NERC NORTH AMERICAN ELECTRIC RELIABILITY CORPORATION

A Look into Load Modeling: **The Composite Load Model**

Dynamic Load Modeling & FIDVR Workshop September 30, 2015 Ryan D. Quint, North American Electric Reliability Corporation

- Landscape
- Brief History
- Today's State of the Art
- Putting Context to the Comp Load Model
- A Look at Some Key Parameters
- Where We Are & Where We're Going

Summer peak vs. annual consumption in California

Our System Load

Resistive Cooking Resistive Heating

Incandescent Lighting

Distributed Generation

AC and Heat Pumps

Power Electronics

Data Centers

Electric Vehicles

3 RELIABILITY EXECUPTER SHARE *Share of total system load* **RELIABILITY** | ACCOUNTABILITY

The CMLD (CMPLDW) Model

• Let us break down the 130+ parameters, contextualize their meaning; begins to come together cohesively.

The Distribution Equivalent Circuit

- Represents 3-phase compressor motors in commercial cooling and refrigeration systems
	- Typical of rooftop A/C Walmart, Whole Foods, Malls, etc.
- Model data representative of 5-15 HP compressor motors
	- Special design motors (not NEMA)
	- Stall at about 40% voltage, restart at about 50-60% voltage
	- Constant torque load (on average)
	- Low inertia
- Motor protection & control:
	- Contactors trip when supply voltage drops to about 40% voltage, reclose at 45-55% voltage
	- Building EMS no apparent reason to keep equipment out of service

10-25 hp compressor motors Roof-Top Direct Expansion HVAC

8 RELIABILITY | ACCOUNTABILITY

- Large commercial buildings have central cooling systems
- Chiller compressors are large motors 200-500 HP
- Motor protection & control:
	- Chillers are sensitive equipment
	- Once tripped, probably require manual restart

Central Cooling System Chiller 200-250 hp compressors

Motor A Model Data

- \bullet H = 0.1 sec
- Constant torque load
- 70% of motors trip at 50% voltage, restart at 70% voltage (representing 10-25 HP motors)
- 20% of motors trip at 70% voltage, remain disconnected (representing large chillers)

- Represents fan motors used in residential and commercial buildings
	- Ventilation fans in buildings, air-handler fans
- Model data is representative of 5-25 HP fan motors
	- Usually NEMA B design motors
	- Torque load proportional to speed squared
	- High inertia (0.25 to 1 seconds)
- Motor protection and control:
	- Contactors trip: \approx 40% voltage; Reclose: \approx 45-55% voltage
	- Building EMS no apparent reason to keep equipment out of service
- Current trend: Fan motors are being replaced with Electronically Commutated Motors (ECMs)
	- Energy Efficiency Upgrade DC motors, controllable speed
- Stall at very low voltages

- Represents direct-connected pump motors used in commercial buildings
	- Water circulating pumps in central cooling systems
- Same as Motor B, but with low inertia
- Model data is representative of a 5-25 HP pump motor
	- Usually NEMA B design motors
	- Torque load proportional to speed squared
	- Lower inertia (0.1 to 0.2 seconds)
- Motor protection and control:
	- Contactors trip: \approx 40% voltage; Reclose: \approx 45-55% voltage
	- Building EMS no apparent reason to keep equipment out of service
- Current trend: Pump motors are being replaced with Variable Frequency Drives (VFDs)
- 12 EE Upgrade AC motors, controllable speed RELIABILITY | ACCOUNTABILITY

Motor B and C Model Data

- NEMA B Design Motor
- \bullet H = 0.5 sec for fan, H = 0.1 sec for pump
- Load torque proportional to speed squared

Motor D – Residential Air Conditioner

- Single-phase compressor motors in residential and small commercial cooling and refrigeration
- Model data representative of 3-5 HP compressor motors
	- **Special design motors (not NEMA)**
	- Stall at about 45-60% voltage
	- Constant torque load (on average)
	- \blacksquare Low inertia
- Motor protection and control:
	- Contactors trip: \approx 40-50% voltage; Reclose: \approx 45-55% voltage

Motor D – Performance

- Compressor Load Torque is very cyclical
- Very possible that motor stalls on next compression cycle

Weight: 4.6 kg

E.g. 3.5-ton compressor motor:

310 mm

- Compressor Motor Inertia is very low
	- $H = 0.03 0.05$ sec
- Physically small

- Three-phase motor models cannot represent behavior of singlephase motors with the same datasets
	- **Stalling phenomena 3-phase motors usually stall at much lower voltages**
	- P and Q consumption during stalling
- Single-phase models exist, but not in positive sequence models
	- Research is looking into sensitivities of single-phase motors
		- o Point-on-wave
		- o Electrical impedance
		- o Voltage rate-of-change
		- o Voltage and duration

- Motors stall when voltage drops below Vstall for duration Tstall
- Fraction Frst of aggregate motor can restart when voltage exceeds Vrst for duration Trst

Thermal Relay Model

 K_{TH} – fraction of motors that remain connected

- Thermal trip constant varies by manufacturer, protection requirements
- Thermal relay model accounts for this in linear tripping mechanism

- Electrical response is represented with performance model
	- "Run" and "stall" states based on Vstall and Tstall
	- Fraction of motors allowed to restart (usually scroll compressors)
	- Manufacturers believe scroll-type represents 10-20% of A/C motors
- Thermal protection
	- $I²t$ characteristic used a range is used to capture diverse settings
- Contactors
	- Load reduced linearly at 40-50% voltage, reconnect at 50-60% voltage
- Energy Efficiency standards driving greater penetration of scroll compressors – higher efficiency
	- SEER 12 very hard to meet with reciprocating units
- Newer A/C units have power-electronic VFDs generally smaller ones popular in Europe/Japan for single-room cooling

- The CMPLDW/CMLD model is NOT the "WECC" Model
	- It is generic, and can be used across the interconnections
	- Can provide detailed representation of dynamic load behavior, including induction motor loads
	- Advancements in model structure greatly simplify utilization
	- Must perform sensitivity studies to better understand model parameter impacts on performance
	- Can disable A/C motor stalling by setting Tstall to 9999 (WECC Phase 1) o More work to understand software implementation of this
	- Tools available to generate load model records effectively
- These types of models will never capture the level of accuracy of generator modeling. But they're a big step in the right direction.
	- Can be tuned to accurately reproduce and explain historical events
	- Seek to predict future events *in principle*, not in full fidelity

Questions and Answers

22 RELIABILITY | ACCOUNTABILITY

Appendix: Supplemental Material

- 1980s: Constant current real, constant impedance reactive models connected at transmission-level bus
	- *Limitation of computing technology for that time*
- 1990s: EPRI Loadsyn (static polynomial characteristic to represent load), IEEE Task Force recommends dynamic load modeling
	- *Failed to get much traction in industry*
- 1996: BPA model validation study for August 10 1996 outage
	- o *Demonstrated need for motor load representation* in dynamic load models to capture oscillations and voltage instability

- 2000-2001 WECC "Interim" Load Model
	- 20% induction motor, remaining static load
	- Was only practical option in 2001
	- Intended as a temporary 'fix' to model oscillatory behavior observed at the California-Oregon Intertie (COI)
	- Model limitations were recognized and need for a better model was clear
	- *Model was used for 10+ years to plan and operate the Western Interconnection*
	- *…Many utilities are choosing to use the CLOD model, which is similar to this approach from 2001…!*

Model was used in Southern California for special studies using PTI PSS®E simulator

- Late 1980s Southern California Edison observes delayed voltage recovery events, attributed to stalling of residential air conditioners
	- Tested residential A/C units in laboratory, developed empirical AC models
- 1997 SCE model validation effort of Lugo event
	- *Illustrated need to represent distribution equivalent*
	- *Illustrated need to have special models for air conditioning load*

- 1994 Florida Power published an IEEE paper, using a similar load model
- 1998 Delayed voltage recovery event in Atlanta area in Southern Company territory
	- Events were observed, analyzed, modeled, and benchmarked to recreate event
- FPL and Southern Co. used, in principle, similar approaches to SCE and the eventual WECC model
- *These models were used for special studies of local areas, but beginning to get traction*

- 2005 WECC developed 'explicit' model
	- Included distribution equivalent, induction motor and static loads
	- Numerical stability in Interconnection-wide study
		- o *This was a big step 10 years ago. Still unavailable in the East.*
- 2007 First version of the composite load model in PSLF
	- **Three phase motor models only, no single phase represented**
- 2006-2009 EPRI/BPA/SCE testing of residential air conditioners and development of models
- 2009 1φ air conditioner model added to composite load model
- 2011 WECC adopts phased approach for composite load model, starts system impact studies
- 2013 TPL-001-4 requires modeling induction motor load
- 2013-Current WECC approved use of Phase I composite load models for planning and operational studies

• **CIM5 – Induction Motor Load Model**

- Load Torque represented by $T_{LOAD} = T_{NOM}(1 + n)^D$
- Single- or double-cage induction motors, including rotor flux dynamics
- Captures motor start-up

- **CIMW – Induction Motor Load Model (WECC)**
	- Motor load including electromagnetic dynamics (single- or double cage)
	- Load Torque represented by $T_{\text{LOAD}} = T_0(A\omega^2 + B\omega + C_0 + D\omega^e)$
- **CIM6 – Induction Motor Load Model**
	- Detailed load torque representation of CIMW
	- Motor starting capability of CIM5

PTI PSS®E Load Models

• **CLOD – Complex Load Model**

- **Distribution (transformer & circuit) impedance**
- Large & Small 3-φ induction motors
- **Discharge lighting**
- **Transformer saturation**
- Assumed 0.98 pu loads tap calculation to obtain V at load bus

- Simulates general effects of loads being reset to constant MWMVAR in steady-state without specifically modeling equipment (taps, caps, etc.)
- **IEEL – IEEE Load Model**
	- **Algebraic representation of load**

$$
P = P_{load}(a_1v^{n_1} + a_2v^{n_2} + a_3v^{n_3})(1 + a_7\Delta f)
$$

 n_{γ}

n,

$$
Q = Q_{load}(a_4v^{n_4} + a_5v^{n_5} + a_6v^{n_6})(1 + a_8\Delta f)
$$

- **LDFR – Load Frequency Model**
	- $I_p = I_{po} \left(\frac{\omega}{\omega}\right)^r$ Constant P and constant I components sensitive to system frequency

• **ACMT – Single-Phase Air Conditioner Motor Model**

- Aggregate representation of single-phase A/C load
	- o Compressor motor, thermal relay, U/V relays, contactors
- Representation based on "*Performance Model for Representing Single-Phase Air-Conditioner Compressor Motors in Power System Studies*" developed by WECC Load Model Task Force (LMTF)
- This is the 1-φ A/C motor representation in the CMLD model

 $P = P_0 \left(\frac{\omega}{\omega} \right)^m$

 $Q = Q_0 \left(\frac{\omega}{\omega}\right)^n$

 $I_q = I_{q0} \left(\frac{\omega}{\omega}\right)^s$

GE PSLF Load Models

• **Aggregate Load**

- alwscc (b,w,z) Load Voltage/Frequency Dependence Model
- Secld1(2,3) Secondary Load Model with Reset of Tap Ratio

• **Induction Motor Load**

- apfl (spfl) Pump/Fan Driven Induction (Synchronous) Motor Load Model
- motorw/x Single or Double Cage Induction Motor Model

• **Single-phase Air Conditioner Load**

- Ld1pac Performance-based Model of 1-φ Air Conditioner Load
- motorc Phasor Model of 1-φ Air Conditioner Load

• **Other Loads**

- Ldelec (rect) – Electronic (Rectifier) Load Model

"Bss" 0 "Rfdr" 0.04 "Xfdr" 0.04 "Fb" 0.75/ 0.9 "Tmax" 1.1 "step" 0.00625 / 5 "RComp" 0 "XComp" 0

"Bss" 0 "Rfdr" 0.04 "Xfdr" 0.04 "Fb" 0.75/ "Xxf" 0.08 "TfixHS" 1 "TfixLS" 1 "LTC" 0 "Tmin"
"Vmin" 1.025 "Vmax" 1.04 "Tdel" 30 "Ttap" 5 0.9 "Tmax" 1.1 "step" 0.00625 / 5 "RComp" 0 "XComp" 0

0.239538 "Fmb" 0.156309 "Fmc" 0.064766 "Fmd" "Fma" 0.206375 "Fel" 0.116908

"PFel" 1 "Vd1" 0.7 "Vd2" 0.5 "Frcel" 0.8 /

"Pfs" -0.994504 "Ple" 2 "Plc" 0.295212 "P2e" 1 "P2c" 0.704788 "Pfreq" 0 / "Q1e" 2 "Q1c" -0.5 "Q2e" 1 "Q2c" 1.5 "Qfreq" -1 /

"Pfs" -0.994504 "Ple" 2 "Plc" 0.295212 "P2e" 1 "P2c" 0.704788 "Pfreq" 0 / "Q1e" 2 "Q1c" -0.5 "Q2e" 1 "Q2c" 1.5 "Qfreq" -1 /

"MtpA" 3 "MtpC" 3 "MtpB" 3 "MtpD" 1 /

"LfmA" 0.75 "RsA" 0.04 "LsA" 1.8 "LpA" 0.12 "LppA" 0.104 /
"TpoA" 0.095 "TppoA" 0.0021 "HA" 0.1 "etrqA" 0 /
"Vtr1A" 0.7 "Ttr1A" 0.02 "Ftr1A" 0.2 "Vrc1A" 1 "Trc1A" 99999 / "Vtr2A" 0.5 "Ttr2A" 0.02 "Ftr2A" 0.7 "Vrc2A" 0.7 "Trc2A" 0.1 /

40 RELIABILITY | ACCOUNTABILITY **3φ motors driving constant torque loads (commercial air conditioner compressors and refrigeration)*

"LfmA" 0.75 "RsA" 0.04 "LsA" 1.8 "LpA" 0.12 "LppA" 0.104 /
"TpoA" 0.095 "TppoA" 0.0021 "HA" 0.1 "etrqA" 0 /
"Vtr1A" 0.7 "Ttr1A" 0.02 "Ftr1A" 0.2 "Vrc1A" 1 "Trc1A" 99999 / "Vtr2A" 0.5 "Ttr2A" 0.02 "Ftr2A" 0.7 "Vrc2A" 0.7 "Trc2A" 0.1 /

"RsB" 0.03 "LsB" 1.8 "LpB $0.14 /$ " 0.75 0.19 "LppB LtmB' "Тров" 0.2 "Трров" 0.0026 "НВ" 0.5 "etrqB" 2 "Vtr1B" 0.6 "Ttr1B" 0.02 "Ftr1B" 0.2 "Vrc1B" 0.75 "Trc1B" 0.05 / "Vtr2B" 0.5 "Ttr2B" 0.02 "Ftr2B" 0.3 "Vrc2B" 0.65 "Trc2B" 0.05 /

42 RELIABILITY | ACCOUNTABILITY **3φ motors driving load proportional to speed-squared relationship with high inertia (large fans)*

"RsB" 0.03 "LsB" 1.8 "LpB" 0.19 "LppB"
"TppoB" 0.0026 "HB" 0.5 "etrqB" 2 / 'L†mB" 0.75 $0.14 /$ "TpoB" 0.2 "TppoB" 0.0026 "HB" 0.5 "etrqB" 2 /
"Vtr1B" 0.6 "Ttr1B" 0.02 "Ftr1B" 0.2 "Vrc1B" 0.75 "Trc1B" 0.05 / "Vtr2B" 0.5 "Ttr2B" 0.02 "Ftr2B" 0.3 "Vrc2B" 0.65 "Trc2B" 0.05 /

"LfmC" 0.75 "RsC" 0.03 "LsC" 1.8 "LpC" 0.19 "LppC" 0.14 /
"TpoC" 0.2 "TppoC" 0.0026 "HC" 0.1 "etrqc" 2 /
"Vtr1C" 0.65 "Ttr1C" 0.02 "Ftr1C" 0.2 "Vrc1C" 1 "Trc1C" 9999 / "Vtr2C" 0.5 "Ttr2C" 0.02 "Ftr2C" 0.3 "Vrc2C" 0.65 "Trc2C" 0.1

44 RELIABILITY | ACCOUNTABILITY **3φ motors driving load proportional to speed-squared relationship with low inertia (pump loads)*

"LfmC" 0.75 "RsC" 0.03 "LsC" 1.8 "LpC" 0.19 "LppC" 0.14 /
"TpoC" 0.2 "TppoC" 0.0026 "HC" 0.1 "etrqc" 2 /
"Vtr1C" 0.65 "Ttr1C" 0.02 "Ftr1C" 0.2 "Vrc1C" 1 "Trc1C" 9999 /
"Vtr2C" 0.5 "Ttr2C" 0.02 "Ftr2C" 0.3 "Vrc2C" 0.65 "Trc

"LfmD" 1 "CompPF" 0.98 / "Vstall" 0.6 "Rstall" 0.1 "Xstall" 0.1 "Tstall" 0.03 "Frst" 0.2 "Vrst" 0.95 "Trst" 0.3 /
"fuvr" 0.1 "vtr1" 0.6 "ttr1" 0.02 "vtr2" 1 "ttr2" 9999 /
"Vc1off" 0.5 "Vc2off" 0.4 "Vc1on" 0.6 "Vc2on" 0.5 / "Tth" 15 "Th1t" 0.7 "Th2t" 1.9 "tv" 0.025

**1φ induction motor load (residential air-conditioner compressors)*

"LfmD" 1 "CompPF" 0.98 / "Vstall" 0.6 "Rstall" 0.1 "Xstall" 0.1 "Tstall" 0.03 "Frst" 0.2 "Vrst" 0.95 "Trst" 0.3 / "fuvr" 0.1 "vtr1" 0.6 "ttr1" 0.02 "vtr2" 1 "ttr2" 9999 / "Vc1off" 0.5 "Vc2off" 0.4 "Vc1on" 0.6 "Vc2on" 0.5 / "Tth" 15 "Th1t" 0.7 "Th2t" 1.9 "tv" 0.025

"LfmD" 1 "CompPF" 0.98 / "Vstall" 0.6 "Rstall" 0.1 "Xstall" 0.1 "Tstall" 0.03 "Frst" 0.2 "Vrst" 0.95 "Trst" 0.3 / "fuvr" 0.1 "vtr1" 0.6 "ttr1" 0.02 "vtr2" 1 "ttr2" 9999 / "Vc1off" 0.5 "Vc2off" 0.4 "Vc1on" 0.6 "Vc2on" 0.5 / "Tth" 15 "Th1t" 0.7 "Th2t" 1.9 "tv" 0.025

- Compressor loading and stall voltage depend on ambient temperature
- Compressor motors have high power factor when running
	- **Approximately 0.97 pf**

Current R&D Efforts

- Point-on-wave sensitivity
- Voltage sag rate-of-change sensitivity
	- **Distribution recordings show sag is not** instantaneous
	- At least 1 cycle for voltage to sag motor backfeed
	- **Vitall numbers lower than previously thought**

