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Abstract

Buildings with cleanrooms and laboratories are growing in terms of total floor area and energy
intensity.  This building type is common in institutions such as universities and in many industries such
as microelectronics and biotechnology.  These buildings, with high ventilation rates and special
environmental considerations, consume from 4 to 100 times more energy per square foot than
conventional commercial buildings.  Owners and operators of such facilities know they are expensive
to operate, but have little way of knowing if their facilities are efficient or inefficient.  A simple
comparison of energy consumption per square foot is of little value.  A growing interest in
benchmarking is also fueled by:

• A new U.S. Executive Order removing the exemption of federal laboratories from energy
efficiency goals, setting a 25% savings target, and calling for baseline guidance to measure
progress.

• A new U.S. EPA and U.S. DOE initiative, Laboratories for the 21st Century, establishing
voluntary performance goals and criteria for recognition.

• A new PG&E market transformation program to improve energy efficiency in high tech facilities,
including a cleanroom energy use benchmarking project.

This paper identifies the unique issues associated with benchmarking energy use in high-tech facilities.
Specific options discussed include statistical comparisons, point-based rating systems, model-based
techniques, and hierarchical end-use and performance-metrics evaluations.

Introduction

Project Objectives

The purpose of this paper to provide an overview of strategies for benchmarking energy use in
buildings with cleanrooms and laboratories.  These buildings are four to one hundred times more
energy-intensive than typical office buildings.  There are three drivers motivating the development of
cleanroom and laboratory benchmarking strategies:

• A new U.S. Executive Order (13123) removing the exemption of federal laboratories from energy
efficiency goals, setting a 25% savings target, and calling for baseline guidance to measure
progress.

• A new U.S. EPA and U.S. DOE initiative, Laboratories for the 21st Century, establishing
voluntary performance goals and criteria for recognition.

• A new PG&E market transformation program to improve energy efficiency in high tech facilities,
including a cleanroom energy use benchmarking project.

Each of these is further described in the Discussion section of this paper.  We use the term "energy
performance benchmarking" to refer to the comparison of whole building, system, or component
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energy use and energy performance, to a comparable data set.  Data included in an energy
benchmarking activity can include energy use, energy costs, peak demand, time-of-use data, building
characteristics, and non-energy performance features.  Comparison data sets can include:

• similar buildings
• historical energy use for the given building (usually referred to as "baselining")
• a set of similar systems or components.

The most significant challenge in energy performance benchmarking is to ensure that the data are
being compared in the most meaningful way possible.  There are so many confounding factors in such
comparisons that one could easily misinterpret comparison data and draw inappropriate conclusions.
Also, use of production metrics, such as kW/cm2 of silicon produced, could mask inefficient systems or
components.  Review of the existing publicly available energy data for clean rooms and laboratory-
type buildings reveals a paucity of sources of information, such as end-use profiles and load-shape
analysis, that are fundamental to understanding the patterns of energy use in such facilities.  One
current obstacle is the deficiency of clear protocols, survey strategies, metrics, and tools necessary for
benchmarking of energy performance.

We begin with an overview of the concept of benchmarking as a "best-practice" process-improvement
strategy.  We then discuss the unique energy issues associated with cleanrooms and laboratory-type
buildings.  This discussion is followed by a presentation of four types of strategies used for
benchmarking: 1) statistical comparisons, 2) point-based rating systems, 3) model-based techniques,
and 4) hierarchical end use and performance metrics evaluations.  Finally, we present a discussion of
how these approaches relate to the projects and drivers for cleanroom and laboratory building energy
benchmarking.

Benchmarking for Process Improvement

This section provides an overview of benchmarking principles as they relate to business practices and
continuous process improvement.  Such concepts are useful to help define how industrial facilities’
managers might utilize energy benchmarking to improve processes that influence their facilities'
energy use.

A benchmark is a marked point of known or assumed evaluation (Random House, 1980).  There is a
great explosion in interest and activities associated with benchmarking.  The activity itself is facilitated
by information technology including the Internet, plus data collection, management, archival, and
visualization tools. The most common use of the term benchmarking is the process of measuring
various facility, industrial, or general business processes in order to manage costs, productivity, or
services.  A single query on any of today's web search engines using the term "benchmarking" provides
over 20,000 to 50,000 matches.

Benchmarking is strongly related to Total Quality Management (TQM), in which one defines metrics
and methods to measure business attributes.  Benchmarking and TQM activities consist of comparing
quantitative attributes for one's own organization to both their own historic data and to other
organizations to be "benchmarked against" over time.  This allows business managers to search for
cost-cutting or productivity-enhancing strategies that can be "measured" and evaluated.  Benchmarks
are measurements to gauge the performance of a function, operation, or business, relative to others
(Bogan and English, 1994).  By contrast, benchmarking is the actual process of investigation and
discovery that emphasizes operating procedures as the things of greatest interest and value.  Best
practices benchmarking is the process of seeking out and studying the best internal and external
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practices that produce superior performance.  One measures this performance through various financial
and non-financial indicators.

Figure 1 shows a chronological sequence for benchmarking as a learning process to analyze workflows
and performance measures (McNair and Leibfried, 1992).  Core issues are the selection of key
processes and metrics to be benchmarked.  Internal data collection includes developing a process flow
map and a benchmark questionnaire.  Special attention is needed to ensure that data definitions are as
tight and consistent as possible.  The external data collection step consists of compiling data for
benchmark targets.  The analysis phase consists of comparing the benchmark data and identifying
opportunities.  The final step is to implement changes and evaluate resultant improvements to close
identified performance gaps.

Figure 1.  A framework for benchmarking.

Benchmarking Cleanrooms and Laboratory-Type Buildings

Many of the principles surrounding the concepts of benchmarking for best practices and continuous
improvement are relevant to energy performance benchmarking in buildings.  Examples of
organizations that have been active in benchmarking buildings include the International Facility
Management Association (www.ifma.com), The Building Owners and Managers Associations
(www.boma.org), and Facilities Management Datacom (www.fmdata.com).  Government agencies
such as the U.S. DOE and U.S. EPA are also involved in benchmarking, as further described below.
EPA introduces the concept of benchmarking of building energy performance as follows
(www.epa.gov/buildings/label/):

"The process of comparison against a standard or average is often referred to as
benchmarking. Benchmarking can help you determine how well a building is
performing in terms of energy efficiency; set targets for improved performance;
facilitate a more accurate assessment of property value; and in some cases gain
recognition for exemplary achievement."

The primary reason to develop methods for benchmarking energy performance in cleanrooms and
laboratory-type buildings is to facilitate the identification of best practices related to energy efficiency
strategies.  Because they are energy-intensive, significant cost-effective opportunities exist for savings.
As much as a 50% reduction in energy intensity can be achieved, primarily through improved
integrated design, commissioning, and operations (Mills et al. 1996).  Characteristics of high tech
buildings that are coupled with high energy use include high ventilation rates for make-up or
recirculated air, strict temperature and humidity requirements, filtration requirements, and the use of
fume hoods.

Cleanrooms and laboratories can be found in a variety of industries and institutions using different
building types.  Cleanrooms are most often used in manufacturing.  They are found in the production
of semiconductors and other electronic components, and they are also common in the pharmaceutical
and biotechnology industries.  There are a variety of cleanroom cleanliness classes.  The classification
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is based upon the number of particles greater than, or equal to, a certain size-per-unit volume of air.
Energy intensity generally increases with the level of cleanliness.  Figure 2 shows a typical energy use
intensity (EUI) for heating, ventilation, and air conditioning (not total EUI) for several classes of
cleanrooms and the peak electrical load from each class for California (Mills et al. 1996).

Figure 2.  Cleanroom HVAC energy use intensities and peak demand estimates.

Most high tech building operators are concerned with their high cost but they do not consider the
energy cost to be controllable, and they have little or no basis to determine if their facility is energy
efficient or inefficient compared to best practices.  Many facilities were designed with limited
measurement capabilities making it difficult to determine the actual end-use breakdown for a single
system, or for the cleanroom and laboratory portions of a multi-use facility.  In addition process and
production equipment adds high power densities and is highly variable across facilities.  Therefore,
energy benchmarking of high tech buildings containing different processes and operating with different
environmental conditions (e.g. cleanliness classes), requires development of metrics that go beyond
total energy use per square foot.

Frequently owners are interested in energy cost per unit of production.  An example of a metric
commonly used for this purpose in the semiconductor industry is energy cost per wafer equivalent (of a
certain diameter) produced. This metric considers the energy use of the manufacturing process in
addition to the facility usage. This number is used to compare the effectiveness of one factory to other
factories making the same product within the same company and to evaluate the performance of the
same factory over time. This comparison represents one type of evaluation that is possible with
metrics, but it is very limited.  Other measurements can allow efficiency comparisons across
companies and industries:

• One type of system to another type of system providing similar benefits, either within or outside
the company,

• One type of system to similar systems at different facilities, or at different times in the same
facility,

• A system or component’s actual performance to the manufacturer’s or designer’s specifications,

• A system or component’s actual performance to a known benchmark established within an
industry or company,
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• A system or component to a known “best practice,” either within a company or worldwide.

There are important cross-cutting issues that are universal in building benchmarking analysis.  One
such example is weather normalization.  Weather normalization is most widely used to account for
changes in weather over time in a single building.  For example, pre-retrofit and post-retrofit energy
use data are collected and weather normalized to examine energy savings.  Weather normalization
techniques to compare energy use among various buildings, especially high tech buildings, are less
well established.  Some buildings are more weather sensitive than others are.  Laboratory building
energy use is generally thought of as highly sensitive to weather because of the large volumes of
outside air used to maintain indoor air quality.  Thus, the weather normalization techniques used in a
particularly benchmarking strategy will be of significant interest.  By contrast, cleanroom energy use is
strongly dominated by large quantities of recirculated air, plus high process (tool) loads.  Cleanrooms
are generally considered less weather sensitive because the percentage of energy use that is weather
sensitive, primarily in the make-up air system, is relatively small.  Thus, comparing cleanroom energy
use among buildings in different climates is likely to be more straightforward.

Benchmarking Techniques

This section outlines four strategies for benchmarking: 1) statistical analysis, 2) point-based rating
systems, 3) model-based approaches, and 4) hierarchical end-use performance metrics.  We discuss
how these approaches are used with office and other commercial buildings, along with comments
about how relevant these techniques are for cleanroom and laboratory-type buildings.  The final
subsection below describes an idealized, hybrid tool combining many of the features of the strategies
described.

Statistical Analysis

Figure 3 shows energy use intensities for office buildings, which is a common starting point for
benchmarking in commercial buildings.  The plot, generated using a prototype research tool developed
at LBNL, displays a distribution of energy use intensity (EUI) on the x-axis and frequency on the y-
axis.  The tool allows the user to input basic building data such as the size, type, and annual energy
use.  The tool then displays the EUI of a given building compared to the buildings of the same type and
size from the same census region.  One can determine whether a given building has a high, low, or
typical energy-use intensity compared to others.  These histograms are based on the U.S. DOE's
Energy Information Administration's Commercial Building Energy Consumption Survey (CBECS,
U.S. DOE, 1995). CBECS is based on a survey of nearly 6000 commercial buildings spread through
the nine U.S. census regions.  The data include major building characteristics, such as size, type,
presence of certain equipment, hours of use, and annual energy use data.
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Figure 3.  Example of an energy-use intensity benchmarking plot.  Dark shaded
areas show individual buildings for which performance data are publicly available.

The LBNL prototype can be considered a simple starting point for more sophisticated procedures such
as the ENERGY STAR® Building Label .  This label is the most prominent office building
benchmarking effort (Sharp 1996, Hicks and Clough 1998), which accounts for differences in the
"levels of service" provided by different office buildings, as further described below. The label is based
on an analysis of several thousand office buildings in the 1992 and 1995 CBECS survey.  Linear
regression modeling was used to determine the strongest determinants of energy use.  Floor area,
number of occupants, connected load (number of PCs), type of occupancy (owner occupied versus
leased), and hours operated per week were the most important determinants of energy use, in
decreasing order of importance.  Additional analysis was done to consider whether the building has a
parking garage or computer center, and a weather normalization technique was added.  The label
analysis algorithm is defined to identify the best 25% of the buildings using a score from 0 to 100.
One must get a score higher than 75 to obtain an ENERGY STAR.  To actually obtain the ENERGY
STAR label, a Professional Engineer must certify that the building meets various performance
standards such as thermal comfort, illumination, and air quality.

Statistical benchmarking techniques require large data sets.  The CBECS data set is carefully
developed to provide a random sample of the entire population of commercial buildings in the U.S.
Statistically-based benchmarking techniques using whole building data are unlikely to be effective for
cleanroom and laboratory benchmarking because of the uniqueness of each facility and the difficulty of
obtaining a large enough random sample set of similar facilities.  Statistical data, especially end use
data, may be useful for comparisons between buildings of participating companies, however,
generalization to the overall population should be avoided.

Point-Based Rating Systems

Another approach to benchmarking is to use a point-based rating system.  One example is the U.S.
Green Building Council's Leadership in Energy and Environmental Design (LEED) Rating System™
(U.S.GBC, 1999).  The LEED Rating System is a voluntary, consensus-based, rating system to
evaluate environmental performance from a "whole building" perspective, providing a framework for
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defining a "green" building.  It is a system where credits are earned for satisfying each criteria.
Different levels of green building certification are awarded based on the total credits earned. The
system is designed to be comprehensive in scope, yet simple in operation.  The LEED system includes
specifications and criteria for commissioning, energy efficiency, erosion control, indoor air quality,
thermal comfort, plus water conservation and quality. LEEDs does not allow one to quantitatively
compare their buildings against others.  It does, however, outline a series of "best practice" standards
and guidelines that can be used to evaluate how "energy efficient and environmentally sustainable" an
overall facility is.  The commissioning and energy efficiency criteria are based primarily on public
commissioning guidelines and building codes.  LEEDs is a tool for evaluating designs (i.e. in new
construction) and is less well suited for on-going benchmarking and performance tracking.

A flexible point-based rating system would be an excellent tool for establishing qualification criteria in
a high tech buildings recognition program.  Further points could be awarded for participation in
quantitative benchmarking and performance tracking programs.  The LEED Rating System would need
to be modified for optimal use with cleanrooms and laboratories.

Model-Based Benchmarking

The University of California Center for Environmental Research (CEDR) examined methods for
laboratory benchmarking and concluded that there are two major problems associated with comparing
a given building with a set of similar laboratory buildings (Federspiel et al. 1999).  First, only similar
buildings can be compared.  Second, the entire population may be inefficient.  Both of these limitations
are significant issues for laboratory buildings because there is no public domain data set for
benchmarking like CBECS.

The possible inefficiency of an entire population leads to the question of how do we identify an
"efficient" building?  Both efficient equipment and an integrated system need to be present, and they
need to be operated efficiently.

CEDR constructed a benchmark tool that calculates the minimum energy requirement for a basic set of
functional laboratory requirements.  This benchmark is computed based on an idealized model of
equipment and system performance.  An "effectiveness metric" is then computed by dividing the
model-based benchmark by the actual energy consumption (Figure 4).  The effectiveness metrics from
multiple buildings can then be compared to each other.   The model converts simplified functional
requirements into minimum energy requirements.  The data requirements for the model are designed to
be easily collected with no sub-metering.  They include:

• Location (which relates to weather conditions)
• Indoor air change requirements
• Lighting and HVAC characteristics
• Temperature and humidity requirements
• Occupancy and schedule
• Process equipment

One challenge in cleanroom and laboratory-type buildings is process (tool), or plug-load estimates.
Overestimates of process loads are common because they are often based on nameplate power
requirements, which result in oversized and inefficient cooling equipment (Brown, 1996).
Laboratories and cleanroom HVAC systems may be intentionally over-sized to allow for uncertain
future build-out or additional process equipment.  Ideally benchmarking will facilitate better estimates
of process loads in the future.
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Figure 4.  Display of performance metrics.

The CEDR tool has been developed with laboratory building data for Northern California including
climate data for this region.  The tool could be enhanced to include a database of U.S. climate data and
tested for robustness with a larger set of laboratory buildings.  In addition, the model could be refined
to include filtration requirements of typical cleanrooms, as well as an estimate of process loads and a
breakout of space usage by type (office, lab, cleanroom, etc.).  If the approach is found to be robust, it
is an attractive methodology for cleanroom and laboratory-type building energy benchmarking.

Hierarchical and End-Use Performance Metrics

 Another possible benchmarking methodology is to develop a set of hierarchical and end-use
performance metrics.  Table 1. illustrates three levels of data which could be used for a laboratory,
starting with simple, annual whole-building metrics that are readily available from utility bills and
building plans.  Level 2 lists a set of data requirements that include additional details about the type of
laboratory, percentage of office space within the building, HVAC characteristics, and maximum annual
electric demand.  These data allow the generation of metrics that begin to link energy use to the climate
and functional requirements.  The third level down requires monthly utility bills and weather data.
These data are used to examine the weather sensitivity of the building.
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Table 1.  Tri-Level Benchmarking Data Requirements and
Associated Performance Metrics

Level 1. Gross Annual Data Requirements
• Gross sqft.
• Annual Fuel & Electricity Energy & Cost

Level 1. Gross Annual Metrics
• Total kBtu/sqft; fuel kBtu/sqft; kWh/sqft
• Total $/sqft, fuel $/sqft., elec. $/sqft

Level 2. Add Demand & Building Attributes
• Location; Lab type; % office vs. lab
• Design air flow (cfm); supply air pressure rise
• Chiller tonnage; HVAC type
• Max kW

Level 2. Additional Annual Metrics & HVAC
Sizing
• Cfm/sqft; chiller tons/sqft; fuel kBtu/cfm; fuel

$/cfm
• Elec. kWh/cfm; Elec. $/cfm
• Total kBtu/cfm; Total $/cfm
• Annual max W/sqft ; W/cfm max
• Load factor (avg. kW/max kW)
• Estimated peak cooling load/sqft*
• Estimated peak cooling load/capacity

Level 3. Add Monthly Data & Weather
Normalization
• Monthly Fuel (kBtu)
• Month Elec. (kWh)
• Monthly kW Max
• Monthly Weather (Avg. OSA Temp)

Level 3. Add Monthly Data & Weather
Normalization
• Fuel base load (kBtu/sqft)
• Fuel weather dependent load (kBtu/HDD-sqft)
• Elec. base load (kWh/sqft)
• Elec. weather dependent load (kBtu/CDD-sqft)
• Metrics based on cfm as opposed to sqft

normalizations
* For example, one could estimate peak cooling load using design cfm, design delta temp. for local climate
zone, and max. kW adjusted for estimated AC consumption.

Additional levels of data might include:

• Level 4.  Metrics Refined with Hourly Data—Hourly energy use data along with hourly weather
data.

• Level 5.  Metrics Refined with Disaggregated End-Use Data—Monthly end-use energy
measurements such as HVAC, lighting, and plug or process loads.

• Level 6.  Metrics Refined with Disaggregated Hourly End-Use Data—(a combination of Level
4 and 5) component data such as fan kW, airflow, water-flow, and temperature differences (to
measure load, delivered to a building or space), water flow and temperature rise (to measure
chilled water cooling tons).

• Level 7.  Other—Air and water flow pressure drops.

The idea of hierarchical measurements and metrics is to begin at the highest (whole-building) level and
begin to "peel the onion" as one moves down to the underlying system performance data.  Such an
approach is often necessary for identification of specific energy efficiency opportunities for a given
facility.  While these measurements are clearly important, there is another set of characteristics data to
help "explain" the measurements by relating the data back to the "type" of system in place, or the
building characteristics.   Data collected should also include hours of use, equipment type and vintage,
plus process and plug load description.

Whole building level data (levels 1-4) may give false signals – a low energy use intensity may not
mean an energy efficient building.  Disaggregated data (level 5-6) is very useful in understanding
energy consumption in high tech buildings, and allows for benchmarking of systems and components
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across multiple buildings (and industries).  For example, kW/ton and W/cfm are useful benchmarks
that can be applied across different load conditions and plant configurations.  However, such
measurements are expensive to obtain, and are therefore not widely available.

Hybrid Approaches and Ideal Tools

Another strategy for a benchmarking methodology is to draw upon the best aspects of the four primary
approaches to create a hybrid approach.  We can conceptualize how an ideal benchmarking tool might
function in order to guide research and data collection needed to build such a tool.  The tool may have
three modules:

1. Whole building data and metrics
2. End use data and metrics
3. Performance rating

Consider how the tool might react to both an inefficient (Lab A) and an efficient laboratory building
(Lab B).  Starting with Lab A (the inefficient building) we input a series of features such as the size
(broken down by usage type), hours of use, location, and HVAC design information, plus a year of
monthly utility bills.  The tool responds with an EUI distribution plot for buildings with similar
characteristics for a given climate.  We might find the building to be in the highest EUI quartile and be
concerned that the tool has suggested that the building is not efficient compared to others.  Knowing
that this statistical analysis may be tenuous, the tool also produces a model based energy effectiveness
ratio.  This indicates that the building uses 2.5 times more energy than “best practice.”  At this point
we’re pretty sure our building could be improved but we don’t know where to start looking for
opportunities.  Based on a measurement plan generated by the tool, we then submit the next level of
input data requested (module 2).  Here we enter short term (one week) end use monitoring data and
additional design data.  We provide estimates for any data we couldn’t obtain directly and make
adjustments to the design data for known changes in the as-built conditions.  The tool responds with an
EUI distribution plot for (end use) systems.  We find the chiller plant, at 1.5 kW/ton to be in the
highest EUI quartile.  In addition we find that the chiller and boiler operate simultaneously.  Even
when the outdoor temperature was below 55 degrees F, the chiller was consuming 50 kW, or 25% of
its rated input.  The benchmarking tool has helped us identify an inefficient cooling plant in Lab A.
Using the refined data inputted into module 2, the tool recalculates the energy effectiveness ratio.
Much to our surprise it has decreased to 2.3 times best practice – not as bad as we originally thought,
but still not very good.

In the case of Lab B (the efficient building), we input our data into module 1 and find we're in the
lower quartile on the EUI distribution curve.  This finding offers some comfort since the building is
only two years old and a concerted effort was made to ensure that efficient design principles where
incorporated, properly commissioned, and continuously monitored.  Desiring some recognition for a
job well done, we go to module 3, a point based rating system.  Module 3 takes some of the
information that we have already entered, but in addition to quantitative performance, this module
includes a series of inputs that describe features of the building that would explain its good
performance.  We easily qualify for the “silver” rating but we need 2 more points for the “gold.”  We
find that we can pick up those two points if we install the heat recovery coil that was removed from the
design during a last minute “value engineering” exercise.
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There are several additional features an ideal benchmarking tool might provide:

• Multiple parameter visualization.  The ability to display the data with a variety of axis
and parameters similar to those shown in Table 1, such as energy cost per square foot or
energy cost per cfm, etc.

• Design guide benchmarks and engineering rules-of-thumb.  Compare the data in the
database with common engineering rules-of-thumb and best practices, such as tons/cfm,
cfm/sqft, etc.

• Web-links for further resources. The tool offers a series of links to web sites that
discuss retrofit strategies and options.

• Identification of showcase buildings within EUI distributions.  Such showcase
buildings have web links that take the user to detailed "best practice" case studies to
illustrate efficient design and operating strategies.

Discussion

Benchmarking Strategies for Federal Laboratories

 A recent U.S. Executive Order (13123) sets a 25% energy savings target relative to 1990 for federal
laboratories.   An important concept here is baselining.  Federal agencies have to establish a baseline
year to measure savings against.  Weather-normalization techniques are important in such activities,
but other types of changes that explain energy use over time need to be examined as well.  One
difficult area to track is changes in process loads.  It is likely that many of the labs and cleanrooms may
utilize different equipment, and usage rates, thus confounding the analysis of energy savings.  One
strategy that should be considered is sub-metering of process loads, following the hierarchical
performance metrics approach outlined above.  Design standards for new DOE buildings now require
the ability to sub-meter process, HVAC, and lighting loads.  A second activity that is likely to prove
useful for federal agencies is to perform some statistical comparison of energy intensity distributions
among a set of buildings.  Such a comparison should allow the identification of the most energy
intensive facilities that may have the greatest energy savings potential.

Benchmarking for Laboratories for the 21st Century

Laboratories for the 21st Century (Labs21) is a new EPA & DOE initiative to: 1) establish voluntary
goals for energy performance, 2) set criteria for recognition, and 3) provide energy management tools
for public and private sector laboratory buildings.   Labs21 is committed to establishing a national
energy performance database for laboratories.  This will most likely utilize whole building data (no
sub-metering), however it may utilize both statistical and model-based benchmarking.  In addition, the
initiative will establish criteria for recognition.  The recommended approach for this program is to use
a point-based system.  The point system could recognize the presence of energy efficient design
features (such as heat recovery, VAV fume hoods, etc.), as well as give credit for utilizing performance
monitoring features (e.g. sub-metering of important end-uses).  Thus, this program will likely examine
a hybrid approach.

PG&E Cleanroom Benchmarking

PG&E is sponsoring a cleanroom benchmarking project to assess energy use and energy savings
opportunities.  This project resulted from a study that showed electronics (high tech) and
biotechnology as two large and growing markets, and requests from these customers for energy
benchmarking information.  Both industries are energy intensive due to their cleanroom facilities.  The
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effort will characterize energy use of the cleanrooms separately from the larger buildings or complexes
they are in.  Further PG&E will evaluate the performance of some central plant systems.  The project
involves conducting a series of short-term measurements in several cleanrooms of various cleanliness
classes and industries.  A series of metrics have been developed to assist in characterizing
performance.  Examples of measurements include HVAC efficiencies (for all components such as
chillers, cooling towers, pumps, etc.), and airflow characteristics including pressure drops, air
movement efficiency (cfm/kW), and coil face velocity (ft/min).

A modified hierarchical approach will be used, beginning with whole-building energy use and
progressing to system-level measurements, and then to key component measurements.  The plan and
its execution will be tailored to each individual site with the objective of collecting data to as great a
detail as practical within a limited budget and a short period of time.  In this way, the systems, and
level of detail, will be prioritized.  In some respects data will be collected where it is opportunistically
feasible and ignored where it is not.  The overall goal will be to populate a database with as much of
the pertinent energy use data as practical.  Comparison data will be available for all the high priority
data points.  If measured data is not available, design data, data from the test and balance report, or
certification report data will be utilized.

A challenge of this benchmarking project will be in consistently defining the cleanroom envelope and
the boundary of the benchmarking study.  Since the goal of the program is to compare only facility
systems’ energy use for a given cleanliness class of cleanroom, it will also be important to accurately
account for the process and/or plug load effects so that only the facility systems of interest are
included.  Systems and components that account for small (say less than 5%) facility energy use will
be ignored, with the possible exception of lighting systems, which are expected to have some attractive
opportunities even though their relative magnitudes of saving are low.

The data will be analyzed to begin determining best practices and relative ranges of operating
parameters.  Once a robust data set is available, building operators will be able to gauge the relative
performance of their building as a whole and individual system performance as well.

Conclusions

We have reviewed four techniques used for building energy performance benchmarking of cleanroom
and laboratory buildings.  There are strengths and weaknesses to each approach.  A multilevel hybrid
approach that utilizes statistical, modeling and a point system may be possible for evaluating the
overall performance of cleanroom and laboratory-type buildings.
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