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Importance of Including Distributed Energy 
Resources in Load Forecasts

▶ Distribution system investments: replacing aging infrastructure and 
distribution expansion

▶ Procurement of generating capacity to meet peak demand
▶ Proactive investments to increase hosting capacity
▶ Evaluating the costs and benefits of incentives or policies to promote 

distributed energy resources (DER)
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Impact of DPV on T&D Investments:
Potential Deferral Value

Source:	Adapted	from	Cohen	et	al.	2016
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Increasing Adoption of DER Increases the 
Importance of Accurate Forecasts in Planning

Costs	of	roughly	$70	million	
from	severe	underforecasting
and	$20	million	from	severe	
overforecasting for	a	utility	
with	sales	>10TWh/yr and	
with	up	to	8.5%	of	sales	from	
DPV	by	the	end	of	a	15-year	
period

Source:	Gagnon	et	al.	(forthcoming)
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Planning for a Distributed Disruption: 
Innovative Practices for Incorporating 
Distributed Solar into Utility Planning

• Analysts	project	that	distributed	solar	photovoltaics (DPV)	will	continue	
growing	rapidly	across	the	United	States.

• Growth	in	DPV	has	critical	implications	for	utility	planning	processes,	
potentially	affecting	future	infrastructure	needs.

• Appropriate	techniques	to	incorporate	DPV	into	utility	planning	are	essential	
to	ensuring	reliable	operation	of	the	electric	system	and	realizing	the	full	
value	of	DPV.

Context

• Comparative	analysis	and	evaluation	of	roughly	30	recent	planning	studies,	
identifying	innovative	practices,	lessons	learned,	and	state-of-the-art	tools.	

Approach

• Electric	infrastructure	planning	(IRPs,	transmission,	distribution).
• Focus	on	the	treatment	of	DPV,	with	emphasis	on	how	DPV	growth	is	
accounted	for	within	planning	studies.

Scope
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Key Findings

▶ Forecasting load with DER is often “top-down”: separately forecast load 
and quantity of DER at the system level, allocate that system forecast 
down to more granular levels. 

▶ Many factors affect customer decisions to adopt DER, including the cost 
and performance of DER, incentives, customer retail rates, peer-effects, 
and customer demographics.  Customer-adoption models can help 
account for many of these factors. 

▶ Forecasts are uncertain: It may be valuable to combine various 
approaches and to benchmark against third-party forecasts.
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High End of 3rd Party Forecasts Suggests 
More DPV Than Considered By Utilities
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A Variety of Methods are Used to Develop 
DPV Forecasts 

  19 

 
 
Note: All utility planner estimates for the near term (2020) are shown in darker colors. Longer-term estimates are 
depicted in lighter colors and pertain to the year 2030 with the exception of APS, whose long-term estimate 
references the year 2029. As noted in Table 5, some forecasts use multiple methodologies. In such cases, we used 
our judgment to categorize the forecast’s methodology. 

Figure 7. Utility DPV Forecasts Grouped by Forecasting Methodology 

 
3.5 Advancing Customer-Adoption Models  

As discussed in Section 3.2, currently used customer-adoption models do not clearly agree on all 
parameters, methods for developing parameters are not always clear, and the models do not 
always exploit the larger amounts of data available as more customers adopt DPV. As DPV 
deployment has increased, the sophistication of methods used to analyze customer preferences 
and predict PV adoption has also improved. Roughly speaking, these methods predict aggregate 
deployment in a top-down (using regional-level characteristics) or bottom-up (using individual-
level characteristics) manner. In this subsection, we highlight recent state-of-the-art models that 
have been used to forecast DPV adoption, and we note unresolved issues in the literature. 
Though these advanced methods are not employed in the utility planning documents we review, 
they build on the customer-adoption modeling framework described in Section 3.2 and represent 
potential improvements to DPV forecasting tools. 
 
3.5.1 Improving Representation of Customer-Adoption Decisions 

Agent-based models (ABMs) have emerged as common, bottom-up techniques for simulating 
customer adoption of new technologies, because they are well suited to represent the 
complexities of consumer behavior and technology valuation. ABMs are a class of 
computational models for simulating the interactions and actions of distinct autonomous agents 
and, by association, assessing their effects on a larger system. These models have been 
successfully used to forecast aggregate PV deployment at the city, regional (Rai and Robinson 
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DPV Deployment Drivers

▶ DPV economics: 
◼ DPV technology cost and performance 
◼ Federal and State incentives 
◼ New business models (e.g., third party ownership)
◼ Electricity prices 
◼ Rate design (including the availability of Net Energy Metering)

▶ Public policy:
◼ Renewables Portfolio Standards and environmental requirements
◼ CO2 regulation

▶ Customer preferences:
◼ DPV deployment may be shaped by interest in increased customer choice

▶ Macro factors:
◼ Economic growth, load growth, oil prices, and cost and availability of 

complementary technologies (e.g. storage and electric vehicles)
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Customer-adoption Modeling Brings 
Customer Decisions Into DPV Forecast

Method Description

Predictive	Factors	Used
Recent	
installation	
rates

Incentive
program	
targets

Technical	
potential

PV	
economics

End-user
behaviors

Stipulated	
Forecast

Assumes	end-point
DPV	deployment

Historical	
Trend

Extrapolates future	
deployment	from	
historical	data

X

Program-
Based	
Approach

Assumes program	
deployment	targets	
reached

X

Customer-
Adoption
Modeling	

Uses	adoption	models	
that	represent end-
user	decision	making	

X X X X
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Technical Potential Estimates Are Typically 
Based on Customer Count and Rooftops

▶ Technical potential studies used by utilities in our sample of studies were 
based primarily on customer counts and floor space surveys
◼ Rooftop space is based on average number of floors and assumptions about 

the density of PV arrays
▶ New emerging tools like Light Detection and Ranging (LiDAR) imaging 

can refine technical potential estimates:
◼ Infer shading, tilt, and azimuth from rooftop images 
◼ Apply availability constraints to exclude unsuitable orientations or insufficiently 

large contiguous areas
▶ Can also refine with permitting and zoning restrictions, if applicable
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3.2 Customer-Adoption Modeling  

The customer-adoption modeling approach explicitly models consumer decision making based 
on PV economics. This approach is used in five of the planning studies reviewed, including those 
by PG&E (CPUC Mandated scenario, conducted by the CEC), NWPCC, PAC (conducted by 
Navigant), PSE (conducted by Cadmus), and WECC (conducted by E3).13 A key benefit of 
customer-adoption models is their ability to generate new, self-consistent DPV-adoption 
forecasts with varying assumptions about customer economics or policies. For example, Cadmus 
generates distinct high and low forecasts for PSE based on different assumptions about the 
renewal of DPV incentives. PAC uses customer-adoption modeling to create low-, base-, and 
high-penetration cases from various DPV-cost, DPV-performance, and utility-rate-escalation 
scenarios (Figure 2).14 This approach enables a bottom-up assessment of individual drivers 
instead of presupposing the impact that drivers might have on DPV deployment. On the other 
hand, projections of customer economics are still highly uncertain given potential changes in 
rates, policies, and DPV costs. Customer-adoption models provide a coherent framework for 
assessing the impact of these changes on DPV adoption, but they still produce uncertain 
forecasts.  
 

 
Figure 2. DPV Penetration Scenarios from PAC’s Customer-Adoption Modeling 

Four of the five aforementioned planning studies (all but NWPCC’s, which is discussed at the 
end of this subsection) follow a similar underlying process in their customer-adoption modeling 

                                                
13 Sacramento Municipal Utility District (SMUD) worked with Black & Veatch to develop a DPV forecast based on 
a customer-adoption model, similar to the models described here (Clark 2015, Wilson et al. 2015). We note 
interesting aspects of their analysis throughout this document, but we did not have a particular publicly available 
planning study to comprehensively include in our review. Relative to the other customer-adoption models, a clear 
innovation in the Black & Veatch approach is to add further granularity to where (i.e., on which distribution feeders) 
adoption is likely to occur. This is discussed further in Section 7.  
14 It would also be possible to evaluate the effects of alternative rate designs (e.g., NEM alternatives, time-of-use 
rates, demand charges, or increased fixed charges) on the DPV forecast, but no utility investigated this. Previous 
research by Lawrence Berkeley National Laboratory (Darghouth et al. 2016) uses the National Renewable Energy 
Laboratory’s (NREL’s) SolarDS model to evaluate the impact of alternative rate designs on DPV adoption across 
the United States. Bringing rate-design decisions into utility planning studies is further discussed in Section 11.  
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▶ Willingness-to-adopt curve 
translates the payback period of 
DPV to ultimate share of the 
technical potential.

▶ Payback period depends on both 
the cost to the consumer and the 
consumer bill savings 

▶ The cost to the consumer will be 
affected by declining costs of DPV 
and availability of incentives (e.g. 
the investment tax credit). 

▶ The consumer bill savings depend 
on rate levels, rate design, and 
availability of Net Metering. 

Factors Affecting Customer Economics of 
DPV Can Significantly Affect Forecasts

▶ PacifiCorp forecast of DPV 
created a High and Low forecast 
by varying factors impacting 
customer economics: 
◼ DPV cost, DPV performance, and 

electricity retail rate escalation
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The flat rate scenario leads to the highest deployment in 2050, and the lower feed-in tariff 
scenario leads to the lowest. Most of the rate and compensation scenarios follow temporal 
trends similar to that of the reference scenario (with different magnitudes), but the time-
varying rate scenario follows a different overall trajectory. Specifically, under the time-varying 
rate scenario, PV deployment is greater than in the reference scenario through about 2030, 
after which it falls below the reference deployment. This is because, at low solar penetrations, 
the higher average compensation for PV under time-varying rates boosts PV deployment. 
However, as regional PV penetration increases and the energy and capacity value of PV erodes, 
compensation for net-metered PV generation also erodes under time-varying rates, leading to 
lower deployment. 
 

 
Figure 7. National distributed PV deployment by scenario (with rate feedback effects included) 

Figure 8  focuses on 2050 cumulative PV deployment for each of the seven alternative scenarios 
relative to the reference scenario. Only the flat rate and higher feed-in tariff scenarios increase 
deployment; all other scenarios reduce deployment. The results indicate that, were all 
residential and commercial customers on a time-invariant flat rate with no fixed or demand 
charges, PV deployment would increase by 5% owing to the increased average compensation 
under that simple rate design. The higher feed-in tariff level of $0.15/kWh also increases 
deployment relative to the reference scenario; the difference is clearly related to the tariff’s 
magnitude, and higher values would further increase deployment. A lower feed-in tariff level 
would lead to substantially lower deployment than the reference case, 79% lower for our 
$0.07/kWh  feed-in tariff scenario. Due to the declining value of PV with increased penetration, 
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the time-varying rate scenario leads to a reduction in cumulative PV deployment of 22% in 2050 
compared with the reference scenario; as indicated earlier, time-varying rate structures actually 
increase PV deployment through about 2030.  
 
Both fixed-charge scenarios reduce PV deployment in 2050: a $10/month charge applied to 
residential customers reduces total cumulative deployment by 14%, and a $50/month charge 
reduces deployment by 61%. Partial net metering, where PV generation exported to the grid 
(i.e., not consumed on site) is compensated at a calculated avoided-cost rate, reduces 
deployment by 31% because in this analysis the assumed avoided cost from PV is lower than 
the average retail rate, reducing average compensation and increasing the customer’s PV 
payback time. 
 

 
Figure 8. Change in modeled cumulative national PV deployment by 2050 for various rate 
design and compensation mechanism scenarios, relative to the reference scenario  (with rate 
feedback effects included) 
 
The distributions of PV deployment differences (compared with the reference scenario) across 
U.S. states vary substantially by scenario (Figure 9). For the two fixed-charge scenarios, the 
range is relatively small, primarily reflecting differences in the average residential retail rate and 
average annual customer load across states.  For example, states with large annual average 
customer loads or high average retail rates will see a smaller impact from a given increase in 
fixed customer charges.  The flat rate scenario increases deployment relative to the reference 
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California conducted by Navigant (Navigant 2007). The technical potential for WECC assumes 
that 50% of customers could add PV and that typical system sizes are 4 kW for residential and 50 
kW for commercial customers (WECC 2015).  
 
The willingness-to-adopt curve is a relationship between the customer economics of PV (often 
represented by the simple payback period) and the ultimate market share that could be achieved 
with enough time (as a percentage of the technical potential). The willingness-to-adopt curves 
used in the utility forecasts are shown in Figure 4. The willingness-to-adopt curves used by PAC 
were developed by Navigant through previous research based on customer surveys, historical 
program data, and industry interviews. The curve used by the CEC for PG&E’s forecast is from a 
customer-adoption model (SolarSim) in an Arizona PV study by R.W. Beck (2009), which 
averages curves from Navigant and curves developed based on heat pump adoption (Kastovich et 
al. 1982).15 PSE references the same curve used by PG&E, though it ultimately develops its own 
curve, citing concern that PSE customers may have different preferences.16 The WECC curves 
have the same functional form found in NREL’s SolarDS model. The simple payback period 
accounts for the cost of purchasing a PV system, the bill savings (which depend on PV 
performance and retail rates), and incentives. 
 

 
Note: Dashed gray lines (WECC) are for existing buildings, and dotted gray lines are for new buildings. 

Figure 4. Willingness-to-Adopt Curves Used in Utility Customer-Adoption Models 

To develop an annual adoption rate, PAC, PG&E, and WECC use a diffusion curve to estimate 
the fraction of the ultimate market share that would be achieved in each year, depending on time 
since PV was introduced into the market (Figure 5). PAC uses the Fisher-Pry curve, while PG&E 
and WECC use the Bass diffusion curve, described below in Text Box 1. For the PG&E forecast, 

                                                
15 PAC’s payback period accounts for state-specific rebates and retail rates. 
16 To develop the willingness-to-adopt curve, Cadmus Group estimated the payback period for historical years and 
the market share as a percentage of the technical potential from historical adoption. It then fit a curve to this 
historical data as the basis for the willingness-to-adopt curve. One limitation of this approach is that it ignores the 
diffusion component that is included in the PAC and PG&E forecasts. HECO used a similar fitting process in the 
customer-adoption forecast used in their 2016 PSIP.  
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Figure 9. Willingness-to-Adopt Curve Suitable to Leasing Options Used in NREL's dSolar 

Additional constraints that can be considered in models are the fraction of households that have 
sufficient savings for cash purchases and how household creditworthiness (e.g., FICO scores) 
would limit access to financing.  
 
3.5.3 Improving Estimates of Rooftop Technical Potential 

Technical potential for DPV refers to either the feasible number of buildings on which DPV 
could be installed or the feasible amount of DPV generation capacity that could be installed, 
regardless of economic considerations. Because the vast majority of DPV has been sited on 
rooftops, current estimates of DPV technical potential are essentially synonymous with available 
rooftop space for a region’s building stock. Rooftop space can be estimated via top-down or 
bottom-up methods. Top-down estimates are based on territory-wide statistics, such as the 
number of buildings in the area, which are derated by assumptions about the available rooftop 
area per building, the percentage of buildings with usable roofs, and so on (e.g., Denholm and 
Margolis 2008). Bottom-up estimates are typically based on Light Detection And Ranging 
(LiDAR) imagery to identify suitable solar roof areas for a representative sample of actual 
buildings in the region, where shading, tilt, and azimuth attributes can be inferred from the 
rooftop images (Gagnon et al. 2016). For each rooftop imaged, availability constraints can be 
applied to exclude unsuitable rooftop orientations or insufficiently large contiguous areas. Where 
feasible, technical potential estimates can also exclude building stock based on permitting and 
zoning considerations. Such technical potential estimates need to be updated over time to reflect 
building block growth, tree growth/removal, and PV efficiency improvements. 
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ing works of Fourt and Woodlock (1960), Mansfield
(1961) Floyd (1962), Rogers (1962), Chow (1967)
and Bass (1969) appeared. The interest excited by
these papers can be judged by the numbers of
citations for these papers on ISI Web of Science (in
April 2005) which were 119, 428, 10, 988, 58 and
582 respectively. Two papers, Fourt and Woodlock,
and Bass, use dnew productT rather than technology
in their titles. Although the approach to modelling
the diffusion of a technology or a new consumer
durable is very similar, in recent years, new product
applications in marketing have tended to dominate in
the overall diffusion literature.

The phenomenon of innovation diffusion is shown
in a stylised form in Fig. 1. Cumulative adoption and
period-by-period adoptions are shown, but which of
these two representations is of greater importance
depends on the application. For example, in the
diffusion of mobile phones, a service provider is
concerned about the demand on the infrastructure and
is thus concerned with cumulative adoptions; a
handset supplier is concerned with meeting demand
and will thus want to model and forecast period by
period adoptions. In this example, the service provider
will want to know the level of adoption at a particular
time and the eventual number of adopters; the handset
provider will want to know the rate of adoption at a
given time, the timing of peak demand and the
magnitude of peak demand. As a counterpoint to the
smooth curves of Fig. 1, Fig. 2 shows the comparable

information for the diffusion of residential telephones
in the United Kingdom. The period-by-period adop-
tions depart fairly drastically from the bell-shaped
curve. The difficulties in forecasting are also demon-
strated, as in 1975, period-by-period demand appears
to have peaked; decisions to expand production may
have been cancelled or postponed; however, in 1979,
a 43% higher peak is reached.

The main models used for innovation diffusion
were established by 1970; of the eight different basic
models listed in the Appendix, six had been applied in
modelling the diffusion of innovations by this date.
The main modelling developments in the period 1970
onwards have been in modifying the existing models
by adding greater flexibility to the underlying model
in various ways.

The main categories of these modifications are
listed below, and in each case, the citations of a
pioneering paper are quoted as a proxy for research
activity in this area:

– the introduction of marketing variables in the
parameterisation of the models; Robinson and
Lakhani (1975)

– generalising the models to consider innovations at
different stages of diffusions in different countries;
Gatignon, Eliashaberg and Robertson (1989)

– generalising the models to consider the diffusion of
successive generations of technology; Norton and
Bass (1987).
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Fig. 1. Stylised diffusion curves.

N. Meade, T. Islam / International Journal of Forecasting 22 (2006) 519–545520

▶ The Bass diffusion model and Fisher-Pry model are two common 
choices that produce the characteristic “S-Curve” in adoption.

Diffusion of Technology Impacts Time to 
Achieve Ultimate Market Share

Source:	Meade	and	Islam	(2006)
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▶ Important feature of diffusion curves is that period of rapid adoption 
can follow period with relatively low shares of adoption.  

▶ Similar behavior has been observed for several consumer durable 
goods including refrigerators, VCRs, internet access, and mobile 
phones. 

Diffusion Curves for DPV Forecasts Are Often 
Based on Fits to Data, and Can Vary Widely 
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the parameters that define the curve shape are derived from a survey of empirical studies.17 The 
source of the parameters is not clear for PAC18 and WECC. For PAC, the “Years Since 
Introduction” starts when the simple payback period is first less than 25 years. In contrast, PSE 
does not appear to use a diffusion curve—the realized market potential is the same as the 
ultimate market potential in each year.  
 

 
Figure 5. Diffusion Curves Used in Customer-Adoption Models 

For comparison, NREL’s dSolar model estimates Bass diffusion parameters for each state based 
on historical adoption rates (Sigrin et al. 2016, Appendix D). The number of years since 
technology introduction, key to these calculations, depends on the state-specific diffusion 
parameters as well as the current penetration rate. The median values across all states shown in 
Figure 5 imply market diffusion starting between 1998 and 2005. Advantages of this approach 
are that the Bass diffusion parameters reflect territory-specific trends and can be readily updated 
as more customers adopt DPV. The disadvantages are that year-to-year volatility in adoption can 
bias estimates, and the parameter estimates invariably embed some knowledge of prior historical 
techno-economic conditions, which may not reflect future conditions. 
 
The S-shape of the diffusion curves in these forecasts is not unique to DPV. Historical adoption 
rates of many different kinds of technologies—including refrigerators, VCRs, internet access, 
and mobile phones—have been modeled with S-shaped curves (Meade and Islam 2006, Kemp 
and Volpi 2008). This pattern of adoption implies that market penetration in 5–10 years can be 
significant even if recently observed shares of adoption are small. However, there appears to be 
no clear agreement about the number of years between DPV introduction and the rapid growth 
phase. Limitations of these existing customer-adoption models are addressed in Section 3.5. 
 

                                                
17 Specifically, the study uses a coefficient of innovation (p) value of 0.03 and a coefficient of imitation (q) value of 
0.38 derived from a survey in Meade and Islam (2006).  
18 Navigant discusses 12 factors that affect the parameters of the Fisher-Pry curve, including the payback period, the 
market risk, the technology risk, and the amount of government regulation. It does not, however, describe how these 
factors translate into the particular parameters it chose to model the diffusion curve. For residential customers, it 
appears Navigant uses a tm of about 15 years and a ∆! of about 16 years. For commercial customers, tm is about 20 
years, and ∆! is about 23 years. Navigant does not explain the differences in the curve parameters.  
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Propensity to Adopt Accounts for 
Factors Like Customer Demographics

Method Description

Predictive	Factors	Used
Location of	
existing	load	or	
population

Location	of	
existing	DPV

Detailed	
customer
characteristics	

Proportional	to	
Load	

Assumes	DPV	is	distributed	in	
proportion to	load	or	
population

X
Proportional to	
Existing	DPV

Assumes	DPV	grows in	
proportion	to	existing	DPV X

Propensity	to	
Adopt

Predicts customer	adoption	
based	on	factors	like	customer	
demographics	or	customer	
load	

X X X
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Predicting the Location of DPV 
Adoption Using Propensity to Adopt  

C - 39 

 

FIGURE 3-8   
PG&E SERVICE AREA – SCENARIO 1 - ESTIMATED PV INSTALLED IN 2020 AND 2025 

Source:	PG&E	2015	DRP
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▶ Residential Customers:
◼ Home ownership
◼ Electricity usage
◼ Income 
◼ Credit
◼ Building characteristics (area, 

number of stories)

▶ Non-Residential Customers:
◼ Property Ownership
◼ Electricity usage
◼ Retail Rate
◼ Business type (NAICS) 
◼ Building characteristics (area, 

number of stories)

Factors Considered in PG&E’s Propensity 
to Adopt Metric

▶ Propensity to adopt metric is then used to allocate system forecast 
down to customers.  

Source:	PG&E	presentation	to	DRPWG	(4/2017)
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▶ Agent based models simulate 
actions and interactions of agents 
to assess their individual effects 
on a larger system.
◼ Allows for better representation of 

heterogeneity of customers and 
more complex decision-making 
criteria

▶ Discrete choice models have a 
well defined methodology for 
soliciting customer preferences 
and can model competition 
between several options
◼ Provides framework for 

empirically derived forecasts

▶ Some open questions:
◼ How might consumption change 

after adoption of DPV: is there a 
rebound effect? 

◼ How does the willingness-to-
adopt curve vary across customer 
segments?

◼ How does customer adoption of 
DPV compare to customer 
demand for community solar?  Do 
these two options compete 
directly for market share or are 
they complementary? 

Advances in Customer Adoption Modeling
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Additional Challenges: Removing DER from 
Historical Load to Create Accurate Load Forecasts

▶ PJM recently adjusted load 
forecasting methodology to better 
account for behind-the-meter PV

▶ Original approach used the 
observed load to forecast future 
load, without adjusting for effect of 
behind-the-meter DPV on the 
observed load
◼ Load reductions from behind-the-

meter DPV were being attributed to 
new end uses in the load forecasting 
model

▶ Revised approach removes estimate 
of historical PV before forecasting 
load, then adds back in forecast of 
DPV to new net load forecast

Historical	observed	
load	(embeds	DPV)

Combined	load	
forecast	and	DPV	
forecast

Historical	DPV
Forecast		DPV

Actual	load								
(w/o	DPV)

Load	forecast	
(w/o	DPV)

Historical

Additional	detail:	Falin (2015)
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More Examples of DER in Transmission 
Plans

▶ Evaluating DPV as a resource option: 
◼ CAISO transmission planning process identifies transmission needs to meet 

reliability criteria, then examines feasibility of meeting needs with DPV. 
◼ If CAISO finds it is feasible to meet needs with increased DPV, information is 

passed onto CPUC and utilities to determine if programs to encourage 
additional DPV would be cost-effective.  

▶ Locating DPV within the system:
◼ ISO-NE and NYISO use the load-zone-level DPV forecast in their capacity 

markets and transmission planning. PJM adjusts the load-zone peak demand 
by the on-peak contribution of DPV for its capacity market and transmission 
planning.

▶ Peak demand reduction (i.e. transmission level capacity credit):
◼ ISO-NE and PJM use a stricter definition of peaks in transmission planning 

than for the capacity market.
▶ Consistent scenarios across planning forums: 

◼ CAISO/CPUC/CEC coordination, NYISO Gold Book, ISO-NE 10-year regional 
planning process to coordinate assumptions
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▶ Some DER are similar to DPV :
◼ Systems can be installed either 

in-front-of- or behind-the-meter 
◼ Adoption can occur for residential, 

commercial, or industrial 
customers

▶ These technologies have yet to 
see significant adoption due to 
higher cost or other barriers, but 
adoption might increase in the 
future.  Similar forecasting tools 
and models can be used for these 
emerging technologies.

▶ Other DER systems are different 
in that the system cost, 
performance, and design are 
specific to individual customers 
and systems tend to be larger 
(e.g., CHP units)

▶ In these cases, local knowledge 
from distribution planners might 
be more useful than the top-down 
methods described here. 

Forecasting Other Distributed Energy 
Resources
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Key Questions for Regulators About DER 
Forecasts 

▶ What are the primary factors that drive your forecast of DER adoption?  
How do you consider customer economics and factors that might affect 
customer economics within the forecasting horizon?

▶ How do you account for the tendency for adoption of technologies to 
follow an S-shaped curve?

▶ How does your forecast compare to forecasts from third parties for the 
same region?

▶ How do you account for factors that might be uncertain such as 
availability of future incentives, technology cost, or customer choice?

▶ Do you use a top-down method to forecast DER adoption at the system 
level?  If so, how do you allocate that forecast down to the distribution 
level?  Do you account for differences in customer demographics?  
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