

Forecasting load on the distribution and transmission system with distributed energy resources

Andrew D. Mills

Berkeley Lab

Distribution Systems and Planning Training for Western States, May 2-3, 2018

Importance of Including Distributed Energy Resources in Load Forecasts

- ▶ Distribution system investments: replacing aging infrastructure and distribution expansion
- ▶ Procurement of generating capacity to meet peak demand
- ▶ Proactive investments to increase hosting capacity
- Evaluating the costs and benefits of incentives or policies to promote distributed energy resources (DER)

Impact of DPV on T&D Investments: Potential Deferral Value

Increasing Adoption of DER Increases the Importance of Accurate Forecasts in Planning

Costs of roughly **\$70 million from severe underforecasting** and **\$20 million from severe overforecasting** for a utility with sales >10TWh/yr and with up to 8.5% of sales from DPV by the end of a 15-year period

Planning for a Distributed Disruption: Innovative Practices for Incorporating Distributed Solar into Utility Planning

Context

- Analysts project that distributed solar photovoltaics (DPV) will continue growing rapidly across the United States.
- Growth in DPV has critical implications for utility planning processes, potentially affecting future infrastructure needs.
- Appropriate techniques to incorporate DPV into utility planning are essential to ensuring reliable operation of the electric system and realizing the full value of DPV.

Approach

• Comparative analysis and evaluation of roughly 30 recent planning studies, identifying innovative practices, lessons learned, and state-of-the-art tools.

Scope

- Electric infrastructure planning (IRPs, transmission, distribution).
- Focus on the treatment of DPV, with emphasis on how DPV growth is accounted for within planning studies.

Key Findings

- ▶ Forecasting load with DER is often "top-down": separately forecast load and quantity of DER at the system level, allocate that system forecast down to more granular levels.
- ▶ Many factors affect customer decisions to adopt DER, including the cost and performance of DER, incentives, customer retail rates, peer-effects, and customer demographics. Customer-adoption models can help account for many of these factors.
- ▶ Forecasts are uncertain: It may be valuable to combine various approaches and to benchmark against third-party forecasts.

High End of 3rd Party Forecasts Suggests More DPV Than Considered By Utilities

A Variety of Methods are Used to Develop DPV Forecasts

DPV Deployment Drivers

DPV economics:

- DPV technology cost and performance
- **Federal and State incentives**
- New business models (e.g., third party ownership)
- **Electricity prices**
- Rate design (including the availability of Net Energy Metering)

▶ Public policy:

- Renewables Portfolio Standards and environmental requirements
- \blacksquare CO₂ regulation
- **Customer preferences:**
	- DPV deployment may be shaped by interest in increased customer choice
- Macro factors:
	- ◼ Economic growth, load growth, oil prices, and cost and availability of complementary technologies (e.g. storage and electric vehicles)

Customer-adoption Modeling Brings Customer Decisions Into DPV Forecast

Some Planners Use Customer-adoption Models for DPV Forecasting

Technical Potential Estimates Are Typically Based on Customer Count and Rooftops

- ▶ Technical potential studies used by utilities in our sample of studies were based primarily on customer counts and floor space surveys
	- Rooftop space is based on average number of floors and assumptions about the density of PV arrays
- New emerging tools like Light Detection and Ranging (LiDAR) imaging can refine technical potential estimates:
	- Infer shading, tilt, and azimuth from rooftop images
	- Apply availability constraints to exclude unsuitable orientations or insufficiently large contiguous areas
- Can also refine with permitting and zoning restrictions, if applicable

The customer-adoption modeling approach explicitly models consumer decision making based **Factors Affecting Customer Economics of** DBV Can Significantly Affort Eorocasts **DPV Can Significantly Affect Forecasts**

customer-adoption models is their ability to generate new, self-consistent DPV-adoption

- ▶ PacifiCorp forecast of DPV viewing to calculate lowexpending the panel of the cases of the pay o scenarios (Figure 2). by varying factors impacting the improvement of the other on DPV dependent. hand, projections of customer economics are still highly uncertain given potential changes in customer economics: created a High and Low forecast
- DPV cost, DPV performance, and **Pull produce uncertain** period u electricity retail rate escalation

- ▶ DecifiCerates forecast of PDL And Allingness-to-adopt curve Ight and Low for bottom-up and bottom-up and the DPV to ultimate share of the translates the payback period of technical potential.
- ▶ Payback period depends on both the cost to the consumer and the consumer bill savings
	- The cost to the consumer will be affected by declining costs of DPV and availability of incentives (e.g. the investment tax credit).
	- The consumer bill savings depend on rate levels, rate design, and availability of Net Metering.

varying rate Design Can Significantly Affect rate scengar can eignmeantly micet and a fall state which it falls below the reference dependence of Γ **Adoption of Distributed PV deption of Distributed PV** Rate Design Can Significantly Affect **/ 福堂** residential customers reduces total cumulative deployment by 14%, and a \$50/month charge reduces deployment by 61%. Partial net metering, where PV generation exported to the grid

However, as regional PV penetration increases and the energy and the energy and capacity value of P

 $Source$ Darghouth et al. 2016 $r = \frac{1}{2}$ relative to the flat rate and $\frac{1}{2}$ rate and $\frac{1}{2}$ scenarios increases increases increases increases increases in tariff scenarios increases in the flat rate and $\frac{1}{2}$ Source: Darghouth et al. 2016

have forecasters Tend to Rely on Similar 不會 **accounts for the cost of purchasing a PV system, the bill saving on PV system, the PV system, the bill savings (which depend on PV system, the bill saving on PV system, the bill saving on PV system, the BV system of the b** performance and retail rates), and incentives.

Note: Dashed gray lines (WECC) are for existing buildings, and dotted gray lines are for new buildings.

Innovative Business Models Shift Focus from Payback to Monthly Bill Savings

- ▶ Payback period is not a useful metric for systems that are leased dition a constraint state can be considered in models are the fraction of households that have the fraction of from a third party
- ▶ Willingness-to-adopt curves can also be defined in terms of monthly bill savings.

Diffusion of Technology Impacts Time to Achieve Ultimate Market Share

▶ The Bass diffusion model and Fisher-Pry model are two common choices that produce the characteristic "S-Curve" in adoption.

Diffusion Curves for DPV Forecasts Are Often **/ 你 Based on Fits to Data, and Can Vary Widely** \mathbf{P}_{e} and \mathbf{C}_{e} and \mathbf{C}_{e} and \mathbf{C}_{e} is the same as the sa Dascu UITTIG to Data, and

- **Figure 1** Important feature of diffusion curves is that period of rapid adoption can follow period with relatively low shares of adoption. $\frac{1}{2}$ can follow portog with role to y fow originates by desphasing parameters for each state based based based based based based based on the state based of the state based of the state based of the state based of th
- April 27, 2018 **18** ▶ Similar behavior has been observed for several consumer durable goods including refrigerators, VCRs, internet access, and mobile phones. p nones. $\mathbb{R}^{\text{pm 27, 2018 } + 18}$

Propensity to Adopt Accounts for Factors Like Customer Demographics

Predicting the Location of DPV Adoption Using Propensity to Adopt

Factors Considered in PG&E's Propensity to Adopt Metric

- **Residential Customers:**
	- Home ownership
	- Electricity usage
	- **Income**
	- Credit
	- Building characteristics (area, number of stories)
- **Non-Residential Customers:**
	- Property Ownership
	- Electricity usage
	- Retail Rate
	- Business type (NAICS)
	- Building characteristics (area, number of stories)

Propensity to adopt metric is then used to allocate system forecast down to customers.

Advances in Customer Adoption Modeling

- Agent based models simulate actions and interactions of agents to assess their individual effects on a larger system.
	- Allows for better representation of heterogeneity of customers and more complex decision-making criteria
- Discrete choice models have a well defined methodology for soliciting customer preferences and can model competition between several options
	- Provides framework for empirically derived forecasts
- Some open questions:
	- How might consumption change after adoption of DPV: is there a rebound effect?
	- How does the willingness-toadopt curve vary across customer segments?
	- How does customer adoption of DPV compare to customer demand for community solar? Do these two options compete directly for market share or are they complementary?

Additional Challenges: Removing DER from Historical Load to Create Accurate Load Forecasts

- ▶ PJM recently adjusted load forecasting methodology to better account for behind-the-meter PV
- ▶ Original approach used the observed load to forecast future load, without adjusting for effect of behind-the-meter DPV on the observed load
	- Load reductions from behind-themeter DPV were being attributed to new end uses in the load forecasting model
- ▶ Revised approach removes estimate of historical PV before forecasting load, then adds back in forecast of DPV to new net load forecast

Additional detail: Falin (2015)

- Evaluating DPV as a resource option:
	- CAISO transmission planning process identifies transmission needs to meet reliability criteria, then examines feasibility of meeting needs with DPV.
	- If CAISO finds it is feasible to meet needs with increased DPV, information is passed onto CPUC and utilities to determine if programs to encourage additional DPV would be cost-effective.
- Locating DPV within the system:
	- ISO-NE and NYISO use the load-zone-level DPV forecast in their capacity markets and transmission planning. PJM adjusts the load-zone peak demand by the on-peak contribution of DPV for its capacity market and transmission planning.
- ▶ Peak demand reduction (i.e. transmission level capacity credit):
	- ISO-NE and PJM use a stricter definition of peaks in transmission planning than for the capacity market.
- ▶ Consistent scenarios across planning forums:
	- April 27, 2018 **24** ■ CAISO/CPUC/CEC coordination, NYISO Gold Book, ISO-NE 10-year regional planning process to coordinate assumptions

Forecasting Other Distributed Energy Resources

- ▶ Some DER are similar to DPV :
	- Systems can be installed either in-front-of- or behind-the-meter
	- Adoption can occur for residential, commercial, or industrial customers
- ▶ These technologies have yet to see significant adoption due to higher cost or other barriers, but adoption might increase in the future. Similar forecasting tools and models can be used for these emerging technologies.
- Other DER systems are different in that the system cost, performance, and design are specific to individual customers and systems tend to be larger (e.g., CHP units)
- In these cases, local knowledge from distribution planners might be more useful than the top-down methods described here.

Key Questions for Regulators About DER Forecasts

- ▶ What are the primary factors that drive your forecast of DER adoption? How do you consider customer economics and factors that might affect customer economics within the forecasting horizon?
- ▶ How do you account for the tendency for adoption of technologies to follow an S-shaped curve?
- ▶ How does your forecast compare to forecasts from third parties for the same region?
- ▶ How do you account for factors that might be uncertain such as availability of future incentives, technology cost, or customer choice?
- ▶ Do you use a top-down method to forecast DER adoption at the system level? If so, how do you allocate that forecast down to the distribution level? Do you account for differences in customer demographics?

References

- Gagnon, P., B. Stoll, A. Ehlen, T. Mai, G. Barbose, A. Mills, J. Zuboy. Forthcoming. "Estimating the Value of Improved Distributed Photovoltaic Adoption Forecasts for Utility Resource Planning." NREL Technical Report. Golden, CO: National Renewable Energy Laboratory
- ▶ Mills, A.D., G.L. Barbose, J. Seel, C. Dong, T. Mai, B. Sigrin, and J. Zuboy. 2016. "Planning for a Distributed Disruption: Innovative Practices for Incorporating Distributed Solar into Utility Planning." LBNL-1006047. Berkeley, CA: Lawrence Berkeley National Laboratory. http://dx.doi.org/10.2172/1327208.
- Cohen, M.A., P.A. Kauzmann, and D.S. Callaway. 2016. "Effects of Distributed PV Generation on California's Distribution System, Part 2: Economic Analysis." *Solar Energy*, Special Issue: Progress in Solar Energy, 128(April): 139–152. doi:10.1016/j.solener.2016.01.004.
- ▶ Darghouth, N.R., R.H. Wiser, G. Barbose, and A.D. Mills. 2016. "Net Metering and Market Feedback Loops: Exploring the Impact of Retail Rate Design on Distributed PV Deployment." *Applied Energy* 162(January): 713–722. doi:10.1016/j.apenergy.2015.10.120.
- ▶ Edge, R., M. Taylor, N. Enbar, and L. Rogers. 2014. "Utility Strategies for Influencing the Locational Deployment of Distributed Solar." Washington D.C.: Solar Electric Power Association (SEPA). https://sepapower.org/knowledge/research/.
- ▶ EPRI (Electric Power Research Institute). 2015. *Distribution Feeder Hosting Capacity: What Matters When Planning for DER?* Palo Alto, CA: Electric Power Research Institute. http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000003002004777.
- Falin, T. 2015. "Manual 19 Changes: Distributed Solar Generation in the Long-Term Load Forecast." Presented at the Markets & Reliability Committee, PJM, December 17. http://www.pjm.com/~/media/planning/res-adeq/load-forecast/solarforecast-presentation.ashx.
- ▶ Meade, N., and T. Islam. 2006. "Modelling and Forecasting the Diffusion of Innovation A 25- Year Review." *International Journal of Forecasting* 22(3): 519–545. doi:10.1016/j.ijforecast.2006.01.005.
- ▶ Navigant Consulting, Inc. 2016a. *Virginia Solar Pathways Project: Study 1 - Distributed Solar Generation Integration and Best Practices Review.* Richmond, VA: Dominion Virginia Power.
- April 27, 2018 **27** ▶ Pacific Gas & Electric. 2015. Distribution Resources Plan. San Francisco. CA: California Public Utilities Commission. http://www.cpuc.ca.gov/WorkArea/DownloadAsset.aspx?id=5141