NERC NORTH AMERICAN ELECTRIC RELIABILITY CORPORATION

A Look into Load Modeling: The Composite Load Model

Dynamic Load Modeling & FIDVR Workshop September 30, 2015 Ryan D. Quint, North American Electric Reliability Corporation

- Landscape
- Brief History
- Today's State of the Art
- Putting Context to the Comp Load Model
- A Look at Some Key Parameters
- Where We Are & Where We're Going

Summer peak vs. annual consumption in California

Our System Load

Resistive Cooking Resistive Heating

Incandescent Lighting

Distributed Generation

AC and Heat Pumps

Power Electronics

Data Centers

Electric Vehicles

Share of total system load

	÷
PSS [®] E Load Models	PSLF Load Models
CIM5 – Induction Motor Load	alwscc (b,w,z) – Load Voltage/Frequency Dependence Model
CIM6 – Induction Motor Load (WECC)	seccld1 (2,3) – Secondary Load Model with Tap Ration Reset
CIMW – Induction Motor Load	apfl (spfl) – Pump/Fan Driven Induction (Synchronous) Motor Load
CLOD – Complex Load Model	motorw/x – Single or Double Cage Induction Motor Model
EXTL – Extended-Term Reset Load	Ld1pac – Performance-based Model of Single Phase Air Conditioner
IEEL – IEEE Load Model	motorc – Phasor Model of Single Phase Air Conditioner
LDFR – Load Frequency Model	ldelec (rect) – Electronic (Rectifier) Load
ACMT – Single-Phase Air Conditioner	

The CMLD (CMPLDW) Model

• Let us break down the 130+ parameters, contextualize their meaning; begins to come together cohesively.

"Bss" 0 "Rfdr" 0.04 "Xfdr" 0.04 "Fb" 0.75/
"Xxf" 0.08 "TfixHS" 1 "TfixLS" 1 "LTC" 0 "Tmin" 0.9 "Tmax" 1.1 "step" 0.00625 /
"Vmin" 1.025 "Vmax" 1.04 "Tdel" 30 "Ttap" 5 "Rcomp" 0 "Xcomp" 0 /
"Fma" 0.239538 "Fmb" 0.156309 "Fmc" 0.064766 "Fmd" 0.206375 "Fel" 0.116908 /
"PFel" 1 "Vd1" 0.7 "Vd2" 0.5 "Frcel" 0.8 /
"Pfs" _0.994504 "P1e" 2 "P1c" 0.295212 "P2e" 1 "P2c" 0.704788 "Pfreq" 0 /
"Q1e" 2 "Q1c" -0.5 "Q2e" 1 "Q2c" 1.5 "Qfreq" -1 /
"MtpA" 3 "MtpB" 3 "MtpC" 3 "MtpD" 1 /
"LfmA" 0.75 "RsA" 0.04 "LsA" 1.8 "LpA" 0.12 "LppA" 0.104 /
"TpoA" 0.095 "TppoA" 0.0021 "HA" 0.1 "etrqA" 0 /
"Vtr1A" 0.7 "Ttr1A" 0.02 "Ftr1A" 0.2 "Vrc1A" 1 "Trc1A" 99999 /
"Vtr2A" 0.5 "Ttr2A" 0.02 "Ftr2A" 0.7 "Vrc2A" 0.7 "Trc2A" 0.1 /
"LfmB" 0.75 "RsB" 0.03 "LsB" 1.8 "LpB" 0.19 "LppB" 0.14 /
"TpoB" 0.2 "TppoB" 0.0026 "HB" 0.5 "etrqB" 2 /
"Vtr1B" 0.6 "Ttr1B" 0.02 "Ftr1B" 0.2 "Vrc1B" 0.75 "Trc1B" 0.05 /
"Vtr2B" 0.5 "Ttr2B" 0.02 "Ftr2B" 0.3 "Vrc2B" 0.65 "Trc2B" 0.05 /
"LfmC" 0.75 "RsC" 0.03 "LsC" 1.8 "LpC" 0.19 "LppC" 0.14 /
"TpoC" 0.2 "TppoC" 0.0026 "HC" 0.1 "etrqc" 2 /
"Vtr1C" 0.65 "Ttr1C" 0.02 "Ftr1C" 0.2 "Vrc1C" 1 "Trc1C" 9999 /
"Vtr2C" 0.5 "Ttr2C" 0.02 "Ftr2C" 0.3 "Vrc2C" 0.65 "Trc2C" 0.1 /
"LfmD" 1 "CompPF" 0.98 /
"Vstall" 0.6 "Rstall" 0.1 "Xstall" 0.1 "Tstall" 0.03 "Frst" 0.2 "Vrst" 0.95 "Trst" 0.3 /
"fuvr" 0.1 "vtr1" 0.6 "ttr1" 0.02 "vtr2" 1 "ttr2" 9999 /
"Vc1off" 0.5 "Vc2off" 0.4 "Vc1on" 0.6 "Vc2on" 0.5 /
"Tth" 15 "Th1t" 0.7 "Th2t" 1.9 "tv" 0.025

The Distribution Equivalent Circuit

- Typical of rooftop A/C Walmart, Whole Foods, Malls, etc.
- Model data representative of 5-15 HP compressor motors
 - Special design motors (not NEMA)
 - Stall at about 40% voltage, restart at about 50-60% voltage
 - Constant torque load (on average)
 - Low inertia
- Motor protection & control:
 - Contactors trip when supply voltage drops to about 40% voltage, reclose at 45-55% voltage
 - Building EMS no apparent reason to keep equipment out of service

Roof-Top Direct Expansion HVAC 10-25 hp compressor motors

- Large commercial buildings have central cooling systems
- Chiller compressors are large motors 200-500 HP
- Motor protection & control:
 - Chillers are sensitive equipment
 - Once tripped, probably require manual restart

Central Cooling System Chiller 200-250 hp compressors

- H = 0.1 sec
- Constant torque load
- 70% of motors trip at 50% voltage, restart at 70% voltage (representing 10-25 HP motors)
- 20% of motors trip at 70% voltage, remain disconnected (representing large chillers)

- Represents fan motors used in residential and commercial buildings
 - Ventilation fans in buildings, air-handler fans
- Model data is representative of 5-25 HP fan motors
 - Usually NEMA B design motors
 - Torque load proportional to speed squared
 - High inertia (0.25 to 1 seconds)
- Motor protection and control:
 - Contactors trip: ~ 40% voltage; Reclose: ~ 45-55% voltage
 - Building EMS no apparent reason to keep equipment out of service
- Current trend: Fan motors are being replaced with Electronically Commutated Motors (ECMs)
 - Energy Efficiency Upgrade DC motors, controllable speed
- Stall at very low voltages

- Represents direct-connected pump motors used in commercial buildings
 - Water circulating pumps in central cooling systems
- Same as Motor B, but with low inertia
- Model data is representative of a 5-25 HP pump motor
 - Usually NEMA B design motors
 - Torque load proportional to speed squared
 - Lower inertia (0.1 to 0.2 seconds)
- Motor protection and control:
 - Contactors trip: ~ 40% voltage; Reclose: ~ 45-55% voltage
 - Building EMS no apparent reason to keep equipment out of service
- Current trend: Pump motors are being replaced with Variable Frequency Drives (VFDs)
- 12 EE Upgrade AC motors, controllable speed

Motor B and C Model Data

- NEMA B Design Motor
- H = 0.5 sec for fan, H = 0.1 sec for pump
- Load torque proportional to speed squared

Motor D – Residential Air Conditioner

- Single-phase compressor motors in residential and small commercial cooling and refrigeration
- Model data representative of 3-5 HP compressor motors
 - Special design motors (not NEMA)
 - Stall at about 45-60% voltage
 - Constant torque load (on average)
 - Low inertia
- Motor protection and control:
 - Contactors trip: ~ 40-50% voltage; Reclose: ~ 45-55% voltage

Motor D – Performance

- Compressor Load
 Torque is very cyclical
- Very possible that motor stalls on next compression cycle

E.g. 3.5-ton compressor motor: Weight: 4.6 kg

- Compressor Motor Inertia is very low
 - H = 0.03 0.05 sec
- Physically small

- Three-phase motor models cannot represent behavior of singlephase motors with the same datasets
 - Stalling phenomena 3-phase motors usually stall at much lower voltages
 - P and Q consumption during stalling
- Single-phase models exist, but not in positive sequence models
 - Research is looking into sensitivities of single-phase motors
 - o Point-on-wave
 - o Electrical impedance
 - Voltage rate-of-change
 - Voltage and duration

- Motors stall when voltage drops below Vstall for duration Tstall
- Fraction Frst of aggregate motor can restart when voltage exceeds Vrst for duration Trst

19

Thermal Relay Model

 K_{TH} – fraction of motors that remain connected

- Thermal trip constant varies by manufacturer, protection requirements
- Thermal relay model accounts for this in linear tripping mechanism

- Electrical response is represented with performance model
 - "Run" and "stall" states based on Vstall and Tstall
 - Fraction of motors allowed to restart (usually scroll compressors)
 - Manufacturers believe scroll-type represents 10-20% of A/C motors
- Thermal protection
 - I²t characteristic used a range is used to capture diverse settings
- Contactors
 - Load reduced linearly at 40-50% voltage, reconnect at 50-60% voltage
- Energy Efficiency standards driving greater penetration of scroll compressors – higher efficiency
 - SEER 12 very hard to meet with reciprocating units
- Newer A/C units have power-electronic VFDs generally smaller ones popular in Europe/Japan for single-room cooling

- The CMPLDW/CMLD model is NOT the "WECC" Model
 - It is generic, and can be used across the interconnections
 - Can provide detailed representation of dynamic load behavior, including induction motor loads
 - Advancements in model structure greatly simplify utilization
 - Must perform sensitivity studies to better understand model parameter impacts on performance
 - Can disable A/C motor stalling by setting Tstall to 9999 (WECC Phase 1)
 More work to understand software implementation of this
 - Tools available to generate load model records effectively
- These types of models will never capture the level of accuracy of generator modeling. But they're a big step in the right direction.
 - Can be tuned to accurately reproduce and explain historical events
 - Seek to predict future events *in principle*, not in full fidelity

Questions and Answers

Appendix: Supplemental Material

- 1980s: Constant current real, constant impedance reactive models connected at transmission-level bus
 - Limitation of computing technology for that time
- 1990s: EPRI Loadsyn (static polynomial characteristic to represent load), IEEE Task Force recommends dynamic load modeling
 - Failed to get much traction in industry
- 1996: BPA model validation study for August 10 1996 outage
 - Demonstrated need for motor load representation in dynamic load models to capture oscillations and voltage instability

- 2000-2001 WECC "Interim" Load Model
 - 20% induction motor, remaining static load
 - Was only practical option in 2001
 - Intended as a temporary 'fix' to model oscillatory behavior observed at the California-Oregon Intertie (COI)
 - Model limitations were recognized and need for a better model was clear
 - Model was used for 10+ years to plan and operate the Western Interconnection
 - ...Many utilities are choosing to use the CLOD model, which is similar to this approach from 2001...!

Model was used in Southern California for special studies using PTI PSS®E simulator

- Late 1980s Southern California Edison observes delayed voltage recovery events, attributed to stalling of residential air conditioners
 - Tested residential A/C units in laboratory, developed empirical AC models
- 1997 SCE model validation effort of Lugo event
 - Illustrated need to represent distribution equivalent
 - Illustrated need to have special models for air conditioning load

- 1994 Florida Power published an IEEE paper, using a similar load model
- 1998 Delayed voltage recovery event in Atlanta area in Southern Company territory
 - Events were observed, analyzed, modeled, and benchmarked to recreate event
- FPL and Southern Co. used, in principle, similar approaches to SCE and the eventual WECC model
- These models were used for special studies of local areas, but beginning to get traction

- 2005 WECC developed 'explicit' model
 - Included distribution equivalent, induction motor and static loads
 - Numerical stability in Interconnection-wide study
 - This was a big step 10 years ago. Still unavailable in the East.
- 2007 First version of the composite load model in PSLF
 - Three phase motor models only, no single phase represented
- 2006-2009 EPRI/BPA/SCE testing of residential air conditioners and development of models
- 2009 1φ air conditioner model added to composite load model
- 2011 WECC adopts phased approach for composite load model, starts system impact studies
- 2013 TPL-001-4 requires modeling induction motor load
- 2013-Current WECC approved use of Phase I composite load models for planning and operational studies

CIM5 – Induction Motor Load Model

- Load Torque represented by TLOAD = TNOM(1 + n)^D
- Single- or double-cage induction motors, including rotor flux dynamics
- Captures motor start-up

- CIMW Induction Motor Load Model (WECC)
 - Motor load including electromagnetic dynamics (single- or double cage)
 - Load Torque represented by $T_{LOAD} = T_0(A\omega^2 + B\omega + C_0 + D\omega^e)$
- CIM6 Induction Motor Load Model
 - Detailed load torque representation of CIMW
 - Motor starting capability of CIM5

PTI PSS®E Load Models

- Distribution (transformer & circuit) impedance
- Large & Small 3-φ induction motors
- Discharge lighting
- Transformer saturation
- Assumed 0.98 pu loads tap calculation to obtain V at load bus

- Simulates general effects of loads being reset to constant MWMVAR in steady-state without specifically modeling equipment (taps, caps, etc.)
- IEEL IEEE Load Model
 - Algebraic representation of load

$$P = P_{load} \left(a_1 v^{n_1} + a_2 v^{n_2} + a_3 v^{n_3} \right) (1 + a_7 \Delta f)$$

$$Q = Q_{1oad} \left(a_4 v^{n_4} + a_5 v^{n_5} + a_6 v^{n_6} \right) (1 + a_8 \Delta f)$$

LDFR – Load Frequency Model

• Constant P and constant I components sensitive to system frequency $I_p = I_{po} \left(\frac{\omega}{\omega_0}\right)^r$

ACMT – Single-Phase Air Conditioner Motor Model

- Aggregate representation of single-phase A/C load
 - Compressor motor, thermal relay, U/V relays, contactors
- Representation based on "Performance Model for Representing Single-Phase Air-Conditioner Compressor Motors in Power System Studies" developed by WECC Load Model Task Force (LMTF)
- This is the 1-φ A/C motor representation in the CMLD model

 $P = P_0 \left(\frac{\omega}{\omega_0}\right)^m$

 $Q = Q_0 \left(\frac{\omega}{\omega_0}\right)^n$

 $I_q = I_{qo} \left(\frac{\omega}{\omega}\right)^s$

Aggregate Load

- alwscc (b,w,z) Load Voltage/Frequency Dependence Model
- SecId1(2,3) Secondary Load Model with Reset of Tap Ratio

Induction Motor Load

- apfl (spfl) Pump/Fan Driven Induction (Synchronous) Motor Load Model
- motorw/x Single or Double Cage Induction Motor Model

Single-phase Air Conditioner Load

- Ld1pac Performance-based Model of 1-φ Air Conditioner Load
- motorc Phasor Model of 1-φ Air Conditioner Load

Other Loads

Ldelec (rect) – Electronic (Rectifier) Load Model

"Bss" 0 "Rfdr" 0.04 "Xfdr" 0.04 "Fb" 0.75/ "Xxf" 0.08 "TfixHS" 1 "TfixLS" 1 "LTC" 0 "Tmin" 0.9 "Tmax" 1.1 "step" 0.00625 / "Vmin" 1.025 "Vmax" 1.04 "Tdel" 30 "Ttap" 5 "Rcomp" 0 "Xcomp" 0 /

Parameter	Default	Reason
Load MVA Base	-1.0 to -1.25	If (-), MVA base = Load MW/Value Specified
Bss	0.0	Assumed no shunt compensation at bus
Rfdr	0.04	4% impedance on load MVA base;
Xfdr	0.04	1:1 distribution feeder impedance X:R ratio
Fb	0.0	No shunt compensation, so N/A
Xxf	0.08	8% impedance on load MVA base
TfixHS	1.0	Assumed 1:1 T:D transformer turns ratio
TfixLS	1.0	

"Bss" 0 "Rfdr" 0.04 "Xfdr" 0.04 "Fb" 0.75/ "Xxf" 0.08 "TfixHS" 1 "TfixLS" 1 "LTC" 0 "Tmin" 0.9 "Tmax" 1.1 "step" 0.00625 / "Vmin" 1.025 "Vmax" 1.04 "Tdel" 30 "Ttap" 5 "Rcomp" 0 "Xcomp" 0 /

Parameter	Default	Reason
LTC	1 or 0	Based on whether LTC action enabled
Tmin	0.9	Based on common ULTC configuration:
Tmax	1.1	 32 steps +/ 0.1 tap
step	0.00625	 +/- 0.1 tap +/- 1.25% voltage operation bounds
Vmin	0.9875	
Vmax	1.0125	
Tdel	30-75	Depends on utility practice for LTC action delay
Ttap	5	Time duration of LTC adjustment, commonly 5 seconds
Rcomp	0	Resistance and reactance compensation for LTC;
Хсотр	0	Generally no considered

"Fma" 0.239538 "Fmb" 0.156309 "Fmc" 0.064766 "Fmd" 0.206375 "Fel" 0.116908

Parameter	Default	Reason
Fma	Varies	These parameters are solely dependent on the load
Fmb	Varies	composition at the given bus. Many utilities use zonal
Fmc	Varies	not available. Exact values depend on many factors – season, regional economies, industries, load type, etc. For example, heavy summer case parameters could = A: 25%, B: 15%, C: 5%, D: 15%, PE: 10%. But this is solely dependent on the load composition at the bus.
Fmd	Varies	
Fel	Varies	

"PFel" 1 "Vd1" 0.7 "Vd2" 0.5 "Frcel" 0.8 /

Parameter	Default	Reason
Pfel	1.0	Assumed power electronic load at unity power factor
Vd1	0.7	Assume electronic load starts tripping at 70% voltage
Vd2	0.5	Assume all electronic load is tripped by 50% voltage
Frcel	0.8	Assumed 80% of electronic load will automatically reconnect upon acceptable voltage return

"Pfs" -0.994504 "P1e" 2 "P1c" 0.295212 "P2e" 1 "P2c" 0.704788 "Pfreq" 0 / "Q1e" 2 "Q1c" -0.5 "Q2e" 1 "Q2c" 1.5 "Qfreq" -1 /

Parameter	Default	Reason
Pfs	-0.995	Rather than specify shunt compensation, assume slight capacitive power factor for static load to account for shunt compensation at substation and on feeder
P1e	2.0	$P = P_0^* (P_{1c}^* V / V_0^{P1e} + P_{2c}^* V / V_0^{P2e} + P_3) * (1 + P_{frq}^* D_f)$
P1c	0.5	Assume one component varies with square of voltage; 50% remaining static load assigned to this component
P2e	1.0	$P = P_0^* (P_{1c}^* V / V_0^{P1e} + P_{2c}^* V / V_0^{P2e} + P_3) * (1 + P_{frq}^* D_f)$
P2c	0.5	Assume one component varies linearly with voltage; 50% remaining static load assigned to this component
Pfreq	0.0	Assume real power not frequency dependent

"Pfs" -0.994504 "P1e" 2 "P1c" 0.295212 "P2e" 1 "P2c" 0.704788 "Pfreq" 0 / "Q1e" 2 "Q1c" -0.5 "Q2e" 1 "Q2c" 1.5 "Qfreq" -1 /

Parameter	Default	Reason
Q1e	2.0	$Q = Q_0 * (Q_{1c} * V / V_0^{Q1e} + Q_{2c} * V / V_0^{Q2e} + Q_3) * (1 + Q_{frq} * D_f)$
Q1c	-0.5	Assume one component varies with square of voltage; 50% remaining static load assigned to this component; Inversely related to voltage relationship
Q2e	1.0	$Q = Q_0 * (Q_{1c} * V / V_0^{Q1e} + Q_{2c} * V / V_0^{Q2e} + Q_3) * (1 + Q_{frq} * D_f)$
Q2c	1.5	Assume one component varies linearly with voltage.
Qfreq	-1.0	Assume Q inversely frequency dependent

"MtpA" 3 "MtpB" 3 "MtpC" 3 "MtpD" 1 /

Parameter	Default	Reason
MtpA	3	Constant torque loads (e.g. commercial air conditioners and refrigerators)
MtpB	3	Torque speed squared loads with high inertia (fans)
MtpC	3	Torque speed squared loads with low inertia (pumps)
MtpD	1	Single-phase induction motors (residential A/C)

"LfmA" 0.75 "RsA" 0.04 "LsA" 1.8 "LpA" 0.12 "LppA" 0.104 / "TpoA" 0.095 "TppoA" 0.0021 "HA" 0.1 "etrqA" 0 / "Vtr1A" 0.7 "Ttr1A" 0.02 "Ftr1A" 0.2 "Vrc1A" 1 "Trc1A" 99999 / "Vtr2A" 0.5 "Ttr2A" 0.02 "Ftr2A" 0.7 "Vrc2A" 0.7 "Trc2A" 0.1 /

Parameter	Default	Reason
LfmA	0.75	Load MVA = MW/MVA Rating
RsA	0.04	These are 'generic' motor parameters for this type of
LsA	1.8	load, based on laboratory testing
LpA	0.12	
LppA	0.104	
ТроА	0.095	
ТрроА	0.0021	
НА	0.1	Majority of these motors are small – low inertia
etrqA	0*	$T_{mech} = T_{mech,0} * \omega^{E_{trq}}$ - Constant Torque

*3φ motors driving constant torque loads (commercial air conditioner compressors and refrigeration)

"LfmA" 0.75 "RsA" 0.04 "LsA" 1.8 "LpA" 0.12 "LppA" 0.104 / "TpoA" 0.095 "TppoA" 0.0021 "HA" 0.1 "etrqA" 0 / "Vtr1A" 0.7 "Ttr1A" 0.02 "Ftr1A" 0.2 "Vrc1A" 1 "Trc1A" 99999 / "Vtr2A" 0.5 "Ttr2A" 0.02 "Ftr2A" 0.7 "Vrc2A" 0.7 "Trc2A" 0.1 /

Parameter	Default	Reason
Vtr1A	0.7	Assumed performance of these motors:
Ttr1A	0.02	 This set represents the higher performance motors large commercial building chillers (air bandlers)
Ftr1A	0.2	 First trip level at 0.70 pu voltage, trip time < 2 cycles 20% of these motors have this type of protection Manual reconnection
Vrc1A	1.0	
Trc1A	9999	
Vtr2A	0.5	Assumed performance of these motors:
Ttr2A	0.02	 This set represents the majority of 'brute' motors – standard design, rugged, automated Trip level at 0.50 pu voltage, trip time < 2 cycles 70% of these motors have this type of protection Auto-reconnect – 0.7 pu within 100 ms.
Ftr2A	0.7	
Vrc2A	0.7	
Trc2A	0.1	

"LfmB" 0.75 "RsB" 0.03 "LsB" 1.8 "LpB" 0.19 "LppB" 0.14 / "TpoB" 0.2 "TppoB" 0.0026 "HB" 0.5 "etrqB" 2 / "Vtr1B" 0.6 "Ttr1B" 0.02 "Ftr1B" 0.2 "Vrc1B" 0.75 "Trc1B" 0.05 / "Vtr2B" 0.5 "Ttr2B" 0.02 "Ftr2B" 0.3 "Vrc2B" 0.65 "Trc2B" 0.05 /

Parameter	Default	Reason
LfmB	0.75	Load MVA = MW/MVA Rating
RsB	0.03	These are 'generic' motor parameters for this type of
LsB	1.8	load, based on laboratory testing
LpB	0.19	
LppB	0.14	
ТроВ	0.2	
ТрроВ	0.0026	
НВ	0.5	Large inertia commercial/industrial fan motor loads
etrqB	2*	$T_{mech} = T_{mech,0} * \omega^{E_{trq}}$ - Torque \propto Speed-Squared

*3φ motors driving load proportional to speed-squared relationship with high inertia (large fans) 42 RELIABILITY | ACCOUNTABILITY

"LfmB" 0.75 "RsB" 0.03 "LsB" 1.8 "LpB" 0.19 "LppB" 0.14 / "TpoB" 0.2 "TppoB" 0.0026 "HB" 0.5 "etrqB" 2 / "Vtr1B" 0.6 "Ttr1B" 0.02 "Ftr1B" 0.2 "Vrc1B" 0.75 "Trc1B" 0.05 / "Vtr2B" 0.5 "Ttr2B" 0.02 "Ftr2B" 0.3 "Vrc2B" 0.65 "Trc2B" 0.05 /

Parameter	Default	Reason
Vtr1B	0.6	Assumed performance of these motors:
Ttr1B	0.02	 First trip level at 0.60 pu voltage, trip time < 2 cycles 20% of these motors have this type of protection Auto-reconnect – 0.75 pu voltage within 50 ms
Ftr1B	0.2	
Vrc1B	0.75	
Trc1B	0.05	
Vtr2B	0.5	Assumed performance of these motors:
Ttr2B	0.02	 Trip level at 0.50 pu voltage, trip time < 2 cycles 30% of these motors have this type of protection Auto-reconnect – 0.65 pu within 50 ms Emulates staggered tripping and reconnection – diversity of motor load
Ftr2B	0.3	
Vrc2B	0.65	
Trc2B	0.05	

"LfmC" 0.75 "RsC" 0.03 "LsC" 1.8 "LpC" 0.19 "LppC" 0.14 / "TpoC" 0.2 "TppoC" 0.0026 "HC" 0.1 "etrqc" 2 / "Vtr1C" 0.65 "Ttr1C" 0.02 "Ftr1C" 0.2 "Vrc1C" 1 "Trc1C" 9999 / "Vtr2C" 0.5 "Ttr2C" 0.02 "Ftr2C" 0.3 "Vrc2C" 0.65 "Trc2C" 0.1 /

Parameter	Default	Reason
LfmC	0.75	Load MVA = MW/MVA Rating
RsC	0.03	These are 'generic' motor parameters for this type of
LsC	1.8	load, based on laboratory testing
LpC	0.19	
LppC	0.14	
ТроС	0.2	
ТрроС	0.0026	
НС	0.1	Large inertia commercial/industrial pump motor loads
etrqC	2*	$T_{mech} = T_{mech,0} * \omega^{E_{trq}}$ - Torque \propto Speed-Squared

*3*q* motors driving load proportional to speed-squared relationship with low inertia (pump loads) 44

"LfmC" 0.75 "RsC" 0.03 "LsC" 1.8 "LpC" 0.19 "LppC" 0.14 / "TpoC" 0.2 "TppoC" 0.0026 "HC" 0.1 "etrqc" 2 / "Vtr1C" 0.65 "Ttr1C" 0.02 "Ftr1C" 0.2 "Vrc1C" 1 "Trc1C" 9999 / "Vtr2C" 0.5 "Ttr2C" 0.02 "Ftr2C" 0.3 "Vrc2C" 0.65 "Trc2C" 0.1 /

Parameter	Default	Reason
Vtr1C	0.65	Assumed performance of these motors:
Ttr1C	0.02	 First trip level at 0.65 pu voltage, trip time < 2 cycles 20% of these motors have this type of protection Manual reconnection
Ftr1C	0.2	
Vrc1C	1.0	
Trc1C	9999	
Vtr2C	0.5	Assumed performance of these motors:
Ttr2C	0.02	 Trip level at 0.50 pu voltage, trip time < 2 cycles 30% of these motors have this type of protection Auto-reconnect – 0.65 pu within 100 ms
Ftr2C	0.3	
Vrc2C	0.65	
Trc2C	0.1	

"LfmD" 1 "CompPF" 0.98 / "Vstall" 0.6 "Rstall" 0.1 "Xstall" 0.1 "Tstall" 0.03 "Frst" 0.2 "Vrst" 0.95 "Trst" 0.3 / "fuvr" 0.1 "vtr1" 0.6 "ttr1" 0.02 "vtr2" 1 "ttr2" 9999 / "Vc1off" 0.5 "Vc2off" 0.4 "Vc1on" 0.6 "Vc2on" 0.5 / "Tth" 15 "Th1t" 0.7 "Th2t" 1.9 "tv" 0.025

Parameter	Default	Reason
LfmD	1.0	Load MVA = MW/MVA Rating
CompPF	0.98	Assumed slightly inductive motors load
Vstall	0.60	Stall voltage (range) based on laboratory testing
Rstall	0.1	Based on laboratory testing results of residential air- conditioners
Xstall	0.1	
Tstall	0.03	Stall time (range) based on laboratory testing
Frst	0.2	Captures diversity in load; also based on testing.
Vrst	0.95	Reconnect when acceptable voltage met
Trst	0.3	Induction motor restart time is relatively short

*1φ induction motor load (residential air-conditioner compressors)

"LfmD" 1 "CompPF" 0.98 / "Vstall" 0.6 "Rstall" 0.1 "Xstall" 0.1 "Tstall" 0.03 "Frst" 0.2 "Vrst" 0.95 "Trst" 0.3 / "fuvr" 0.1 "vtr1" 0.6 "ttr1" 0.02 "vtr2" 1 "ttr2" 9999 / "Vc1off" 0.5 "Vc2off" 0.4 "Vc1on" 0.6 "Vc2on" 0.5 / "Tth" 15 "Th1t" 0.7 "Th2t" 1.9 "tv" 0.025

Parameter	Default	Reason
fuvr	0.1	Assumed most A/C units have undervoltage relaying
vtr1	0.6	Undervoltage relay
ttr1	0.02	
vtr2	1	No second level undervoltage tripping specified.
ttr2	9999	
Vc1off	0.5	Stall time (range) based on laboratory testing
Vc2off	0.4	Based on laboratory testing results
Vc1on	0.6	Reconnect when acceptable voltage met
Vc2on	0.5	Induction motor restart time is relatively short

"LfmD" 1 "CompPF" 0.98 / "Vstall" 0.6 "Rstall" 0.1 "Xstall" 0.1 "Tstall" 0.03 "Frst" 0.2 "Vrst" 0.95 "Trst" 0.3 / "fuvr" 0.1 "vtr1" 0.6 "ttr1" 0.02 "vtr2" 1 "ttr2" 9999 / "Vc1off" 0.5 "Vc2off" 0.4 "Vc1on" 0.6 "Vc2on" 0.5 / "Tth" 15 "Th1t" 0.7 "Th2t" 1.9 "tv" 0.025

Parameter	Default	Reason
Tth	15	Varies based on manufacturer – sensitivity analysis required; based on range of external factors
Th1t	0.7	Assumed tripping starting at 70% temperature, with all tripped at 190% temperature
Th2t	1.9	
tv	0.025	Assumed generic transducer time lag

- Compressor loading and stall voltage depend on ambient temperature
- Compressor motors have high power factor when running
 - Approximately 0.97 pf

Current R&D Efforts

- Point-on-wave sensitivity
- Voltage sag rate-of-change sensitivity
 - Distribution recordings show sag is not instantaneous
 - At least 1 cycle for voltage to sag motor backfeed
 - Vstall numbers lower than previously thought

