The added value of time-sensitive energy efficiency valuations

Sean Murphy
Why does the timing of energy efficiency savings matter?

- **Peak demand**
 - Makes a few hours very costly

- **Selection of demand-side resources**
 - Interplay of efficiency measures and demand response

- **Resource planning**
 - Efficiency is one of many resources in an evolving grid

- **Cost-effectiveness screening**
 - Avoided system costs are important input
Time-sensitive value of efficiency – electricity savings

- Estimated electricity savings from efficiency projects in 18,000 CA households
 - Installed space conditioning measures through a Property Assessed Clean Energy program between 2009 and 2017
 - HVAC
 - Windows, doors, and skylights
 - Other envelope measures

- Savings are hourly and at the household level
 - Savings are the difference between pre- and post-project usage, controlled for weather
 - Estimated with normalized metered energy consumption methods (NMEC)
 - Illustrate how savings and value change over time with savings shapes
Time-sensitive value of efficiency – grid value

- Calculated the grid value of usage reductions for each measure category
 - Grid value ($2019) = Electricity Savings (kWh) x Avoided Costs ($/kWh)

- Avoided costs are the cost electricity system incurs if usage reductions did not occur
 - Hour-of-year (8760) by utility service territory
 - From California Public Utilities Commission (CPUC) Avoided Cost Calculator (ACC)

- Compared grid value for two scenarios:
 - Existing grid – gas turbine as marginal resource (2019 CPUC ACC)
 - Future grid – battery storage as marginal resource (2020 CPUC ACC)

- Compared grid value based on *hourly savings* with grid value based on *annual savings*
 - Indicates how time-sensitive valuation
Seasonal demand savings for all space-conditioning measures combined

- Summer (Jun-Sep), non-summer (Oct-May)
- Savings align well with peak period
 - 4-5PM in summer
 - 7-8PM in non-summer
- Savings highest in summer
- Savings remain high past peak period into late evening
Marginal resource affects avoided costs

- Summer (Jun-Sep), non-summer (Oct-May)

- Value of energy efficiency changes with battery storage as marginal resource
 - Less value in summer early evenings
 - More value in summer late evenings
 - More value in non-summer mid-day
Grid value is concentrated in summer evenings

- Significant share of annual grid value results from summer savings 4PM-8PM
 - 47% with gas turbine as marginal resource
 - 32% with battery storage as marginal resource

- Larger share of value is in late evenings with battery storage as marginal resource
Comparing grid value

- **Time-sensitive project grid value**
 - Savings and avoided costs are both hourly
 - Add up value (savings x avoided cost) in each hour

- **“Naïve” project grid value**
 - Annual electricity savings x hourly annual avoided cost
 - Assumes savings are evenly distributed across year

- **Value multiplier**
 - Ratio of the time-sensitive project grid value to “naïve” project grid value
 - Indicates how much more valuable projects are due to timing of usage changes
Value multipliers demonstrate time-sensitive value of efficiency

- Combined space conditioning value multipliers:
 - 1.53 with gas turbine as marginal resource
 - 1.37 with battery storage as marginal resource

- Multipliers are above 1.0 for all measures individually

- More value accounted for when hourly savings are used

- Value multipliers are not:
 - ranks
 - measures of absolute impact
 - cost-effectiveness screens
Key takeaways

- Space-conditioning savings align well with CA peak demand

- Timing of savings matters
 - 40-50% more grid value with time-sensitive approach

- Accurate estimates of peak demand savings important for cost-effectiveness
 - Significant share of annual grid value results from summer evening savings

- Evolving grid changes value of efficiency
 - Summer peak period less valuable, but still most valuable time for savings
 - Late summer evenings more valuable
The Time-Sensitive Value of Energy Efficiency Calculator

- **Publicly-available tool** that estimates the time-sensitive value of up to six EE measures using hourly cost estimates for five value streams:
 - Avoided generation, transmission, and distribution costs
 - Avoided GHG emissions costs
 - Avoided electric energy costs

- **Output includes**
 - Net present value of selected EE measures over their lifetime
 - Annual benefits by measure and value stream over the analysis period
 - Average hourly benefits by measure and value stream
Contact information and related work

- Email: smurphy@lbl.gov
- Related work from Berkeley Lab
 - Time and locational-sensitive value of efficiency series
 - Cost of Saved Energy series