller in the model that includes only the peak price (Table 10). 
 

Table 10. Marginal Changes in Elasticities of Substitution for Peak Price 
Regression: 119 Customer Sample 

Elasticity
% Change 
from Avg. Elasticity

% Change 
from Avg.

Commercial/Retail 17 0.115 0.117 1.8% 0.117 1.6%
Gov't/Education 34 0.159 0.241 5.2% 0.154 -3.4%
Health Care 8 0.035 0.029 -1.7% 0.035 -0.3%
Manufacturing 44 0.087 0.084 -0.3% 0.087 -0.3%
Public Works 16 0.018 0.014 -2.5% 0.018 -0.2%
Total 119
a A marginal change in the peak price from say $0.20/kWh to $0.30/kWh
b A marginal change is use increasing from say 0.6 of maximum demand to 0.7 of maximum demand 

Elasticity of Substitution for a Marginal Change in:

Business Class
No.of 

Accounts
Average 
Elasticity

Peak Pricea
Proportion Use of Max 

Demandb

 
 

                                                 
34 Similar comparisons, for the sub-sample of 55 customers, can be made by examining the results in 
Tables 8 and 11. Since these results are included primarily for purposes of completeness, there is no need to 
discuss them in detail.   
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Table 11. Marginal Changes in Elasticities of Substitution for Peak Price 
Regression: 55 Customer Sub-Sample 

Elasticity
% Change 
from Avg. Elasticity

% Change 
from Avg.

Commercial/Retail 8 0.054 0.053 -1.3% 0.054 -1.1%
Gov't/Education 16 0.181 0.185 2.0% 0.174 -3.9%
Health Care 2 0.052 0.051 -1.3% 0.052 -0.2%
Manufacturing 23 0.060 0.059 -0.9% 0.059 -0.5%
Public Works 6 0.021 0.020 -2.9% 0.021 -0.3%
Total 55
a A marginal change in the peak price from say $0.20/kWh to $0.30/kWh. 
b A marginal change is use increasing from say 0.6 of maximum demand to 0.7 of maximum demand 

Elasticity of Substitution for a Marginal Change in:

Business Class
No.of 

Accounts
Average 
Elasticity

Peak Pricea
Proportion Use of Max 

Demandb

 
  
There are several possible explanations for this result, but the most plausible is that the 
models in Table 9 are actually mis-specified. Since peak and off-peak electricity use can 
be viewed as substitute inputs in production processes, economic theory suggests that any 
model that attempts to explain relative changes in electricity use between these two 
inputs should include the prices of both inputs. We find that when the peak price rises, 
off-peak prices also rise, but by a smaller amount. Because of this correlation, the 
coefficients on the variables involving peak price terms in the models in Table 9 are 
biased because the models exclude a term that is correlated with peak price.35 Thus the 
effect of the change in the peak price reflected in Tables 7 and 8 dominates the offsetting 
effect of a relatively smaller increase in the off-peak price. Because there is no way to 
control for the relative changes in peak to off-peak prices in the model in Table 9, the true 
effect of changes in the peak price is somewhat understated. For these reasons, we argue 
that the correct model specifications and measures of marginal effects on the elasticities 
of substitution are in Tables 6, 7 and 8, even though the interpretation of the results in 
terms of changes in the peak price are not as straightforward as in the models in Tables 9, 
10, and 11.  
 
C.2.3 Factors Affecting Customer-Average Elasticities of Substitution 
 
In the third empirical model, we identify key customer characteristics that affect average 
elasticities of substitution by firm.36 We do so by regressing these average elasticities on 
a variety of variables that describe customer circumstances. Since a number of these 
variables were obtained through the survey, the sample of firms included in this analysis 
is limited to the 55 customers that provided answers to the appropriate survey questions. 
A comparison of this subset of firms with the 119 used to estimate the other two 
equations indicates that, with the exception of healthcare and public works, other sectors 
are proportionally represented both in terms of customer numbers and maximum demand.  
 

                                                 
35 See Goldberger 1990, p. 189-90, for a discussion of omitted variable bias. 
36 See Table 5 for the definitions of the variables. 
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Table 12 presents the estimated parameters for the third equation designed to identify 
systematic differences in average elasticities across firms associated with firm 
characteristics and circumstances. The R2 indicates that the explanatory variables 
included in this equation account for about a third of the variation in the average 
elasticities of substitution for the 55 firms. White’s statistic indicates that the errors terms 
do not exhibit heteroskedasticity, so no correction was required. 
 

Table 12. Customer-Level Elasticities of Substitution Regression Results 
Variable Parm. Est. t-Stat

Intercept 0.1976 0.88
Commercial/Retail 0.1640 1.34
Manufacturing 0.0155 0.17
Gov't/Education 0.1227 1.09
Health Care 0.0590 0.37
EDRP Participant 0.1794 2.53
SCR Participant -0.0610 -0.63
Installed EMCS -0.1489 -2.46
Monitor RTP Frequently 0.0579 0.52
Installed On-Site Gen 0.0262 0.45
Increased kWh 0.0811 1.34
Avg. Pk. Off-Pk. Load Ratio -1.3114 -0.94
R-Squared 0.31
White's Test Statistic 52 0.10  
 
In general, the estimated parameters values do yield some insight into the factors that 
explain differences in customers’ average ability to reduce peak load in response to price. 
While many of the coefficients are of the expected sign, only two effects are statistically 
different from zero(t>2). Rather than suggesting that these other factors have no effect, 
the low t-statistics could also be due to the relatively small sample size and the resulting 
limited variation in the level of the explanatory variables. In this case, the low t-ratio 
means that we are measuring the effect with very little precision, a situation that might 
well have been avoided if these variables had been available for all 119 customers.  
 
The estimated coefficient for the EMCS variable is negative, indicating that firms with 
these systems are less able to shift load in response to higher relative peak prices, on 
average, than firms that do not have them. This result, has been consistent throughout this 
study, and comports with previous studies of price response among customers throughout 
New York participating in NYISO demand response programs.  
 
The coefficients on the variables for participation in NYISO’s two demand response 
programs are of different signs. The coefficient for participation in the Emergency 
Demand Response Program is positive, and significant, indicating that such participation 
results in a higher average ability to be price responsive. This would seem to be an 
intuitively correct result. But the estimated coefficient on the ICAP/SCR participation 
variable is negative, and insignificant. In other words, the specification finds no (or at 
best a weak) relationship between the imposition of a high penalty prices and price 
response in the case of SCR, in contrast to the EDRP case. This counter-intuitive result is 
discussed in more detail in Chapter 3 of this report. 
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C.3. Aggregate Load Response 
 
To obtain some sense of the overall impact on the shift in peak to off-peak usage at 
various peak to off-peak electricity price ratios, the elasticities of substitution for 
individual firms were used to simulate the peak load reduction as the price ratio changes 
(see Appendix B for more details, particularly the discussion surrounding equation (35)). 
These results are illustrated in Figures 6 and 7.  
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Figure 6. Percentage Reduction in 119 SC-3A Customers’ Peak Demand 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 10 20 30 40 50 6
MWs

Pr
ic

e 
R

at
io

0

 
Figure 7. Reduction in 119 SC-3A Customers’ Peak Demand 
 
At the highest peak to off-peak price ratio observed in the SC-3A price data – 5:1 – the 
119 modeled customers are estimated to reduce their peak-period usage by about 50 MW, 
a 10% reduction from their typical usage. SC-3A customers’ aggregate load response is 
non-linear – it increases as the price ratio increases but at a decreasing rate, especially at 
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ratios above 3:1. This occurs primarily because the relationship between price ratios and 
the elasticity of substitution is negative for ~57% of the customers (see Table 7). As the 
price ratio increases, the elasticity of substitution decreases modestly among 
manufacturing, healthcare, and public works customers. The overall level of load 
response therefore increases for higher price ratios, but the rate of change for higher and 
higher price ratios becomes smaller and smaller. 
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