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Abstract

Faults in heating, ventilation and air conditioning (HVAC) systems cause increased energy consumption, degrading
thermal comforts, growing operational cost and reduced system lifespan. An effective evaluation of fault effects is
critical to the development of various fault diagnostics solutions, the improvement of operation maintenance and the
optimization of monitoring systems. In the HVAC area, a majority of research work in evaluating fault effects was to
analyze energy consumption impacts or thermal comfort impacts. However, a handful of research has been
conducted on evaluating fault effects on various measurements, which are increasingly employed to monitor
equipment operation. Fault effects on various measurements may display different symptom patterns and present
changed sensitivities when the equipment operates under various faults, severity levels, as well as operation
conditions. However, a long-term observation of fault symptoms under various operational conditions, different fault
types and severity levels to evaluate fault effects is extremely challenging. In this paper, a simulation-based
framework was proposed to evaluate fault effects in fan coil units (FCUs). Two metrics namely fault symptom
occurrence probability (SOP) and fault symptom daily continuous duration (SDCD) were developed to quantify
fault symptoms under various FCU faults. A total of 18 common FCU faults at different severity levels were
implemented on the developed HVACSIM+ simulation platform to obtain a full year fault inclusive data set for 48
fault simulation cases. The framework, as well as obtained SOP and SDCD distributions will benefit multiple folds
such as the development of probability-based fault diagnostics inference approaches, optimization of sensor
location, and fault prioritization.
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Nomenclature

Symbols CVLV_DM Cooling coil valve control signal

€ Difference value CLG GPM Cooling coil water flow rate
Observed value of a measurement . X

y, CLG RWT Cooling coil return water temperature
Nominal reference value of a measurement . X .

Vyor HVLV DM Heating coil valve control signal
Normal value of a measurement Heating coil water flow rate

v, HTG GPM

n Mean value of samples HTG RWT Heating coil water return rate

c Standard deviation of samples DA CFM Discharge air flow rate

OA CFM Outdoor air flow rate

Abbreviations DMPR DM Outdoor air damper control command signal

FDD Fault detection and diagnostics SPD Fan speed

OAT Outdoor air temperature MA HUMD Mixed air relative humidity

RM TEMP Zone air temperature DA HUMD Discharge air relative humidity

MAT Mixed air temperature RA HUMD Return air relative humidity

DAT Discharge air temperature SOP Symptom occurrence probability

RAT Return air temperature SDCD Symptom daily continuous duration




1. Introduction

In buildings, heating, ventilation and air conditioning (HVAC) systems are critical to maintain zone thermal
comforts and desired air quality for occupants. However, numerous HVAC systems operate under faulty conditions
which cause increased energy consumption, deteriorated zone thermal comfort, decreased air quality, as well as
increased maintenance cost and reduced system lifespan [1]. For example, studies show that 15-30% energy
consumption is wasted due to faults, malfunctioning and degrading equipment as well as poor maintenance in
HVAC systems in commercial buildings [2]. To enhance a reliable HVAC system operation and avoid energy wastes,
comprehensive works have been conducted to develop various automated fault detection and diagnostics (FDD)
approaches in the past thirty decades [3]. A study shows that the average 8% energy consumption can be saved after
applying FDD solutions in commercial buildings [4].

Another research area related to HVAC system faults is to evaluate fault effects. Fault symptoms and impacts are the
effects of a fault on various measurements, components, control objectives and operation performance. Fault effects
reflect the undesired or unpermitted operating states of a system, i.e., when a fault occurs, equipment operation
experiences abnormal changes (discrepancies) compared to the normal operation, and generates residuals which are
reflected by either direct measurements (e.g., sensor readings and control signals), or indirect measurements (e.g.,
rules obtained from comparing multiple measurements). A complete and systematic evaluation on fault effects may
benefit many facets. First, the fault effects evaluation enables an effective fault prioritization which would benefit
various aspects such as efficient fault correction and system maintenance. For instance, after evaluating the service
costs of various faults in rooftop units (RTUs), Breuker et al. ranked RTU faults to facilitate RTU maintenance [5].
Secondly, the faults and effects evaluation has been widely used in developing FDD approaches. The observable
fault symptoms on various measurements were employed by system operators to determine system operational
abnormalities. This heuristic process evolved to some fault diagnostics approaches such as rule-based fault
diagnostics [6] and the expert system [7]. Additionally, some data-driven FDD approaches, which rely on building
automation system (BAS) interval data collected from diverse measurements, may also need an accurate
cause-and-effect analysis to facilitate the development of an inference model. For example, in a Bayesian Network
(BN)-based fault diagnostic method, both qualitative and quantitative models need to be developed to represent fault
cause-and-effect relations in different HVAC subsystems [8]. Lastly, the faults and effects evaluation can improve
the design of a monitoring system including optimizing the sensor deployment and enhance the monitoring
efficiency [9].

Compared to other types of HVAC equipment such as chillers, air handling units (AHUs) or variable air volume
(VAV) terminal units, there is a lack of efficient monitoring strategies for the operation of a fan coil unit (FCU).
FCUs are simple and decentralized air-conditioning devices which are primarily used to locally condition the air in
zones. Compared with other HVAC systems, FCUs can be easily and flexibly deployed in buildings where the space
is limited to install ducts [10]. Therefore, FCUs are widely used in various types of buildings including offices,
hotels, schools, as well as residential apartments in the U.S and in Europe. An evaluation on the effects under FCU
faulty operation will significantly improve the monitoring performance of FCUs and facilitate the early detection of
FCU faults.

This paper studies the effects of FCU faults utilizing simulated system operation data. It proposes a new evaluation
framework to bridge the gap of a lack of systematic evaluation of fault effects on FCU measurements. The
framework includes fault symptom characterization, baseline generation, and fault effects evaluation. Specifically,
we quantify fault effects in terms of two metrics, namely symptom occurrence probability (SOP) and symptom daily
continuous duration (SDCD), to represent the fault symptom occurrence likelihood and intensity respectively.

When evaluating fault effects, a long-term observation on the equipment faulty operation under multiple operating
conditions, and under various fault severity levels is required. However, this may be very time-consuming and
expensive in real practice. To address this challenge, we employ simulation data to study fault symptoms on various
measurements which include sensor readings and control signals in FCUs. The simulation data, which are generated
on the HVACSIM+ based FCU model, enable a thorough analysis on the system operation under different faults,
fault severity levels and operating conditions. In addition, existing fault effect evaluation methods cannot fully
assess impacts a fault has on system measurements, which may be employed to develop FDD approaches, optimize
the measurement deployment and prioritize faults, as will be discussed in Section 2 in detail.



The proposed framework, as well as obtained SOP distributions and SDCD distributions on each measurement can
be used for evaluating FCU fault effects, developing and validating fault models, as well as optimizing measurement
deployment and prioritizing faults.

The research results presented in this paper are based on the HVAC system Fault Data Curation project which aims
at building the largest HVAC system fault database in the world. The HVAC system fault data used in this research
are fully validated through the developed protocol to ensure the data quality. The following sections are arranged as:
Section 2 reviews past works on the fault effects and impacts analysis. Section 3 presents the proposed method, as
well as introduces the simulation process. Section 4 illustrates the process of evaluation and analysis, as well as
discusses the applications of the developed method and results. Section 5 concludes the paper and proposes future
work direction.

2. Related works

We illustrate some valuable studies which evaluated fault symptoms or impacts. Among those studies, data collected
from laboratory experiment tests and simulation platforms were often employed. The assessment on fault impacts or
symptoms were carried out through analyzing various measurements connecting to the BAS, or through analyzing
different metrics such as energy consumption, operating or maintenance costs as well as occupants’ comforts.

Among the laboratory experiment tests, several representative studies are reviewed as below. Comstock et al.
investigated eight common faults under different cooling loads in a centrifugal chiller in a laboratory
environment [11]. A total of 13 measurements were used to evaluate the measurement sensitivity under chiller’s
faulty operation. Breuker et al. investigated common faults and corresponding impacts on the rooftop units (RTUs)
[5]. In the study, 96 fault tests at 4 load levels and 24 fault severity levels were performed via the experimental tests
to evaluate fault impacts on the transient profiles of nine performance indices. The authors analyzed the fault
symptoms on the transient profiles. The quantitative changes in RTU cooling capacity, coefficient performance, and
two temperature measurements were analyzed. Although the authors concluded some generic rules that described
the fault impact directions on various temperature measurements, they did not quantify the symptoms on five
temperature measurements. Cho et al. carried out transient pattern analysis for HVAC FDD [12]. In the study, four
types of faults in the VAV HVAC system were imposed in a real test chamber to obtain system faulty operation data.
The study concluded the evolution of fault residuals to form patterns which can be used to isolate faults.
Additionally, the authors found the temporal patterns in multiple components caused when a fault occurs and
recovers to steady state. However, the authors did not report if the patterns will be affected by system operating
conditions. Schein et al. extracted 28 rules for AHUs named AHU performance assessment rules (APAR) from the
observation of fault symptoms on temperature measurements and normalized control signals [13]. The developed
APAR has been widely used by market FDD solutions. Although the authors gave the thresholds for each rule as the
judgment on whether the symptom can be observed and the rule is violated, the authors did not provide the
quantifiable thresholds under different operating conditions.

Compared with hardware experiments, simulation platforms are more efficient to evaluate HVAC system fault
impacts. For example, Chen et al. employed both EnergyPlus and Modelica tools to develop a single duct VAV
system model to analyze fault impact [14]. In the study, the simulation scenarios were selected from two aspects of
evaluations, quantitative long-term (week/month/year) impacts, as well as chronological short-time (within hours)
dynamic impacts, which can be also used to generate a fault onset data set for FDD method testing. In addition, the
study also reported relations between some physical faults and control logic sequence and the seasonal operating
conditions. However, only fault impacts on energy consumption were quantified and only a few days in each season
were used to evaluate fault impacts. Shi et al. developed three steps to evaluate fault impacts using EnergyPlus-
based building performance simulation (BPS) to address the challenge of quantitatively translating the symptoms
caused by a fault to specific inputs inside a BPS model [15]. However, the authors only used mean values to
quantify directly observable symptoms, and used three quartiles (25%, 50% and 75%) to approximate indirect
estimated symptoms. Li et al. proposed a fault impact analysis framework by incorporating the fault model library
with the EnergyPlus simulation tool [16]. In the study, 129 fault modes from 41 groups of fault models were
simulated from the medium sized office case. Fault occurrence probability models were integrated into the
simulation platform to more accurately evaluate the magnitude of fault impacts in buildings in different climate
zones. However, the framework only focused on site energy impact and HVAC energy impact within one year scope,
and no analysis on fault symptoms on various measurements was performed.



In summary, the above studies have investigated a fault’s effects from many angles. However, the following two
major gaps, which prevent a complete understanding of a fault’s effects as, still exist:

1) When evaluating fault effects or impacts, most research works have been conducted on evaluating final or
long-term fault impacts such as annual energy consumption, thermal comforts and operating costs [16—18].
However, little research has been conducted on quantitatively evaluating fault effects on system measurements
which are often presented as fault symptoms and are commonly used to assess a system’s dynamic operation, as well
as to develop FDD approaches.

2) Some studies have used trend data comparison to visualize the fault symptoms on measurements under one
operating condition [11,14,19]. However, fault symptoms may be sensitive to various operating conditions such as
control sequences, weather conditions, as well as fault severity levels. The uncertainties of observable fault
symptoms were never investigated.

To address the above issues, in the proposed simulation-based fault effect evaluation framework, we focused the
evaluation on fault symptoms, and quantified fault symptoms on various measurements. Two new metrics (i.e., SOP
and SDCD), which can evaluate fault symptom frequency and intensity on various measurements, will be illustrated
in detail in this paper.

3. Methodology

Figure 1 shows the framework of the methodology as will be illustrated in the following sections. We first illustrate
the characteristics of a fault symptom in HVAC system operation in Section 3.1. In Section 3.2, we introduce the
method of baseline data generation. Then, we illustrate two metrics that quantify an observable fault symptom as
fault symptom occurrence probability in Section 3.3 and fault symptom duration in Section 3.4. Lastly, we present
how the FCU faults are simulated, as well as the fault inclusive and exclusive data set used for the fault effect
analysis in Section 3.5.
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Fig. 1. Framework of the methodology.
3.1 Overview of fault symptoms
1) Introduction of fault symptom generation methods

When a fault occurs, fault symptoms could be reflected as deviations of sensor readings or control signal from
normal values on various measurements in the system [20]. In a control system, fault symptoms may present
different patterns because the system operation may be complicated. There are several studies discussing the fault
symptom patterns [20-23]. For example, in [21] fault symptoms are classified into two categories: semantic
symptoms and trend symptoms. A semantic symptom can be obtained by comparing the difference between a
measurement’s current value and its nominal reference value. This type of symptom can become more notable and
will continue to be observed for a period after a fault occurs. A trend symptom refers to the changing rate of a
measurement value. This type of symptom is more significant at the initial phase when a fault occurs but is not
observable after a time period when the system reaches another steady state.



In our research, semantic symptoms were analyzed. There are three methods to produce semantic symptoms. In the
first method, the normal value is presented by using the nominal reference value (e.g., the temperature setpoint or
rated fan speed) required by the control system as shown in Fig. 2 (a). When the difference between observed values
and normal values exceeds a certain threshold, the exceeding value could represent an observable symptom as given
in Eq. 1. For example, the zone temperature setpoint of a FCU can be used to determine if abnormal zone
temperature can be observed.

8zyo_yref (1)

where y, is the observed value of a measurement (e.g., zone temperature) in the system, Yrer is the nominal

reference value the measurement (e.g., zone temperature setpoint), and € is the difference between the normal value
and measured value.

In the second method, the normal value of each individual measurement is obtained through data collected during
fault-free system operation as shown in Fig. 2 (b). The difference between a measurement’s current value and its
normal value is calculated to produce fault symptoms as given in Eq. 2:

e=y —y 2

where Y, is the observed value of a measurement (e.g., measured discharge air temperature value from the sensor)
in the system, v is the normal value of the measurement (e.g., calculated discharge air temperature mean value

under equipment’s fault-free operation), and € is the difference between the normal value and measured value.

In the third method, the symptom can be produced by comparing concurrent values collected from two or more
different measurements in the system as shown in Fig. 2 (¢). The difference between current values collected by
different measurements can be calculated according to certain rules as given in Eq. 3. For example, in AHU
performance assessment rules [13], the mixed air temperature (MAT) in the AHU is compared with the outdoor air
temperature (OAT) to determine if a fault symptom occurs and to indicate an outdoor air damper stuck fault.

e=fW,p Y,y =Y, )

where Y, is j™ the observed value of a measurement in the system (e.g., MAT or OAT), and €is the difference
among various measured data sets (e.g., the difference between MAT and OAT).

Reading value Reading value Reading value
—, — — Yor

! - yf’ 75—\_,\_ Vo2

Time Time Time

(a) (b) (c)

Fig. 2. Demonstration of fault symptom generation methods.

In this study, we employed the first and second method to produce fault symptoms and evaluate fault effects on
various measurements. For the first method, both the zone temperature cooling setpoint and heating setpoint are
used as the reference value. For the second method, the normal value of the measurement v is calculated from the

normalized baseline data by using the z-score method (assuming the distributions of deviations on each
measurement to be normal distributed), which has been mostly employed by data-driven methods as:



After normalizing the baseline data, the mean value p and standard deviation o of each measurement can be
obtained as:

1 n
==Xy,
i=1
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where, Y, is the /™ observation and # is the number of observations.

Therefore, the symptom can be obtained when the absolute difference between each observation and the mean value
of measurement is higher than the standard deviation as given in Eq. 4.

y,@) = u|> txo )

where, y, is the observed time series data, 7 is the threshold value (e.g., 1, 2, ...). In this study, ¢ is set to one as the

threshold (with a 68% confidence level) despite the “three-sigma empirical rule” has been often adopted and the
value of three standard deviations (with a 99.7% confidence level) has often been used. This is because a lower
threshold means a smaller deviation of the measured value can be captured, and then can be determined as an
observed symptom event. Therefore, a lower threshold may increase the sensitivity of a measurement considering
the HVAC system faults (especially at a mild severity level) may not generate significant measured deviations on
measurements.

The method of the baseline data generation will be illustrated in Section 3.2.
2) Fault symptom direction

A symptom's direction can be labeled as a positive direction or a negative direction to represent the direction of a
measured value compared to the baseline value, i.e., a difference (¢) is higher than the baseline value or lower than
the baseline value respectively. It is noted that for the same fault, the fault symptom direction of a measurement can
be different due to various operating conditions. For example, if an outdoor air damper is stuck at a higher position
in a FCU, the mixed air temperature could be higher than the baseline when the OAT is high (e.g., in the summer
season), and be lower than the baseline when the OAT is low (e.g., in the winter season). In addition, the MAT may
not present a symptom when the OAT is close to the MAT. Therefore, the correct identification of a fault symptom
direction under specific operating conditions should be critical for the FDD process. Otherwise, error FDD results
may be triggered when applying certain rules without considering the symptom direction. In this study, a sign (“+”
or “-”) is associated with the fault symptom's direction to represent positive or negative deviation of the observed
value.

3) Fault symptom magnitude

The symptom magnitude can be presented by using a qualitative description or a quantitative description. In the
qualitative description, the symptom magnitude is obtained through heuristic analysis of system operation from
building operators’ observation [20]. Through this way, fault symptom severity levels can be qualitatively classified
by using linguistics variables (e.g., small, medium and large) or by certain vague values. Although this qualitative
description of fault symptom magnitude is relatively obscure, these depictions of fault symptoms are widely used in
FDD approaches because obtaining accurate degree value of fault symptom is usually difficult and unnecessary in
many engineering practices. Therefore, the qualitative representation of fault symptom magnitude could enable the
development of some FDD approaches. For example, in [23], the fault symptom magnitudes were qualitatively
described as trend data signature and classified into seven levels for fuzzy-logic based fault diagnostics in the
chemical process industry. In the quantitative description, numeric values are used to quantify measurement
sensitivities or fault symptom magnitude. For instance, a sensitivity factor was defined from the measurement
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residual for the worst fault case and the maximum uncertainty for the specific measurement to evaluate chiller fault
impacts [11]. In the study, the upper limit and lower limit of sensitivity factors in the selected measurements were
given to demonstrate the fault impacts under various faults in chillers. Similarly, Dash et al. [23] evaluated the fault
symptom intensity by calculating the relative sensitivities from each measurement and its threshold.

Intuitively, the more severe a fault is, the stronger a fault symptom (i.e., a higher magnitude level of a fault
symptom) on a measurement would be. As a consequence, the fault symptoms could be more likely to be observed
or captured by the FDD methods. However, in an HVAC system, fault symptom magnitude could also be affected by
multiple factors such as weather conditions, system control sequence or internal load conditions as discussed in the
Introduction Section. Therefore, more metrics need to be employed to accurately quantify fault symptom presence as
well as the measurement sensitivity.

In this study, apart from the above-mentioned two characteristics of fault symptoms, we proposed two additional
metrics to evaluate fault symptoms as illustrated in Section 3.3 and Section 3.4.

3.2 Baseline generation

To reliably produce observable fault symptoms, it is critical to generate the baseline data set from the fault-free data
under various operation conditions (e.g., control sequence, weather conditions and zone load), which match
operation patterns from the faulty data set. In addition, when evaluating the fault symptom occurrence frequency (as
explained in Section 3.3), the symptom occurrence probability needs to be more accurately calculated by
considering the baseline data distribution. In this study, a weather-based pattern matching (WPM) method, which
was developed in a FDD approach, was employed to generate the baseline data from the fault-free data [24]. The
WPM method was employed by using the OAT as an indicator to match FCU operation patterns and generate the
baseline data. This is because OAT is one critical driver which affects building thermal load, HVAC equipment
operation and energy consumption [25]. When performing the WPM method, the OAT during the system’s one year
operation period was first equally binned. Then, FCU fault-free operation data within the same binned OAT window
was grouped to generate the baseline data.

The number of binned OAT windows affects the generation of the baseline data. In this study, the determination of
the number of binned OAT windows included two considerations as 1) the FCU operation performance within each
binned OAT window should be similar; and 2) the sample size within one binned OAT window should be large
enough to reach a statistical significance. After evaluating FCU operation, the OAT during the system’s one year
operation period was equally binned to ten windows in this research to generate the baseline data. Consequently, ten
baseline subsets were formed under each binned OAT window. Then the baseline data within each binned OAT
window was normalized to obtain the mean value and the standard deviation for each measurement as illustrated in
Section 3.1. The operation time ratio within each binned OAT window will be given in Section 4.1. Fault symptoms
on each measurement will be generated by comparing the fault data and the baseline within each binned window.

3.3 Fault symptom occurrence probability

Different measurements may have different sensitivities according to faults types, severity levels and operational
statuses. In this study, the fault symptom occurrence probability (SOP) is proposed to quantify the sensitivity, i.c.,
what is the likelihood that a fault symptom could present on a measurement when a fault occurs. The SOP can be
calculated by counting the number of observations of fault symptoms during a range of time periods when a fault
occurs.

In this study, two steps are employed to calculate the fault SOP. First, the SOP under each binned OAT window is
calculated as given in Eq. 5.

)

Ynum_fault_sym

P(OPOAT) - »0P_time

where num_fault_sym is the number of the observed fault symptom time, and OP_time is the total operational
period within each binned OAT window.



Secondly, the total probability distribution of fault symptom occurrence is calculated. There are multiple probability
weighting approaches that can be used to calculate the total probability [26] In this study, we employ the Bayesian
approach [27] to calculate the total probability distribution of a symptom under each fault type with various fault
severity levels as given in Eq. 6.

num_bin_window (6)
P(OPOAT) = zl: P(OPOAT)iP(OPOAT)i
where P(OPOAT) is symptom occurrence probability the under i binned OAT window as given in Eq. 5, P(OPOAT)
i

i
is the operating ratio of the i® binned OAT under all operating time, num_bin_window is the total number of
binned windows.

Then, the range of the fault SOP under various fault severity levels can be obtained for each type of fault as
illustrated in Section 4.

3.4 Fault symptom daily continuous duration

Fault symptom duration is the time period of a fault that may affect the measurement of a sensor in a dynamic
control system [9]. The analysis of fault symptom duration is critical to identify symptom patterns and can be used
for multiple applications such as the evaluation of fault detectability, sensor location optimization and fault isolation
[9,28-30]. In this study, the fault symptom daily continuous duration (SDCD) is proposed to evaluate a fault
symptom intensity in FCUs. The SDCD represents whether a fault symptom could be constantly present during an
operating day. A higher SDCD that a fault triggers, the measurement can solidly generate a symptom without being
affected by various operational conditions. For example, if the outdoor air damper of a FCU is stuck at a certain
position, the outdoor air flow, which is measured by the outdoor air flow sensor, should be continuously present as a
symptom during the operating day no matter what the operating condition is. However, the discharge air temperature
measured by the discharge air temperature sensor may not present continuous abnormality as discharge air
temperature is affected by controlling the cooling coil valve or heating coil valve.

The SDCD is calculated as given in Eq. 7.
SDCD = Max(Contiuous_OP_time_daily) @)
where Contiuous_OP_time_daily is the continuous sample of a fault symptom collected in an operating day.

The overall SDCD for a specific measurement can be obtained by evaluating the whole year operation of an
equipment, i.¢., the percentage of SDCD in a year as given in Eq. 8.

: @)
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n

where Y, SDC Dthres N is the number of days that the SDCD is more than a certain time threshold (e.g., 60 minutes in
i

this study), and operating_day is the total number of operating days.

3.5 Description of simulation

In this section, we illustrate how the fault simulation platform was set up and what control sequences and parameters
were applied to operate the FCU.

3.5.1 Description of the simulation platform

A FCU (as illustrated in the left part in Fig. 3) is a common terminal equipment to condition zones in residential and
commercial buildings in the U.S. and Europe. In this study, we employed the FCU model which was originally
developed as a tool for evaluating FDD approaches [19]. A vertical four pipe hydronic FCU was modeled through



the HVACSIM+ software [31]. Compared with other fault impact studies which often used EnergyPlus, the FCU
fault model developed on the HVACSIM+ software tool has several advantages as: 1) the platform includes more
detailed dynamic component models such as the damper model and the valve model; 2) the platform allows the
HVAC and control systems to be simulated with a much finer time step (as low as 2.5 second), so that the dynamic
operating performance of the equipment can be captured more accurately; and 3) various measurements can be
easily modeled and embedded in the simulation platform to provide complete measures to evaluate equipment’s
dynamic operation.

In this study, the FCU model includes a fan that operates at three speed levels as high, medium and low. The FCU is
controlled to maintain zone air temperature to the thermostat heating and cooling setpoints. The equipment physical
configuration schematic and measurements are illustrated in the right part of Fig. 3. In this schematic, the various
types of measurements are color labeled such that the red color text represents the sensor reading, and the blue color
text represents the control signal.

CLG_GPM
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CVLV_DM
Wz
DA_CFM 4 0 HTG_GPM
DAT ¢ [
HVLV_DM
a)oling coil
Heating coil
L 3-speed fan SPD
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OA damper Outsider air

A

Fig. 3. left: layout of FCU; right: schematic of a fan coil unit in the simulation.
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In this study, a total of 17 measurements including 14 sensors and three control signals were used to control and
monitor the FCU operation. The measurements included in the dataset are summarized in Table 1. It is noted that
some measurements (e.g., cooling coil entering water temperature and cooling coil returning water temperature) are
not often deployed in real practice. However, we included those measurements when developing the FCU model to
more accurately capture the equipment operating profile and validate the model. In this study, we also analyzed
those measurements to show that some measurements can be valuable to reflect the equipment operational
performance and hence can be considered when designing the FCU monitoring system.

Table 1. Summary of FCU data measurements.

No. Measurement Name Description Unit
1 RM TEMP Zone temperature °C
2 MAT Mixed air temperature °C
3 DAT Discharge air temperature °C
4 RAT Return air temperature °C
5 . . . Open
CVLV_DM Cooling coil valve control signal 0-1)
6 CLG GPM Cooling coil water flow rate m?/s
7 CLG RWT Cooling coil return water C
- temperature
8 HVLV DM Heating coil valve control signal Open(0-1)
9 HTG GPM Heating coil water flow rate m?/s
10 HTG RWT Heating coil return water C
- temperature
11 DA CFM Discharge air flow rate m?/s
12 OA CFM Outdoor air flow rate m?/s
13 DMPR DM Outdoor air damper control signal % Open
14 SPD Fan speed rev/s



15 MA_HUMD Mixed air relative humidity %
16 DA HUMD Discharge air relative humidity %
17 RA_HUMD Return air relative humidity %

Both the FCU fault-free model and fault inclusive model were validated in the Iowa Energy Center during the model
development process. The detailed fault model validation process can be found in [19].

3.5.2 Description of control sequence

The occupied operation mode was set to 6:00 to 18:00 from Monday to Friday. Four control sequences, which are
normally used in the FCU control in fields, were used for cooling coil valve control, heating coil valve control, fan
control, and outdoor air damper control, respectively.

During the occupied mode, the zone cooling setpoint was set to 22.2 °C (72 °F) and heating setpoint was set to 20
°C (68 °F). Two PID control loops were used to adjust both cooling coil valve position and heating coil valve
position respectively. If the zone temperature was above 21.67 °C (71 °F), i.e., 0.56 °C (1 °F) below the cooling
setpoint, the FCU switched to the “cooling” mode. The cooling coil valve PID loop was enabled and the cooling
valve position was controlled by the PID controller. If the zone temperature was below 20.56 °C (69 °F), i.e., 0.56
°C (1 °F) above the heating setpoint, the FCU switched to the “heating” mode. The heating coil valve PID loop was
enabled and the heating valve position was controlled by the PID controller.

In the FCU model, a 3-speed fan with “Automatic On/Off” (Auto) mode was adopted. The operation of fan on/off
status and fan speed is controlled according to the cooling PID output and heating PID output. There are three speed
levels: 1) low-speed condition: the PID outputs (the cooling/heating coil valve position) is > 0% and < 40%; 2)
medium speed condition: the PID outputs (the cooling/heating coil valve position) is >= 40% and < 80%; and 3)
high-speed condition: the PID outputs (the cooling/heating coil valve position) is >= 80% and < 100%. A 10% dead
band was set at each speed switchover level. When there is no heating or cooling demand, the supply air fan stops
running,.

The outdoor air damper was controlled to maintain a minimum damper position at 30% open position during the
operation of the FCU.

3.5.3 Other simulation settings

Apart from the control sequences for FCU operation, the weather data and zone load were defined to simulate the
outer and inner operation conditions. In this study, the TMY weather data file for Des Moines, IA, U.S., where the
FCU model was validated, was used as the weather inputs. The internal load density was set to be varied to simulate
a typical load pattern in a zone in commercial buildings on weekdays. The hourly zone load density during the
occupied hours within a weekday is given in Fig. 4.
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Fig. 4. Hourly zone load setting (kW).

3.5.4 Description of fault tests and data
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In the study, 18 types of faults which include two sensor related faults (i.e., zone air temperature sensor positive bias
fault and negative bias fault), six actuator related faults (i.e., outdoor air damper stuck fault, outdoor air damper
leakage fault, cooling coil valve stuck fault, cooling coil valve leakage fault, heating coil valve stuck fault, and
heating coil valve leakage fault), seven static part related faults (i.e., fan outlet blockage fault, heating coil fouling
airside fault, heating coil fouling waterside fault, cooling coil fouling airside fault, cooling coil fouling waterside
fault, filter restriction fault and outside air inlet block fault), and three control related faults (i.c., cooling control
reverse fault, heating control reverse fault, and control stable fault), were simulated. Among these 18 fault types, 13
faults were simulated at different fault severity levels as described in Appendix I of this paper. Consequently, a total
of 48 fault cases were simulated in this study. Each fault case was simulated for one-year operation to obtain a
complete operating data set under different weather conditions. Detailed descriptions for each type of fault and
implementation methods can be found in the Appendix I of this paper.

Both fault-free (i.c., fault exclusive) data and faulty (i.e., fault inclusive) data were generated in .csv format files.
The faulty data for each fault case is stored in one .csv file and is used to evaluate the fault effects. The fault-free
data was used for generating the baseline data.

4. Results

In this section, we presented the results of fault symptom analysis. We first provide the primary parameters obtained
from the fault-free data as fundamentals in Section 4.1. Then we illustrate the total SOP results from all fault test
cases and provide an example to show the analysis scenario as given in Section 4.2. We provide SDCD results to
show the fault symptom intensity followed by one example as given in Section 4.3. Finally, we discuss some
potential applications of the fault effect evaluation in Section 4.4.

4.1 Description of baseline data

In this study, the simulation time step was set to 5 seconds, which is a common time interval used by field direct
digital controllers to update their output. The simulation output rate was set to 1-minute interval, which is the
common data sampling rate in the BAS. Consequently, for the fault-free test case and each fault test case, the
simulation generates 187,920 operating minutes (i.e., the number of samples under a 1-min sampling rate and 12
operating hours) within 261 operating days for fault-free test and each fault test case in one year.

The OAT in the operating time period is equally binned into 10 windows with a bin size of 6 °C. Table 2 provides
the median OAT value, operation duration and operation time ratio in each binned OAT window. It can be seen that
the operation duration from the #5 window to the #9 window accounts for 74.5% operation minutes.

Table 2. Primary parameters for fault symptom evaluation.

Bin Bin Bin Bin Bin Bin Bin Bin Bin Bin
Bin No. #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
Median OAT (°C) -20.3 -144 -8.5 -2.5 34 94 15.7 21.3 27.2 33.1
Operation duration
(minutes) 2445 7580 11919 17665 31987 21548 21127 32737 32640 8272
Operation time ratio (%) 1.3 4.0 6.3 9.4 17.0 11.5 11.2 17.4 17.4 4.4

Among 17 measurements listed in Table 1, the symptom on the zone temperature measurement is generated based
on method #1, i.e., zone temperature is compared with the zone temperature setpoint to generate symptoms. In this
study, we extend 0.82 °C to the setpoint (i.e., the cooling setpoint plus 0.82 °C and the heating setpoint minus 0.82
°C) as the baseline to generate the fault symptom on the zone temperature. For the HVAC systems in commercial
buildings or residential buildings where the zone temperature setpoint is not required to be accurately maintained,
this may avoid too many observations of zone temperature abnormalities. Consequently, the positive symptom is
recorded when zone temperature is higher than 23.7 °C, and the negative symptom is recorded when zone
temperature is lower than 18.9 °C.

Symptoms on other 16 measurements are generated from method #2, i.e., the measurement data in the fault inclusive
data set is compared with the baseline (i.e., mean value of the measurement under each binned OAT window)
generated by the fault-free data set.

4.2 SOP analysis
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Here, we employ the “heating valve leakage” (VLVLeak Heating) fault as an example to demonstrate the SOP
analysis scenario. This fault was simulated under three severity levels as 20%, 50%, and 80% were simulated.
Figures 5 to 7 provide SOP distribution results for each measurement under each binned temperature window. The
darker circle (or the smaller circle) shows the lower SOP for the specific measurement, and the lighter circle (or the

larger circle) shows the higher SOP for the specific measurement.

From Figs. 5 to 7, it can be seen that for some measurements, the SOP values in the high temperature windows are
high. For example, under the fault severity level at 20% leakage, the SOP value of CVLV_DM at a positive direction
dramatically increases in the #7 window (i.c., binned OAT at 15.7°C). This is because when the OAT is high, the
cooling coil valve position should be increased to compensate for the extra cooling need caused by the leaking
heating valve fault. Hence, this fault causes a simultaneous heating and cooling operation status.

Negative symptoms
RM_TEMP ¢ .
MAT @ 0 4 0 0 . . ' .
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Fig. 5. SOP under each binned OAT window, VLVLeak Heating fault (20% leakage).
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Fig. 7. SOP under each binned OAT window, VLVLeak Heating fault (80% leakage).

The total SOP for each measurement under a specific fault severity level can be calculated by using Eq. 6. For the
faults which were simulated on various severity levels (e.g., for the cooling coil stuck fault, there are five severity
levels), the total SOP ranges can be obtained to indicate SOP values calculated under different severity levels. The
total SOP distribution results for each measurement under 18 fault types are illustrated in two enhanced heatmaps as
Figs. 8 and 9. In both enhanced heatmaps, the blue color cells and pink color cells represent a single SOP value,
which indicates two conditions as 1) there was only one fault severity level in such a fault type (e.g., the
Control_CoolingReverse fault), and 2) the SOP values are the same under different severity levels (e.g., the
RM _TMP for the OABIlock fault), for each measurement. In addition, we also color labeled the cells with red,
orange, and green respectively to categorize the total SOP ranges, which were obtained when a SOP value varies
under different fault severity levels. In both figures, the total SOP range values are categorized into three levels as 1)
the minimum value is higher than 50% (in red color). For example, the MAT under the SensorBias RMTemp Neg
fault (the SOP (+) ranges from 68% to 84%); 2) the difference between minimum value and maximum value is
higher than 40% (in orange color). For example, the cooling water flow rate (CLG_GPM) under the
SensorBias RMTemp Pos fault (the SOP (+) ranges from 33% to 57%); and 3) the maximum value is lower than
50% and difference between minimum value and maximum value is lower than 40% (in green color). For example,
the MAT under the FilterRestriction fault (the SOP (+) ranges from 4% to 21%).
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Fig. 8. Positive symptom (+) SOP range for each type of fault (%).
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Fig. 9. Negative symptom (-) SOP range for each type of fault (%).

Additionally, from Figs. 8 and 9, it can be seen that for the VLVLeak Heating fault, the total SOP value may be
different for various measurements. Three measurements such as HVLV_DM, DMPR DM, MA HUMD, the total
SOP values are relatively lower. This is due to two reasons. First, the fault symptoms on some measurements can be
hardly observed. For example, the total SOP value on the DMPR DM measurement (either for the positive
symptom or negative symptom) is zero because the damper control loop in the simulation does not include any
measurements in the FCU, and hence, is relatively isolated. Second, the operation time period when the occurrence
of the symptom is relatively short. For example, a high SOP value for the HVLV_ DM as can be seen in the # 1, #2,
#3 and #4 windows (i.e., when the OAT is relatively low) as shown in Figs. 5 to 7. However, the operation time
ratios for those four binned OAT windows are only 1%, 4%, 6% and 9% respectively. This causes the total SOP
value to be relatively low.

Five measurements (i.e., DAT, CVLV_DM, CLG_GPM, CLG_RWT, and HTG_GPM) have significantly high SOP
values (i.e., the minimum SOP is higher than 50%). This indicates that fault symptoms on those measurements can
be more easily observed. For example, for the DAT measurement, the positive symptom total SOP ranges from 50%
to 91% under different severity levels, i.e., the discharge air temperature would be more likely higher than the
baseline when the heating coil valve is leaking. When the valve leaking is more severe, the symptom will be more
observable. While for this measurement, the negative symptom total SOP is at 0% which means that it is impossible
to observe the discharge air temperature to be lower than the baseline when the heating coil valve is leaking.

Among the measurements that have high total SOP value, the narrow total SOP range of a measurement for a
specific fault indicates that this measurement may have a similar occurrence probability for various fault severity
levels. For example, the measurements of CVLV_DM, CLG_GPM, and HTG_GPM have positive symptoms SOP
range from 74% to 77%, 73% to 77%, and 86% to 97% respectively. Therefore, when using the SOP values to
develop fault diagnostics methods, those measurements may not be used as a general way to isolate faults regardless
of the fault severity levels. The SOP value may vary in a very wide range depending on different severity levels. For
example, the SOP values for the positive symptom on the DAT can range from 50% to 91%. This means that the
observability of fault symptoms on DAT are very sensitive to fault severity levels. But the overall symptom
occurrence is high and hence this measurement can be used for diagnostic inference.

In addition, nine measurements (i.e., RM_TEMP, MAT, RAT, HTG_ RWT, DA _CFM, OA_CFM, SPD, DA _HUMD,
RA_HUMD) have wide ranges of total SOP values, considering different fault severity levels. For example, for the
RM_TEMP, the total SOP value ranges from 4% to 60%. This not only indicates that the observability of fault
symptoms on those measurements are very sensitive to fault severity levels, but also shows that the usage of those
measurements in the diagnostic inference should be careful as will be discussed in Section 4.4.

4.3 SDCD analysis
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As the FCU operation simulation data is output at a 1-minute time interval, the SDCD analysis is to test how many
continuous minutes that a fault symptom can be observed. As illustrated in Section 3.4, SDCD represents whether a
fault symptom could be constantly present during an operating day. For each fault, the mean SDCD ranges of
positive symptom and negative symptom for all fault severity levels were calculated by averaging the SDCD values
calculated from 261 operating days.

Figures 10 and 11 illustrate the mean SDCD values of two symptom directions for each measurement respectively.
Using the same approach when presenting the total SOP results as illustrated in Figs. 8 and 9, we use blue cells and
pink cells to indicate the single mean SDCD value, as well as color labeled cells to categorize the SDCD range
values when various fault severities were performed in Figs. 10 and 11. We categorized the SDCD range values into
four levels according to the minimum value of the mean SDCD and maximum value of the mean SDCD. These four
levels are: 1) the minimum value is higher than 121 minutes (in red color). For example, the MAT under the
SensorBias RMTemp Neg fault (the mean SDCD (+) ranges from 475 to 558 minutes); 2) the minimum value is
between 61 minutes to 120 minutes (in orange color). For example, the DAT under the OADMPRLeak fault (the
mean SDCD (+) ranges from 72 to 73 minutes); 3) the minimum value is lower than 60 minutes and the difference
between minimum and maximum value is higher than 120 minutes (in yellow color). For example, the MAT under
the FilterRestriction fault (the mean SDCD (+) ranges from 24 to 127 minutes); and 4) the minimum value is lower
than 60 minutes and the difference between minimum and maximum value is less than 120 minutes (in green color).
For example, the MAT under the OADMPRLeak fault (the mean SDCD (+) ranges from 42 to 106 minutes).

It can be seen that for some measurements, the mean SDCD is very low. For example, for the damper position
control signal (DMPR_DM), the mean SDCD of negative symptom (i.¢., the damper control signal is lower than
30% as it should be) is higher than 60 minutes only for the “outdoor air damper stuck™ fault under certain fault
severity levels, but not for other faults. After checking the operation, it was found that this symptom occurs when
the outdoor air damper is stuck at a higher position during the winter season (when the OAT is very low).
Consequently, this caused the FCU operation to be terminated according to a specific control sequence when the
MAT was lower than 0 °C. Therefore, the DMPR DM output zero value which was lower than the baseline. This
indicates that the outdoor air damper control signal cannot be strongly affected by most faults, and hence, the
symptom cannot continuously present. On the contrary, the mean SDCD values for some measurements are higher
for most faults. That is to say, the symptom can continuously present during a day if a fault occurs. For example, the
MAT presents a higher mean SDCD value at most faults. However, the range of mean SDCD value for some faults
at different severity levels may be very wide. For example, for the cooling coil stuck fault, the mean SDCD of MAT
can range from 2 minutes to 376 minutes depending on various fault severity levels. This suggests that the
continuous symptom presence may be sensitive to certain fault severity levels. For the minor fault, the fault
symptom may not be observed continuously.

In addition, the evaluation of the SDCD can be carried out by analyzing the percentage of days that the SDCD value
is higher than a predefined threshold value. For example, the percentage of days, which the SDCD value is higher
than 60 minutes, can be calculated to determine if the fault symptom is a strong symptom or a weak symptom.
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Fig. 10. Positive symptom (+) mean SDCD range for each type of fault (minutes).
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Fig. 11. Negative symptom (-) mean SDCD range for each type of fault (minutes).

Here, we use the “cooling coil stuck” (VLVStuck Cooling) fault as an example to demonstrate the SDCD analysis.
This fault was imposed at five severity levels as the valve was stuck at 0%, 20%, 50%, 80% and 100% position
respectively. Figure 12 shows the percentage of operating days that the SDCD values are higher than 60 minutes
under each fault severity level. It can be seen that under the VLVStuck Cooling fault, four measurements such as
DAT, MAT, HTG_RWT, and DA _HUMD tend to steadily present a higher percentage of operation days (i.e., higher
than 50% operating days) under the SDCD value is higher than 60 minutes. For example, for the DAT measurement,
the percentage of operating days reaches 87% for the positive symptom (discharge air temperature is higher than the
baseline) when the valve is stuck at 0% position. This value is 67%, 82%, 84% and 84% for negative symptoms
(discharge air temperature is lower than the baseline) when the valve is stuck at 20%, 50%, 80% and 100% position
respectively. However, for some measurements, the percentage of days that the SDCD is higher than 60 minutes is
higher only under some fault severity levels. For example, for the SPD measurement, only when the cooling coil
valve is stuck at 0% position, the percentage of days that the SDCD value is higher than 60 minutes can reach 75%.
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Fig. 12. Percentage of operating days that the SDCD is higher than 60 minutes (using VLVStuck Cooling fault).

4.4 Discussion

In this section, we discuss applications of the developed framework, as well as the obtained SOP and SDCD values
to facilitate the development of FDD approaches as well as FCU fault prioritization.

4.4.1 SOP scalability

In the study, the total SOP distribution for each measurement is calculated by aggregating SOP values in each
binned OAT window. A similar total SOP distribution can be calculated by considering the operation time ratio
under different zone loads if the zone load presents a wide range distribution.

In addition, the total SOP distribution can be re-calculated when the operating time ratio within each binned OAT
window is significantly different from what is presented in this study. For example, if a building is located in a hot
climate zone where a higher percentage of operation time period is present during the OAT is very high, the total
SOP should be re-calculated by using the new percentage of time period given in Eq. 6. For this purpose, we provide
the entire SOP distribution table, which lists all the SOP distributions under each binned OAT window for each type
of fault in Appendix II on the website. Users can generate the new total SOP distributions by adjusting the
operation time ratio as given in Eq. 6 according to the climate zone where their buildings are located.

4.4.2 Usage for probability-based fault diagnostics

The entire SOP distribution table can be used to develop inference approaches such as Bayesian Network (BN),
fuzzy logic or fault tree in the fault diagnostic process. For example, in the BN diagnostic method, this table can be
used as the conditional probability distributions in developing the BN parameter model [32]. It is noted that the total
SOP value may highly rely on the fault severity level as shown in Section 4.2. The total SOP values for some
measurements have a wide range depending on different fault severity levels. The usage of high total SOP value
could cause the fault diagnostic approach to be very sensitive to the measurement, and as a result, could lead to
mis-diagnosis. Therefore, two approaches are suggested to address this issue. First, the low total SOP value can be
employed at the initiative step to weaken the sensitivity of measurement and modified after the real diagnostic result
is obtained to evaluate the fault diagnostic method. For example, for the RM_TEMP measurement, the total SOP
value ranges from 4% to 60% for the VLVLeak Heating fault as given in Section 4.2. An initial total SOP value of
5% to 15% can be adopted to test the diagnostic method. Second, a discretization processing can be used to
discretize the total SOP value [33]. For example, the total SOP value of a measurement can be divided into three
levels as “weak™ (say, the total SOP value from 0% to 25%), “moderate” (say, the total SOP value from 26% to
50%), and “strong” (say, the total SOP value from 51% to 100%). By this means, the RM_TEMP measurement
under the VLVLeak Heating fault can be considered as a measurement showing “moderate” symptoms.

4.4.3 Fault ranking according to impact on measurements

The fault ranking based on the energy consumption impact and zone comfort impact was usually carried out. In this
study, we rank the fault according to the fault impacts on system operation performance, i.c., fault effects on various
measurements. Here, we use the SDCD result and three steps to rank the fault. First, we classify three SDCD levels
such that the SDCD is less than 60 minutes (i.e., level 3 measurement), the SDCD is between 61 minutes to 120
minutes (i.e., level 2 measurement), and the SDCD is more than 121 minutes (i.c., level 1 measurement). Second, we
analyze how many measurements may fall into that level. Last, we rank the fault according to the number of
measurements following the order of level 3 to level 1. This reflects that fault impacts on measurements based on a
temporal scale. Therefore, the more numbers of measurements in the longer duration of symptom occurrence may
indicate that the fault affects the system operating performance more significantly. We use the SDCD value
calculated under the minor fault severity level to rank the fault. For example, for the VLVStuck Heating fault, the
mean SDCD values of positive symptom on the RM_TEMP measurement is from 4 minutes to 508 minutes at
different fault severity levels, as can be seen in Fig. 10. Here, we use 4-minute and this measurement falls into the
level 3 measurement class. Additionally, if a measurement falls into two classes for the positive symptom and the
negative symptom respectively, we classify the measurement to a higher level. For example, for the MAT under the
Control_HeatingReverse fault, the SDCD values for the positive symptom and negative symptom are 424 minutes
and 79 minutes respectively. Therefore, we classify this measurement into level 1. Table 3 provides the fault ranking
result.
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Table 3 Fault ranking result (according to the lowest SDCD value of each measurement).

Number of level 1 Number of level 2 Number of level 3
measurements measurements measurements
Rank No. Fault name (>121 minutes) (61 to 120 minutes) (<60 minutes)
1 Control HeatingReverse 16 0 1
2 VLVLeak Heating 15 0 2
3 FanOutletBlockage 10 1 6
4 VLVLeak Cooling 9 2 6
5 Control CoolingReverse 8 3 6
6 SensorBias RMTemp Pos 8 2 7
7 SensorBias RMTemp Neg 7 4 6
8 OABlockage 7 2 8
9 Control Unstable 5 6 6
10 VLVStuck Heating 4 3 10
11 FilterRestriction 2 9 6
12 Fouling Cooling_Airside 2 7 8
13 Fouling Heating Airside 2 7 8
14 OADMPRLeak 1 5 11
15 OADMPRStuck 0 7 10
16 Fouling Cooling Waterside 0 6 11
17 Fouling Heating Waterside 0 5 12
18 VLVStuck Cooling 0 1 16

It can be seen that the Control_HeatingReverse fault may cause the most severe fault impact on the system operating
performance because under such a fault, the mean SDCD values for 16 measurements are higher than 121 minutes
(i.e., level 1 measurement). However, the VLVStuck Cooling fault has a minor impact on the system operating
performance because under such a fault the mean SDCD value for only one measurement (i.e., HTG_RWT) is
higher than 61 minutes. Two reasons lead to a lower ranking result of the VLVStuck Cooling fault. First, we select
the mean SDCD value from the minor fault severity level (i.e., valve stuck at a 20% position) to rank the faults.
Consequently, under this fault severity level, the operational behavior is very close to the normal operational
behavior. This causes minor and unobservable fault symptoms. Secondly, the equipment operation is relatively
robust when this fault occurs because the control sequence can compensate for the negative effects caused by the
fault. For example, the control sequence can increase the fan speed to provide more cooling needs in the cooling
mode, or increase the heating coil valve position to compensate for the unnecessary cooling in the heating mode.

5. Conclusions and future work

In this paper, we illustrate a simulation-based evaluation framework to systematically analyze fan coil unit (FCU)
fault effects which are presented as fault symptoms on various measurements. In the framework, we discussed fault
symptom generation methods commonly used in monitoring HVAC systems. When analyzing fault symptoms, apart
from the fault symptom direction and magnitude which were previously investigated, we employed two novel
metrics, namely fault symptom occurrence probability (SOP) and fault continuous symptom daily duration (SDCD)
to quantify the fault symptom occurrence likelihood and intensity on measurements under various faults. By using
both metrics to analyze fault symptoms, fault effects on various measurements in a FCU can be completely
evaluated.

We imposed 18 types of faults with different severity levels on the developed FCU simulation platform to generate
48 fault simulation cases. For each case, the simulation was carried out to generate one-year simulation results so
that fault inclusive data cover all possible inner and outer operational conditions. From the analysis of SOP and
SDCD distributions, we demonstrate that both metrics can benefit multiple applications such as the development of
probability-based FDD approaches and fault prioritization.

Our future works include: 1) using the developed method to analyze fault symptoms on more HVAC systems and
equipment so that measurement sensitivities can be obtained for different type of HVAC systems; 2) employing the
Monte Carlo simulation to simulate faults under different operation modes, climate conditions, and system
configurations so that the SOP and SDCD can be more accurately calculated to reflect faulty operation under various
real operational conditions; and 3) evaluating fault impact propagation in a completed HVAC system so that
hierarchical distribution features of fault effects on various measurements can be obtained.
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