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ABSTRACT 
Predictive control has gained increasing attention for its ability to reduce energy consumption and 
improve occupant comfort in buildings. The plug loads prediction is a key component for the 
predictive building controls, as plug loads is a major source of internal heat gains in buildings. This 
study proposed a novel method to apply the Long-Short-Term-Memory (LSTM) Network, a special 
form of Recurrent Neural Network, to predict plug loads. The occupant count and the time have 
been confirmed to drive the plug load profile and thus selected as the features for the plug load 
prediction. The LSTM network was trained and tested with ground truth occupant count data 
collected from a real office building in Berkeley, California. Results from the LSTM network 
markedly improve the prediction accuracy compared with traditional linear regression methods 
and the classical Artificial Neural Network. 95% of 1-hour predictions from LSTM network are 
within ±1 kW of the actual plug loads, given the average plug loads during the office hour is 8.6 
kW. The CV(RMSE) of the predicted plug load is 11% for the next hour, and 20% for the next 
eight hours. Lastly, we compared four prediction approaches with the office building we monitored: 
LSTM vs. ARIMA, with occupant counts vs. without occupant counts. It was found, the prediction 
error of the LSTM approach is around 4% less than the ARIMA approach. Using occupant counts 
as an exogenous input could further reduce the prediction error by 5%-6%. The findings of this 
paper could shed light on the plug load prediction for building control optimizations such as 
model-predictive control. 
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1. Introduction 

Commercial buildings are energy intensive, consuming 18% of the national energy consumption 

in the United States [1]. In commercial buildings, the plug load is one of the major energy 

consumers, which consumes 40% of the total building energy use in an office building in San Jose, 

California [2] and 60% in another office building in Berkeley, California [3]. On average, 20% of 

the commercial building energy consumption in the United States is consumed by the plug load 

[4], and this proportion is even higher in the United Kingdom [5]. The plug load plays a significant 

role in building energy efficiency, not only because of the high proportion of electricity it directly 

consumes but also because those consumed energies would be converted into heat and then 

dissipated to the indoor environment. As a major source of internal heat gains, the plug load 

would substantially affect the operation and energy efficiency of HVAC systems.  

1.1 Predictive controls 

The key point of predictive control is to optimize the control actions based on the prediction about 

future demands, disturbances, and inputs. A typical application of predictive control is the 

optimization of chilled water thermal storage systems [6] and the ice-storage systems [7]. By 

predicting the thermal demands and the utility price in the coming hours, the operation strategy of 

the thermal storage system could be optimized for minimizing operational costs. Since the 

prediction of future demands and disturbances is required for its optimization, the performance of 

predictive control is very sensitive to and highly dependent on the accuracy of predictions. 

 

Model Predictive Control (MPC) is a representative of predictive controllers [8]. Compared with 

conventional building controllers which only focus on the current state of building and HVAC 

systems, MPC can include the predicted states and events into the loop, and accordingly 



outperforms alternative methods of multivariable control in terms of comfort and building efficiency 

[9]. Because of its potentially high performance, MPC starts to attract the attention of building 

energy efficiency researchers and operators, and has been applied to control HVAC systems [10], 

[11], [12], [13], [14].  

 

As illustrated in the terminology, prediction is the prerequisite for predictive control. Three types of 

predicted information are needed to optimize building energy efficiency. First, the weather 

condition [15], which would influence the building thermal load and the efficiency of active or 

passive HVAC systems [16]; second, the occupant demands, for instance, predicting the fresh air 

demand by the occupant count forecasting; third, the heat disturbances, including the internal 

heat gains from the equipment (plug loads, lights) and the occupants. Sometimes, the utility rate 

prediction is needed to minimize utility bills. For either purpose of minimizing the energy 

consumption or the utility bills, predicting plug loads is needed in the predictive control. 

Considering the substantial amount of energy consumed by plug-in equipment [1], [3], [4], plug 

load is a major source of internal heat gains in office settings [17], [18]. Therefore, predicting plug 

loads is crucial in HVAC predictive controls. 

1.2 Predicting plug loads in office buildings 

Plug loads include the energy used by office equipment such as computers, printers, telephones 

and personal devices such as cellphone chargers and personal devices such as fans and portable 

heaters. It is reasonable to assume that the office workspace plug loads are linked to occupant 

count [19].  

Kim and Srebric (2017) used a linear equation to regress the plug loads with the occupant count 



in four office and campus buildings in Philadelphia [1]. The correlation coefficients between plug 

loads and occupant counts could achieve 0.68 ~ 0.78, which are higher than the correlation 

coefficients between total building electricity consumption and occupant counts (in the range of 

0.50 ~ 0.74). This higher correlation demonstrated that plug loads are more likely to be accurately 

predicted by the occupant counts, compared with other components of building energy 

consumption (e.g., HVAC). In addition to the linear regression, Mahdavi et al. applied Weibull 

distribution to regress plug loads with occupant counts and then compared its performance with 

linear regression [20]. It was found that the linear regression performs better in terms of predicting 

annual plug load consumption, while the Weibull approach performs better in terms of predicting 

the peak plug load and fitting the plug load distribution due to its ability to simulate the stochastic 

behavior of plug loads. 

 

In addition to the occupant counts, another factor could be used to predict plug load is the time. 

Gunay et al. defined five different time periods: occupancy, intermediate breaks, weekday 

evenings, weekends, and vacations to fit plug loads [17]. Gandhi and Brager defined two time 

periods, working day and non-working day, to develop models to simulate plug load profiles [19].  

 

Another widely used time-series prediction, such as building plug loads, is through the 

AutoRegressive Moving Average (ARMA) or AutoRegressive Integrated Moving Average (ARIMA) 

approach [21]. ARMA is a regression-based approach, which predicts a time-series variable with 

the autoregressive part and the moving average part of the historical data. As shown in Equation 

1, the autoregressive (AR) part predicts the variable based on its own lagged value (𝑋𝑡−1, … 



𝑋𝑡−𝑝), while the moving average (MA) part predicts the variable based on previous regression 

error (𝜀𝑡−1, … 𝜀𝑡−𝑞 ). The integrated part (I) in the ARIMA was introduced to eliminate the 

non-stationarity [22]. Amjady utilized ARIMA to predict the 24-hour ahead building electricity 

usage and the daily peak load in Iran [23]. Espinoza et al. combined ARIMA and clustering 

technique to predict the residual electricity load and achieved a 90% R-square value in more than 

92% cases he studied [24].  

 

𝑋𝑡 = 𝛼1𝑋𝑡−1 + ⋯+ 𝛼𝑝𝑋𝑡−𝑝 + 𝜃1𝜀𝑡−1 + ⋯+ 𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡         Equation 1  

 

It is also possible to add an exogenous variable in ARIMA models to improve prediction accuracy, 

as the time-series variable of interest might not only demonstrate seasonal, trend and residual 

behavior which could be captured by ARIMA, but also be influenced by exogenous variables. Yun 

et al. predict the 1-hour ahead building thermal load by developing an AR model which uses 

temperature as an exogenous variable [25]. Similarly, Newsham and Birt used occupancy data to 

improve the ARIMA-based electricity forecast in office building [26].  

 

In addition to the ARIMA-based approach, different types of neural network-based approach have 

been applied to predict building electricity usage or thermal load. Kouhi and Keynia applied 

cascade Neural Network method to predict the electricity consumption of New York [27]. Guan et 

al. proposed a wavelet neural network method with data pre-filtering to facilitate short-term (5 

minutes to 1 hour) electricity usage forecasting, which was tested in the New England region [28]. 

Similar to the regression-based approach discussed above, exogenous variables could be added 



in the neural network-based methods to improve prediction accuracy. Kusiak et al. developed a 

neural network ensemble with five multi-layer perceptrons using weather data as exogenous 

variables to predict steam consumption for heating [29]. 

1.3 Problem definition and research objectives 

As summarized in Table 1, there are two types of problem to study the hourly plug load profile: the 

modeling problem and the prediction problem. Modeling problem refers to model the plug loads at 

the timestamp t with some features (for instance occupant counts, and day of week) at the 

timestamp t. Prediction problem refers to use the information currently available (at timestamps t, 

t-1, t-2 …) to predict the plug load in the future (at timestamps t+1, t+2 …).  

Table 1 Distinctions between the modeling problem and the prediction problem 

 Modeling Prediction 

Definition Use the occupant counts to regress 

the plug loads at the same timestamp 

Use the information we’ve already known 

to predict the plug loads we do not know 

yet 

Inputs Occt, Occt-1, Occt-2 …  Occt, Occt-1, Occt-2 … Pt, Pt-1, Pt-2 … 

Outputs Pt Pt+1, Pt+2 … 

Application • To generate more realistic 

plug load schedule profiles for 

building simulation [30], [31] 

• Post-Occupancy Evaluation, 

energy audit to understand 

why building consumes more 

• Predictive control: plug load is a 

key component of internal heat 

gains [34]. Therefore, the prediction 

of plug load could be used to 

optimize HVAC control, such as 

pre-cooling to avoid temperature 



energy than the designed 

value [32], [33] 

over-shooting. 

 

To implement the predictive control, modeling the plug loads at current timestamp is not enough, 

the prediction is needed to formulate the optimization problem for the search of optimized chilled 

water temperature, supply air temperature, etc. Actually, because of the tightening regulation on 

building insulation [35] and increasing usage of appliances [36], plug loads account for a higher 

proportion of building thermal load. Plug load prediction becomes increasingly important for 

predictive control of HVAC system [37].  

 

From the literature review, it could be concluded: first, occupant count is an important feature to 

predict building plug load [1], [20] and electricity usage [26], which should not be ignored in plug 

load prediction. Second, we could find plenty of studies on building electricity usage prediction 

[23], [24], [26]; while we have not found plug load prediction research. Existing plug load studies 

(e.g., [1], [20]) belong to the modeling problem rather than the prediction problem. To fill in this 

research gap, this study proposes a model to predict the plug loads, which could facilitate and be 

directly plugged into predictive controllers. The key research questions of this study are: 

 Which factors markedly influence the plug loads in office buildings? which features should be 

selected to predict the plug loads? 

 Which algorithm is most suitable for the plug loads prediction and could reduce prediction 

errors? 

The remaining of this paper starts with the introduction of the data collection, as data is the fuel for 



a data-driven approach. Section 2 presents the test building (Section 2.1), sensors (Section 2.2), 

and the collected raw data (Section 2.3). The first research question is answered in Section 3 by 

examining how the plug load is correlated with occupant count (Section 3.1) and the time (Section 

3.2). The second research question is explored in Section 4, by applying a novel approach - 

LSTM Network - to predict plug loads. We explain why LSTM is suitable for plug loads prediction 

(Section 4.1), introduce how the model is set up (Section 4.2), and finally compare the predicted 

results with the ground truth (Section 4.3). Two key issues, data availability (Section 5.1) and 

computational efficiency (Section 5.2) of implementing the LSTM network method in real buildings 

for predictive control are discussed in Section 5. Conclusions are drawn in Section 6.  

The major contribution of this study is using a novel method to predict plug loads in office settings 

with the Long-Short–Term-Memory machine learning approach. This method has been tested by 

the ground truth data collected from a real office building, and could be directly integrated into 

building predictive controls. 

2. Data collection 

2.1 Test building 

An office building located in Berkeley, California was selected as the testbed for this study. The 

data were collected on the third and fourth floors of the test building, which both serve as office 

areas and have similar layouts. The floor plans of the third and fourth floors are presented in 

Figure 1.  



 

(a) Floor map of the third floor 

 

(b) Floor map of the fourth floor 

Figure 1 Floor plans of the test building 

The South half of the third and fourth floors are served by the same air handling unit. Meanwhile, 

the plug loads of the South half of the third and fourth floors are measured in one electrical circuit. 

We could not further separate the plug loads consumed by the South half of the third floor from 

the South half of the fourth floor. Actually, it is not necessary to further separate for HVAC control, 

since these two spaces are grouped into the same thermal zone and share the same 

cooling/heating source. Considering the status quo of the test building’s HVAC system and 

energy management platform, this study’s prediction problem is defined as “to use the occupant 

count of the South part of the third and fourth floors to predict the plug loads of the same area.” 

Occupancy sensor 3-1

Occupancy Sensors

Occupancy sensor 3-2

Occupancy sensor 3-3

Occupancy sensor 4-1

Occupancy Sensors

Occupancy sensor 4-2

Occupancy sensor 4-3



2.2 Occupancy detection 

Researchers have proposed multiple methods to detect occupant count, such as CO2 

concentration based models [38], [39], Radio-Frequency Identification detection (RFID) systems 

[40], Wi-Fi connection based detection [41], [42], and camera-based sensors [43], [44]. Yang et al. 

(2016) summarized the advantages and disadvantages of the currently available occupancy 

detection approaches [45].  

 

Figure 2 Camera-based sensor deployed in this study (https://www.trafsys.com/) 

In this research, we chose camera-based sensors to detect occupant counts after considering 

issues including the detection accuracy, deployment cost and feasibility. We deployed occupant 

counters (Figure 2) manufactured by the TRAF-SYS company at the six entrances/exits of the 

investigated space, as illustrated in Figure 1. By counting and integrating how many occupants 

enter and leave the space through the entrances/exits, we calculated the number of occupants in 

the investigated space.  

2.3 Raw data collected 

Figure 3 illustrated the raw data we collected from the test building. The plug load data was 

collected from the building’s sub-metering system; while the occupant count data was collected 

from camera-based sensors. The occupancy data was collected at the interval of one minute, and 

the plug load power was collected every 15 minutes. The missing rate of plug load power in July 

and August is high, undermining the data quality. Finally, we summed up the occupant counts of 

the South half of the third and fourth floors to ensure that the occupant counts and plug loads are 



spatially consistent.  

 

Figure 3 Raw data collected 

3. Feature selections  

The first research question, “which factors markedly influence the plug loads in office buildings? 

which features should be selected to predict the plug loads?” would be answered in this section. 

The relation of plug loads with occupant counts and time are explored by linear regression and 

Pearson Correlation Matrix separately.  

3.1 Correlation with occupant count 

The occupant count and plug loads of a typical working day and a typical non-working day were 

shown in Figure 4. Different behaviors could be clearly identified during the working and 

non-working days. Therefore, we explore the correlation between plug loads and occupant counts 



during working days and non-working days separately. 

 

                   (a) Working day                                 (b) non-working day 

Figure 4 Occupant count and plug loads on typical days 

Figure 5 presents the linear regression results for working days and non-working days. The linear 

relation between plug load power and occupant count could be observed for working days but not 

for non-working days. The plug loads are almost a constant during non-working days, 

representing the energy consumed by office equipment that is always on and has nothing to do 

with occupancy.   

 

                      (a) Working days                      (b) Non-working days 

Figure 5 Fitting plug loads with occupant counts using linear regression 

Root Mean Square Error (Equation 2) and R-square value are two commonly used metrics for 

regression model evaluation. Considering that Root Mean Square Error (RMSE) would bias the 



model comparison if the scales of two problems were different, we normalized the RMSE to 

calculate the Coefficient of Variation of the Root Mean Square Error, a.k.a. CV(RMSE). As shown 

in Equation 3, CV(RMSE) is defined by dividing the RMSE by the average of the measured value. 

RSME =  �∑ (𝑦𝑛�−𝑦𝑛)2𝑛
1

𝑛
              Equation 2 

CV(RMSE) =  RSME/𝑦�            Equation 3 

Where, n is the sample size, 𝑦𝑛 is the measured value, 𝑦𝑛� is the predicted value. 

Table 2 Linear regression result of this study and previous studies 

 This study Kim and Srebric 

(2017) [1] 

Mahdavi et al. 

(2016) [20] Working day Non-working day 

Peak occupant 

counts  

80 ~0 100 ~ 300 8 

Root Mean 

Square Error 

(kW) 

1.72 0.27  0.13 ~ 0.16 

CV(RMSE) 39% 14%  12.0% ~ 14.4% 

R-Squared 0.65 0.01 0.68 ~ 0.78  

 

Table 2 compared the performance of our model with two previous studies on the same topic. The 

peak occupant count was used as a proxy for the scale of problems. The fitting goodness of this 

model is similar to the study [1], but a little bit worse than the study [20] in terms of the CV(RMSE), 

which might be because our model is built for a space with 80 occupants, while the model 

proposed by Mahdavi et al. (2016) [20] is used for a space with 8 occupants, which might have 



less variability. The high R-squared value (0.65) indicates that the occupant count is an important 

feature for plug load prediction. However, the relatively large regression error (39%) confirms the 

motivation to develop a more accurate plug load prediction model.   

3.2 Correlations between daily plug load 

The Pearson Correlation Matrix was used to explore the influence of time on plug loads. We could 

consider the daily plug load profile as a 24-dimension vector, with the kth element representing 

the plug load at the kth hour. By checking the similarity of the plug load profile in two days, we 

could examine the correlation between plug loads and time. If the time has a strong influence on 

the plug loads, then the plug loads on different days would have similar patterns, i.e., the daily 

plug load vectors should be similar to each other. The Pearson Correlation Coefficient (PCC) is a 

commonly used metrics to quantify the similarity between vectors and accordingly used in this 

study. As shown in Figure 6(a), the Pearson Correlation Coefficients of the daily plug loads are 

high among the working day's group. The PCC of any two working days is higher than 0.4, proving 

that the plug loads have similar load shapes among working days. The plug loads of the previous 

working day might be a good predictor for the plug load of the next days. Contrarily, the plug load 

patterns among non-working days are not similar to each other, as illustrated in Figure 6(b). 

 



 

      (a) Pearson Correlation: Working day         (b) Pearson Correlation: Non-working days 

 

(c) Autocorrelation figure 

Figure 6 Correlations between daily plug loads  

Another useful tool to investigate the correlations of time-series data is the autocorrelation figure, 

which plots the Pearson’s correlation coefficient between 𝑃𝑡 and 𝑃𝑡−𝑥. As shown in Figure 6(c), 

the PCC between 𝑃𝑡 and 𝑃𝑡−7 is as high as 0.8, indicating a significant weekly periodic behavior: 

the same day of week has similar daily plug load. 



In summary, we used linear regression to explore the relation of plug loads with the occupant 

count and then used Pearson Correlation Matrix to explore the relation of plug loads with the time. 

The R-square value for the linear regression between plug loads and occupant count is 0.65, 

which is relatively high for linear regression. However, the prediction error reaches 39%, which 

might not be considered acceptable for the control purpose. The correlation matrix reveals a 

similar pattern of plug loads among working days.  

4. LSTM Network approach 

In this section, we aim to answer the second research question, i.e. “which algorithm is most 

suitable for the plug load prediction and could reduce prediction errors?”, by applying the LSTM 

Network to predict plug loads. LSTM is a special form of Artificial Neural Network (ANN). We will 

start by explaining why LSTM is selected and suitable to predict plug loads. 

4.1 From ANN to LSTMs   

The Artificial Neural Network is an extensively utilized machine learning algorithm that is inspired 

by the biological neural networks and functions by mimicking the human brains. ANN utilizes the 

input Xt at the timestamp t to predict the output ht at the same timestamp, as shown in Figure 7(a). 

No information is exchanged between different timestamps. 

However, in time-series data, the output ht is not only influenced by the input at the current 

timestamp Xt, but also affected by what happened in the previous timestamp. To capture this time 

dependency, the Recurrent Neural Network (RNN) has been proposed, taking both the input at 

the current timestamp t and the state of the previous timestamp t-1 into consideration to predict 

the output ht, as illustrated in Figure 7(b). Because of the ability to capture the time-dependencies 

of time-series data, RNN has been applied to a variety of problems: speech recognition, 

translation, the prediction of occupancy [46], etc. 



RNN is powerful but not enough when the prediction tasks have long-term dependencies, which 

means the output of timestamp t, was not only influenced by the state of the previous timestamp 

t-1, but also by the state of k timestamps ago t-k. With the gap k growing, RNN struggles to learn 

and connect the information. To address this issue, the LSTM Network has been proposed [47]. 

As illustrated in Figure 7(c), all the state of the previous timestamp could be connected, no matter 

how long the time gap k is. However, to avoid the overwhelming of information, which consumes 

memory, and to reduce the model complexity, which slows down the model training process, a 

“forget gate layer” has been added to the model to decide which state is irrelevant and should be 

thrown away. Through such a mechanism, relevant information would be used for the prediction 

task, regardless of the length of the time gap. 

 

(a) Classical Neural Network                         (b) Recurrent Neural Network 
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 (c) Long Short Term Memory Network 

Figure 7 Systematic schemes of different neural networks 

The plug loads prediction has the long-term dependencies. The high correlation between daily 

plug load vectors, as illustrated in Figure 6, indicates that the plug load 24 hours ago contains 

valuable information to infer the current plug load. If Pt-1 and Pt-24 were found to be the most 

relevant and useful information to predict Pt, then the information between the timestamp t-23 and 

t-2 would be “forgotten” to simplify and speed up the model. LSTMs’ capability to automatically 

identify, memorize, and use such long-term dependency information makes LSTMs a suitable tool 

to predict plug loads.  

4.2 Model setup  

Data cleaning 

The raw data was collected at the 15-minute interval for the plug load power and at the 1-minute 

interval for the occupant count. We resampled and averaged the data at 1-hour interval for both 

the plug load and occupant count. The data is resampled for three reasons. First, the plug loads 

would not be influenced by short-term occupancy variability, e.g., the inhabitants would not turn 

off their desktop computers when they temporarily leave for the restroom or short meetings. By 

using the average hourly value, short-term variability could be removed. Second, the plug load 

prediction is for the control-oriented heat balance. The heat balance in buildings does not require 

a very high temporal resolution due to the effect of building thermal mass. Third, up-sampling the 

data could help to relieve the problem of the high missing rate observed in Figure 3. If one 

measurement is missing, we could use the average of the other three measurements as the plug 

load of that hour. 



After the resampling, the whole month of June is free of missing data, which will be used to train 

and test our LSTM network model. We further divided June into two halves. The first two weeks is 

used to train the model, while the second two weeks is used as the test dataset.  

Feature selection 

Considering the significant different plug load shape on working and non-working days, we added 

one more feature as a proxy for working/non-working days. We chose the day-of-week as the 

proxy variable: 0 for Monday, 1 for Tuesday, … 6 for Sunday. Such a coding could inform the 

predictor not only the working/non-working day, but also the hour of the day. Since the predictor 

could infer the time of next hour by counting how many previous hours have the same 

day-of-week value. For instance, if the day-of-week of the previous 8 hours were the same, then 

the next hour would be 9 AM. 

The next question is how many hours of the previous data should be input into the predictor for 

prediction. Considering the periodical behavior of plug loads, we chose to use the data of the 

previous 24 hours as the input to predict the plug loads in the coming eight hours. After the feature 

selection, we normalized the values of the selected features into the range of 0 to 1, as 

normalization is generally required by deep learning to improve prediction performance. 

Hyper-parameter tuning 

Table 3 presents the hyper parameters we chose in this model. We set the number of the hidden 

layer as one, and the number of neurons in the hidden layer as 50, since there is no evidence to 

support the existence of complex non-linear behaviors in the plug load prediction problem. Our 

hyper-parameter tuning process found adding extra hidden layers or increasing the number of 

neuron units would not increase the prediction accuracy, but lead to longer training time. As the 



training dataset is not too large, it is not necessary to use the Stochastic Gradient Descent or 

mini-batch Gradient Descent to speed up the training process. Therefore we passed the entire 

training set in a single iterative batch. As for the number of epochs, we plotted the Train and Test 

Loss against the number of epochs in Figure 8, and set the number of epochs as 300 for two 

reasons. First, the Test Loss becomes stable and not further decreases after 300 epochs. Second, 

the Train and Test Loss starts to diverge after 300 epochs, indicating a risk of overfitting if the 

number of epoch is set too large. 

  



Table 3 Hyper-parameter selection 

 Value selected 

Number of hidden layers 1 

Number of neurons in the hidden layer 50 

Batch size 336 (the entire training set) 

Number of Epochs 300 

 

 

Figure 8 the Train and Test Loss 

4.3 Results  

We first compared the prediction errors of the three methods: Linear Regression (LR), classical 

Artificial Neural Network (ANN), and the Long Short Term Memory Networks (LSTMs). As shown 

in Figure 9, LSTMs could achieve the lowest prediction error, which has been significantly 

reduced from 40% (of linear regression) or 23.7% (of classical neural network) to 11.5%. As for 

the absolute error, more than 80% of LSTMs’ predictions are within the range of ±0.5kW of the 

ground truth, while only 70% and 45% of ANN’s predictions and LR’s predictions could achieve 

such accuracy.  



 LR ANN LSTMs 

Train RMSE 1.46 kW (39.3%) 0.66 kW (or 18.4%) 0.39 kW (or 

10.8%) 

Test RMSE 1.49 kW (40.0%) 0.88 kW (or 23.7%)  0.42 kW (or 

11.5%) 

(a) Root Mean Square Error 

 

(b) Absolute Error on the Test Dataset 

Figure 9 Comparison between ANN and LSTMs 

Because of the improved prediction accuracy, we chose LSTMs as the algorithm for the plug 

loads prediction. Figure 10 presented the prediction results for the next 1 to 8 hours. The 

predicted plug loads for the next hour fits well with the ground truth data. Though the prediction 

error starts to raise when the prediction timestamps increase but the plug load pattern could be 

generally followed, except for an incorrectly predicted plug load spike on Saturday morning in the 

2, 3, 4, 5 and 6-hour forecasting. Another problem which happens in all of the eight predictions is 

the forecasted plug loads tend to underestimate the peak load; this underestimation might be as 

large as 20%. The major reason is the plug load in the training dataset (the first and second week) 

is lower than in the test dataset (the third and fourth week). Therefore, the model trained by the 



training data would fail to predict the peak load in the test dataset. 

 

           (a) 1-hour ahead forecasting                (b) 2-hour ahead forecasting 

 

           (c) 3-hour ahead forecasting                (d) 4-hour ahead forecasting 

 

           (e) 5-hour ahead forecasting                (f) 6-hour ahead forecasting 

                (e) 5-hour forecasting                     (f) 6-hour forecasting 



 

           (g) 7-hour ahead forecasting                (h) 8-hour ahead forecasting 

Figure 10 Prediction result 

We used the normalized Root Mean Square Error, as defined in Equation 2, to quantify the 

prediction error. Figure 11(a) presents the absolute error of the 1-hour and 8-hour prediction. 94.8% 

of 1-hour predictions are within ±1 kW of the actual plug load. The prediction error is larger for the 

8-hour prediction, 88.1% of prediction are within ±1 kW of the actual plug load and 97.6% are 

within ±2 kW. Considering the average plug load during the office hour of the area investigated is 

8.6 kW, this prediction error is acceptable for predictive control.  

  

                     (a) Absolute Error                       (b) CV(RMSE) 

Figure 11 Root Mean Square Error 

Figure 11(b) compared the CV(RMSE) of different time-steps prediction. It would be more 

C
V(

R
M

S
E

)

Prediction steps



challenging if you try to predict something long time from now. As a result, the prediction error on 

the test set inflated with an increase of predicting steps. The prediction error for the next hour’s 

plug load is 11%, which increases to 20% for predicting plug loads in 8 hours from now. However, 

either 11% or 20% is a marked improvement compared with the 39% prediction error of the linear 

regression method. 

5. Discussion 

5.1 Different approaches to forecast plug load 

Time-series forecasting has many applications in buildings, such as electricity usage forecasting 

for flexible grid operation and thermal load prediction for HVAC control optimization. There is a 

wide range of approaches could be used for time-series forecasting, which could basically be 

categorized by two dimensions: the first dimension is whether the regression-based or NN-based 

approach is being used; the second dimension is whether exogenous variables are included or 

not, as shown in Figure 12. 

 

Figure 12 Different approaches for time-series forecasting for buildings applications 

Neural 
Network 
based

Regression 
based

Without 
exogenous 

variable 

With 
exogenous 

variable 

AR + temperature to predict thermal 
load [24];
ARIMA + occupant to predict 
electricity usage [25];

ARIMA to predict electricity usage 
[22], [23];

Neural network + weather to predict 
steam consumption [28];
LSTM + occupant to predict building plug 
load;

Legend
• Previous study
• This paper

Cascade Neural Network to predict 
electricity usage [26];
wavelet neural network with data pre-
filtering to predict electricity usage [27];



 

The regression-based approaches include ARIMA, using the steady-periodic weekly plug load 

profile, and regressing the residuals of this steady-periodic plug load profile with time-series 

modelling. The regression-based approach is easy to implement. However, the linear regression 

formula (as shown in Equation 1) is unable to map the complex input and output relationship, and 

accordingly might produce higher forecast error [48]. On the contrary, the NN-based approach 

could capture the complex input/output relationship by increasing the number of hidden layers 

and neuron units, and reflect non-linearity by implementing a non-linear activation function, such 

as relu. Meanwhile, the classical NN model could be reformed to facilitate different functions, such 

as the wavelet NN in [28] or the LSTM in this paper.  

 

Another way to distinguish approaches is whether exogenous variables are included. Generally 

speaking, the more data available, the higher accuracy prediction could be achieved, especially 

when the added exogenous variables/features could reflect the variation that is unable to be 

captured by the feature of time. For example, for special and irregular events such as holding a 

seminar with many attendants, the plug load consumption jump could not be predicted by looking 

at historical data and decomposing the seasonal trend components only. Because the sudden 

power jump is not periodical and could not be captured by the feature of time. To deal with those 

special events, if the occupant count data is available as an input feature, the model’s prediction 

accuracy could be enhanced.  

 

To compare these four approaches in a quantitative way, we developed four models: LSTM with 



an exogenous variable (occupant counts), LSTM without the exogenous variable, ARIMA with an 

exogenous variable (occupant counts), ARIMA without the exogenous variable; and compared 

the 1-hour time step prediction accuracy with the data we collected. In this study, through grid 

search, we found the algorithm provides the best prediction when the AR order and MA order 

equal three. Therefore, we used ARIMA(3,0,3) model for this comparison. Figure 13a – 13d plot 

the actual plug load with the predicted plug load on a typical working day for the four prediction 

methods. Figure 13e compares the prediction error of different approaches on the training and 

test dataset. As the comparison benchmark, we used the Typical Load Profile (TLP) approach, i.e., 

using the average load of the same day type (working/non-working) and the same hour of day in 

the training set as the prediction. 

 

  

(a) LSTM with an exogenous variable (occupant count) (b) LSTM without the exogenous variable 



 

(c) ARIMA with an exogenous variable (occupant count) (d) ARIMA without the exogenous 

variable 

 

(e) Comparison on the prediction error1: blue for LSTM, orange for ARIMA; circle for the prediction 

methods with an exogenous variable (occupant count in this case), triangle for the prediction 

methods without the exogenous variable; the benchmark is the TLP method, i.e., using the 

average plug load of the same day type (working/non-working) and the same hour of day in the 

training set as the prediction 

Figure 13 Comparison of plug load prediction accuracy for four prediction approaches  

 

                                                   

1 The Root Mean Square Error (RMSE) is normalized by the daily average plug load 
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It could be observed that LSTM performs better than ARIMA in tracking the plug load variation, by 

comparing Figure 13a with Figure 13c, or comparing Figure 13b with Figure 13d, especially during 

the morning warm-up period. In terms of the comparison between methods with and without 

exogenous variables, for either LSTM or ARIMA, using occupant counts as exogenous variables 

could improve prediction accuracy. The reason could be explained by comparing Figure 13a with 

Figure 13b, or comparing Figure 13c with Figure 13d. Typically the plug load consumption would 

decrease during lunch time when people leave the building for lunch. However, on this specific 

day, the actual plug load did not decrease (as shown in the red line), which might be because 

there was a lunch-time seminar held on that specific day. If we only used the historical plug load 

data for plug load prediction, there is little chance to predict irregular events (for example 

lunch-time seminar in this case) and its influence on plug load consumption. As a result, the 

predicted plug load decreased during lunch time, as shown in Figure 13b and Figure 13d, which 

unfortunately was not what actually happened. Contrarily, if the external variable of occupant 

counts were used for plug load prediction, the algorithm is capable of detecting that some 

irregular events might be going on today, and then corrects its prediction accordingly. As a result, 

the plug load decrease during the lunch time in Figure 13a and Figure 13c is not as significant as 

that in Figure 13b and Figure 13d, which is the benefit of using exogenous variables (in this case, 

occupant counts) in the plug load prediction. 

 

The difference we observed from Figure 13a – 13d is reflected in the prediction error in Figure 13e. 

LSTM approaches (represented by the blue color) could reduce the prediction error by around 4% 

compared with the ARIMA approach (represented by the orange color). Using occupant counts as 



an exogenous input variable could reduce the plug load prediction error by around 5%-6%, which 

is more significant than using different prediction algorithms. 

 

In real buildings, occupant count data is currently not always available, since the occupant count 

sensors are expensive and not commonly deployed in buildings. The LSTM approach could be 

applied to cases when the occupant counts data is not available, as shown in Figure 13b. 

However, the absence of occupant counts data would result in a higher prediction error. For the 

specific building we tested, the prediction error is 17.3% for LSTM without occupant count 

information, while it is only 11.5% when the occupant count data is available and used.  

 

As there are increasing research interests to explore a non-intrusive approach to detect occupant 

counts by using the existing information infrastructure in buildings, such as Wi-Fi [49], the 

occupant count data might become increasingly available in the future, which could help improve 

the plug load prediction accuracy. 

 

5.2 Computational resource in implementation for building predictive control 

The implementation of plug load prediction should balance the prediction accuracy and the 

requirement for computation resources. Since the plug load prediction is only one part of the 

predictive controller, the valuable computational resources need to cover other tasks including but 

not limited to the prediction of occupancy, model identification, and control optimization.  

Computation is needed in two stages: the training stage and the prediction stage. With the current 

hyper-parameter settings listed in Table 3, the training process of the LSTM network on 2-week 



data (336 points) would take 576 seconds on a desktop equipped with 4-Core Intel Xeon CPU 

E5-1630 v4 @ 3.70GHz. The prediction process is almost instantaneous. If it is required to predict 

the plug load for a longer period, for instance for the next 24 hours, more computational resources 

are required for three reasons. First, a longer period of time-series input is needed. It might 

require to use the past 72 hours’ data to predict the plug load for the next 24 hours. Second, more 

hidden layers or more number of neurons in the hidden layers might be needed as well for this 

more complex problem. Third, a larger training dataset is required to avoid overfitting, since the 

model becomes more complex and more parameters are to be trained. The three factors 

mentioned above would together markedly raise the training time needed if the predictive 

controller requires a longer timestamp prediction. If we do not adjust our settings and provide 

more computational resources, the prediction accuracy would rapidly attenuate with the increase 

of prediction time steps, as shown in Figure 14. 

 

Figure 14 Prediction Error for a longer period of prediction 

In this case, it is suggested, to conserve computational resources, that the LSTM network could 

be trained weekly or even monthly, rather than daily. The only computation needed on a daily 

basis is to run the prediction with the trained network, which is almost instantaneous. Keep in 

mind that the major computational resources are consumed on the training, rather than the 
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prediction process.  

 

6. Conclusions 

Predictive control in buildings has gained increasing attention to reduce building energy 

consumption. While predicting the plug loads, a major source of internal heat gains in buildings, is 

a prerequisite for the predictive control of buildings, the current research on this topic focused on 

the regression problem, rather than the prediction problem. In this study, we used a novel method 

to apply Long Short Term Memory Networks to predict plug loads, which demonstrates a higher 

prediction accuracy than the Linear Regression and the classical Artificial Neural Network 

methods, and accordingly improves predictive building controls. The proposed method was tested 

with data collected from a real office building in Berkeley, California. 

 

The occupant count and the time have been confirmed to have a strong influence on the plug load 

profile, and accordingly selected as the features for the plug load prediction. LSTM network 

demonstrates a high accuracy, 95% of 1-hour predictions from LSTM network are within ±1 kW of 

the actual plug load, given the average plug loads during the office hour is 8.6 kW. The CV(RMSE) 

of plug load prediction is 11% for the next hour, and 20% for the next eight hours, which is much 

improved from the prediction error of 39% from linear regression method.  

 

Lastly, we compared four prediction approaches with the benchamark TLP approach: LSTM vs. 

ARIMA, with occupant counts vs. without occupant counts. Both LSTM and ARIMA outperform 

the benchamark TLP method. The LSTM approach is found to perform better, which could reduce 



the prediction error by around 4% compared with the ARIMA approach. LSTM could be applied 

when occupant count data is not available. However, when the occupant count is available and 

input as exogenous variables, the plug load prediction error could be reduced from 17.3% to 

11.5%. 
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