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BACKGROUND 

• APS and SCE have had slow voltage recovery events 
• This was attributed to a/c motor stalling 
• EPRI Performed work for both utilities to model the 

phenomenon 
• The objectives were to: 

– Test actual air-conditioning (a/c) units 
– Identify the physical behavior of these units  
– Use this information to develop a model 
– Test/Validate the approach against measured system 

events (simulate in GE PSLFTM)  
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TESTING A/C UNITS IN THE LAB 

• A survey was conducted of the typical types and sizes of 
a/c units in the South West 

• 12 units were purchased from manufacturers 
• A test plan was developed in collaboration with SCE 
• SCE and BPA separately performed similar tests on 

multiple other units – the results from test by all three 
entities were quite similar 
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KEY FINDINGS OF LAB TESTS 

• Main load (> 80%) is the a/c compressor motor 
• Motor has a very light inertia (~0.03 kWs/kVA) 
• Unit stalls in 3 cycles or less 
• Stall voltage = 55 to 66%, depends on unit and outdoor 

temperature 
• Motor contactor opens at = 40 to 55% voltage – 

independent of temperature, dependent on unit  
• Single-Phase Motors 
• Once voltage recovers, the contactor closes back in and 

the unit may then stall 
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KEY FINDINGS OF LAB TESTS 

• All units have Thermal Overload (TOL) protection 
• TOL operated between 2 to 20 seconds, depending on 

system voltage 
• This is an I2t phenomenon so the higher the voltage, the 

higher the current draw and the quicker the TOL operates 
• When the unit stalls it draws as much as five times its 

steady-state current (real and reactive) 
• Reciprocating compressors, once stalled they trip on TOL 
• Scroll compressors can recover from stalling, without 

tripping on TOL, if the voltage recovers fast enough 
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Current Characteristics of a Typical A/C Unit 

Unit #4 Current Characteristics
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Behavior of a Reciprocating Compressor Unit 

• Example response of a reciprocating unit to delayed 
voltage recovery – stalled; TOL protection operated and 
tripped the unit 
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Behavior of a Scroll Compressor Unit 

• Example response of a scroll unit to delayed voltage 
recovery – stalled but recovered once voltage recovered. 
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MODELING THE A/C UNIT (NORMAL CONDITION) 

• Under normal (not stalled) operation a/c compressor may be reasonably 
represented as a standard 3-phase positive sequence induction motor model 

• Graph shows the fit for various mechanical torque models for a normal circuit 
breaker clearing transient (measured is black curve – real power is shown)  
 

Variations in Overall Response due to Different Motor Mechanical Torque Model
SCE Unit #7(CB Transient Data: Voltage Sag 60% 9cycles 100F) - Scroll Unit
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MODELING THE A/C UNIT (NORMAL 
CONDITION) – REACTIVE POWER 

Variations in Overall Response due to Different Motor Mechanical Torque Model
SCE Unit #7 (CB Transient Data: Voltage Sag 60% 9cycles 100F) - Scroll Unit
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MODELING THE A/C UNIT - INERTIA 

 
Full-Load 
Running 
Speed 
(RPM)

Motor 
Rotor 

Mass (kg) Watts
Width 

(inches)
Weight 

(lb)
Height 

(inches)

Rotor 
Radius 

(cm) H (Ws/VA)
3500 3.67 1780 9.567 66 15.6 3.20 0.08
3500 3.67 2230 9.567 67 15.6 3.20 0.06
3500 3.67 2520 9.567 48.6 15.6 3.20 0.05
3500 3.80 3620 9.567 69 16.14 3.20 0.04
3500 4.30 5050 9.71 90 17.75 3.25 0.03
3500 8.66 9750 11.69 200 24.65 3.91 0.05
3500 8.97 8300 11.69 200 24.65 3.91 0.06
3500 3.67 1130 9.567 66 15.6 3.20 0.12
3500 3.67 1410 9.567 67 15.6 3.20 0.09
3500 3.67 1670 9.567 48.6 15.6 3.20 0.08
3500 3.80 2410 9.567 69 16.14 3.20 0.06
3500 4.30 3520 9.71 90 17.75 3.25 0.05
3500 8.66 6800 11.69 200 24.65 3.91 0.07
3500 8.66 5850 11.69 200 24.65 3.91 0.08
3500 3.59 1100 9.565 66 15.275 3.20 0.12
3500 3.59 1660 9.565 66 15.275 3.20 0.08
3500 3.98 2250 9.565 66 16.93 3.20 0.06
3500 3.29 800 9.3 43.6 14.82 3.11 0.14

Rough estimates:  

Manufacturers  

Could Really 

Help Us to Better  

Understand Inertia 
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HYBRID MODEL FOR POWER SYSTEM SIMULATIONS 

• The modeling approach is based on a hybrid approach 
(similar to [1] but fully automated) 
– Assume that the positive sequence 3-phase IM model 

is adequate for capturing the single-phase compressor 
IM for normal operation (i.e. not stalled) 

– Use a constant impedance model to represent the stall 
condition 

 
 
 
[1] G. L. Chinn, “Modeling Stalled Induction Motors”, IEEE T&D Conference, 

May 2006. 
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HYBRID-MODEL  
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COMPOSITE MODEL STRUCTURE 

• Convert all loads through an automated user-written EPCL 
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STATE TRANSITION DIAGRAM FOR HYBRID MODEL 

- Motor 

- Stalling 

- Contactor 

- TOL (I-squared t) 
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APS EVENT – Hassayampa, 28th July, 2003 
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APS EVENT – Feeder Voltages 
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APS EVENT – System Response 

• Over a 20 second period roughly 400 to 600 MW  of air-
conditioning loads tripped. 

• The I2t TOL results in this behavior 
• They started tripping at around 2.6 seconds and stopped 

tripping at around 29 seconds. 
• This is quite indicative of actual system behavior.   
• The trace of recorded APS load shows a dip of roughly 

500 MW in the first minute following the disturbance.  
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APS EVENT – Sensitivity Analysis 

• A large number of sensitivity runs were performed 
• The intent was to show the relative sensitivity of results to 

load model parameters  
• In order of most sensitive to least sensitive: 

– Load composition (% motor, % of static loads) 
– V-stall of stalling motor 
– H of stalling motor 
– Load torque of motors 
– All others (feeder impedance, machine electrical 

parameters etc.) – much less sensitive 
• Most of the stalling happened after the fault cleared 
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SCE EVENT – Valley, July 2006 
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SCE EVENT – The Challenge With Modeling 

• Large, radial fed, load with no source near the load 
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SCE EVENT – Modeling  

• In original model – single lumped load  
• Split it into tens of smaller portions 
• Vary feeder impedance between maximum to minimum 

value 
• Details of distribution network not readily available – to 

emulate variations in TOL pickup and voltage recovery, 
set TOL time based on normal random distribution with 4 
second standard deviation 
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SCE EVENT – Valley, July 2006 
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SCE EVENT - Sensitivity 

• Load composition - % motor load 
• Variations in inertia of the a/c load not as important 

– Units light enough that they stall quickly 
• Because the load is served radially and there are no short 

circuit sources (generation) below the 115 kV level, thus 
when we have a fault, if the voltage falls low enough, all a/c 
units stall. 

• The response is really governed by: 
– the nature of the remaining connected load, 
– the effective impedance from the source to the load,  
– the thermal overload tripping time, and  
– the effective stall impedance (motor current draw). 

• MOTORS STALL DURING THE FAULT - The stall  voltage 
is a key factor 
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CURSORY LOOK AT TRANSMISSION 
SOLUTIONS 
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THE ISSUES 

• What can you do about it now? 
• What should we be doing? 

– Minimize risk of cascading 
– This requires boosting voltage on transmission as quickly 

and as much as possible 
• Cannot stop all the stalling – it happens too fast 
• Can reduce stalling: 

– Faster clearing of faults (where practical) 
– Increasing system short circuit (where practical) 

• Fixes at the a/c units themselves may take years to impact a 
critical mass → Transmission solutions are needed 
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SOLUTIONS MOVING FORWARD 

• Put sources closer to the load  
• Put protection on the a/c units – might lead to overvoltage due to 

large blocks tripping 
• Internationals (e.g. Japan) have full-converter drives on a/c units → 

shutdown at low voltage and smooth start; much more expensive. 
• Put smoothly controlled reactive compensation at the transmission 

bus: 
– Reduces risk of cascading 
– Controls under- and over-voltage 

• Reduce impedance between source and load (build more lines or 
series compensation) 

• Really need combination transmission and load side solutions 
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CONCLUSIONS 

• We can reasonably replicate the system behavior with new models 
• The results are highly sensitive to: 

– The amount of motor load and other static load components 
– The stall voltage of motors (voltage below which air-conditioner 

motors stall) 
– The effective inertia of motors 
– The characteristics of the mechanical load on the motors 
– The stall impedance  

• One focus from this point on should be on Sensitivity Analysis with 
credible bounds 

• Solutions likely need to be pursued both at the system and 
component level 
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