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Abstract 
An important approach to curtail building energy consumption is to optimize building control 
based on occupancy information. Various studies proposed to estimate occupant counts 
through different approaches and sensors. However, high cost and privacy concerns remain as 
major barriers, restricting the practice of occupant count detection. In this study, we propose a 
novel method utilizing data from widely deployed Wi-Fi infrastructure to infer occupant counts 
through machine learning. Compared with the current indirect measurement methods, our 
method improves the performance of estimating people count: (1) we avoid privacy concerns 
by anonymizing and reshuffling the MAC addresses on a daily basis; (2) we adopted a heuristic 
feature engineer approach to cluster connected devices into different types based on their daily 
connection duration. We tested the method in an office building located in California. In an 
area with an average occupancy of 22-27 people and a peak occupancy of 48-74 people, the 
root square mean error on the test set is less than four people.  The error is within two people 
counts for more than 70% of estimations, and less than six counts for more than 90% of 
estimations, indicating a relatively high accuracy. The major contribution of this study is 
proposing a novel and accurate approach to detect occupant counts in a non-intrusive way, i.e., 
utilizing existing Wi-Fi infrastructure in buildings without requiring the installation of extra 
hardware or sensors. The method we proposed is generic and could be applied to other 
commercial buildings to infer occupant counts for energy efficient building control. 
 
Key words 
Occupancy estimation; Occupant count; Wi-Fi data; Random Forest; Machine learning; Building 
control 
 
 
 
  

mailto:thong@lbl.gov


2 
 

1. Introduction 
Buildings consume more than 40% of primary energy in the United States, United Kingdom, 
France, Germany; more than 30% in Japan; and more than 20% in China and India [1]. Reducing 
building energy usage is important to curtail fossil fuel consumption, reduce building 
operational costs, and enable affordability. 
 
Energy in commercial and residential buildings is consumed to deliver services occupants need. 
However, because of the lack of occupancy information in current building control, buildings 
consume more energy than they need. For example, Studies on commercial buildings in the 
United States [2] and South Africa [3] found that more than half of the building energy was 
consumed during non-working hours. Occupancy information could not only be used to avoid 
energy waste but also to improve building energy efficiency [4], [5]. Typical applications using 
occupancy information to improve building energy efficiency include Demand Controlled 
Ventilation (DCV) [6], and Model Predictive Control (MPC) [7], [8]. In DCV, the fresh air supply 
volume was set based on indoor occupant counts. As a large amount of building energy is 
consumed to filter and condition the fresh outdoor air [9], DCV is effective to reduce building 
energy consumption. In MPC, the occupant counts could be used to predict internal heat gains, 
and accordingly to optimize HVAC control. 
 
Melfi et al. defined four different resolution levels for occupancy information [10], as 
summarized in Table 1. Different resolution levels can serve different applications. The 
occupancy information could be used to reset the lighting and HVAC schedule, for example, 
lights can be turned off in unoccupied spaces, HVAC system or zone terminal equipment can be 
turned off or thermostat can be reset in unoccupied spaces. The occupant count information 
could be used for HVAC control, as in DCV [6] or model predictive control (MPC) [7], [8], since 
the equipment schedule and internal heat gains are correlated to the number of occupants. 
Additionally, occupant count is useful as the normalizing denominator in energy benchmarking, 
Measurement & Verification (M&V), and Fault Detection and Diagnosis (FDD) [11]. The identity 
and activity level information might be used to address the individual difference in thermal 
comfort preference [12] and to develop personalized thermal environment management [13]. 
By identifying who the occupants are and how they behave (e.g., clothing, activities) [14], [15], 
appropriate thermal environment (indoor temperature setpoint) could be provided to meet the 
diverse needs. Due to the wide application of occupant count for HVAC control and 
retrospective analysis, this study focuses on the resolution level of occupant count. 
 
Table 1: Four resolution levels of occupancy information 
Resolution level Definition Application 
Occupancy status Whether space is 

occupied or not 
Lighting, HVAC schedule optimization 

Occupant count How many people 
are in a space 

HVAC control optimization: DCV, MPC; 
Energy benchmarking, M&V and FDD 

Identity Who they are Personalized thermal environment management 
Activity What they are doing Personalized thermal environment management 
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Because of the substantial energy saving potential of utilizing occupancy information to 
optimize building control, several methods using a variety of sensors have been proposed to 
detect occupant counts in buildings. CO2 concentration-based method leverages the law of 
mass conservation to infer indoor occupant count [16], [17], [18], but was challenged to be 
unable to timely reflect rapid changes of occupants [19]. Another widely used approach to 
detect occupant count is Radio Frequency (RF) based sensors, which are typically consisted of 
an antenna, a transceiver and a transponder. RF-based sensors could detect occupant count 
and location by sensing the electromagnetic signal reflected (so-called passive mode [20]) or 
emitted (so-called active mode [21]) from occupants. The third mainstream approach to detect 
occupant count is camera-based [22] sensors, which typically requires applying an image 
recognition algorithm to detect occupants from other objects. To protect privacy, infrared-
based sensors [23] could also be used, which detect long-wave radiation rather than visible 
light emitted from occupants. To increase the field of view and sensitivity to occupant detection, 
Mikkilineni et al. (2019) proposed to use long-wave infra-red focal-plane arrays, which could be 
coupled with radio frequency and ultrasonic-based radar to improve accuracy [24]. The last but 
not least occupancy detection method uses smart meter data [25], [26], [27], leveraging the 
relations between occupant presence with building power consumption.  
 
A common practice to improve the estimation accuracy is to ensemble the result from different 
estimators: either ensemble the estimators developed by different input variables, a.k.a data 
fusion  [28] (using CO2, temperature), [25] (using CO2, sound level, power use), [26] (using CO2, 
power use), [29] (using CO2, humidity, temperature) or ensemble the estimators developed by 
different algorithms or with different hyper-parameters [30]. 
 
However, all the aforementioned occupant count detection approaches require installing 
additional sensors or hardware equipment, which leads to extra cost and labor [31]. With the 
wide deployment in almost every building nowadays, Wi-Fi infrastructure provides internet 
connections and thus offers a unique opportunity for virtual sensing of occupant count [32]. 
Multiple researchers have proposed methods to leverage Wi-Fi infrastructure to infer occupant 
count [33], [34], [35], [36], [37], [38]. Despite the rapid technology development and promising 
application potential, the reported methods using Wi-Fi data to infer occupant count have two 
limitations: (1) some technologies require installing extra apps on the Access Point or end-use 
devices [33], [34], [37], [38]; and (2) the other require recording the MAC addresses of 
connecting devices [35], [36], which would raise privacy concerns. For instance, Wang et al. 
applied location filter and MAC address filter to enhance detection accuracy, which needs to 
record the calibrated Received Signal Strength and MAC address [39]. Therefore, there still 
exists a research gap, demanding an accurate and non-intrusive approach to detect occupant 
count, i.e., using the existing information infrastructure in buildings and not requiring the 
installation of extra hardware or software packages [40]. 
 
In this study, we proposed a novel method to infer occupant count using the Wi-Fi connection 
counts through machine learning. By anonymizing and reshuffling the MAC addresses every day, 
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we avoid privacy concerns. By clustering connected devices into different types based on their 
daily connection duration, we improve the estimation accuracy. Wi-Fi data from an office 
building located in Berkeley California was used to test our approach, and the accuracy was 
compared with existing studies, demonstrating the reliability of this method.  

2. Method to infer occupant counts 
Figure 1 presents the major steps of the workflow to infer occupant counts, which will be 
described in detail in this section. 

 
Figure 1: Work flow of this study 

 
2.1 Feature engineering 
In this section, we created and selected features first to improve the estimation accuracy. A 
major reason using Wi-Fi connection counts alone could not accurately infer occupant counts is 
the mapping relations between the number of connected devices and the number of occupants 
are not consistent and might change temporally and spatially. As shown in Figure 2(a), there are 
different types of Wi-Fi connection devices, which belong to different types of owners, subject 
to different mapping rules of Wi-Fi connection counts and occupant counts. There are some 
devices connected to Wi-Fi almost throughout the whole day. Those devices are more likely 
office equipment or appliances such as printers or 24-hours-on computers or servers, or belong 
to occupants who never turn off the devices even though they are not present. In either case, 
those long-term connected devices might not be very informative to infer the occupancy 
variability. The second type of devices is connected with Wi-Fi for a relatively long period of 
time, which probably belong to long-term inhabitants like office workers, who averagely has 
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two devices connected while present - one is the cellphone and the other is the computer. The 
third type of devices is short-term connected with Wi-Fi, probably between one and three 
hours per day. Those devices might belong to short-term visitors, showing up for conferences 
or meetings, who usually only have one device (cellphone) connected. The last type of devices 
only connect to the Wi-Fi AP for a very limited period of time (less than one hour), which are 
highly likely to belong to occupants passing by the target area.  
 

 
(a) mapping relation of devices, owners and Wi-Fi usage behaviors 

Type of 
owners

Type of 
devices

Mapping rules of Wi-Fi connection 
counts and occupant counts

Each occupant averagely has two devices 
(cellphone and computer) connected with Wi-Fi

Each occupant averagely each has one device 
(cellphone) connected with Wi-Fi

Does not locate in the target area, should not 
be counted 

Inhabitants 

Visitors 

Passerby

Could not be used to infer occupant countsOffice 
appliances

Always 
connected

Long-term 
connected

Short-term 
connected

Occasionally 
connected
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(b) hourly variation of different type of devices in the target area  

Figure 2: Different types of devices with Wi-Fi connections 
 
Since devices with different connection periods have different mapping relations between the 
Wi-Fi connection counts and occupant counts (for instance, two devices per occupant vs. one 
device per occupant), it is reasonable to assume the estimation accuracy could be improved if 
we could differentiate various types of devices based on their daily connection duration, and 
use that information into the machine learning algorithm. Therefore, a major innovation of this 
study is: rather than input one variable of the total number of connected devices into the 
algorithm, we input multiple variables into the algorithm to enhance accuracy, representing the 
number of different types of connected devices, from short-term connected to long-term 
connected. 
As the input variables for occupant count inference only include the number of Wi-Fi connected 
devices for each device type (long-term connected or short-term connected), this approach 
does not require to record the MAC address of connected devices as [35], [36] did, which could 
help protect users’ privacy. 
 
2.2 Machine Learning Algorithms 
As an exploratory study, we applied and compared three different machine learning algorithms 
to infer occupant counts with Wi-Fi data. 
2.2.1 Random forest 
Random forest is an ensemble learning method constituted of multiple decision trees. Random 
forest is a widely used machine learning algorithm for three major merits. First, the overfitting 
problem could be avoided by randomly selecting a subset of features to constitute the 
individual tree in the random forest [41]. Second, random forest is easy to use, without time-
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consuming hyper-parameter tuning process. Third, random forest is a flexible algorithm that 
could be used for both regression and classification tasks. 
 
2.2.2 Deep learning neural network 
The artificial neural network (ANN) is a biologically-inspired machine learning algorithm that 
mimics how human brains function. The neural network is constituted of three layers of 
neurons: the input layer, hidden layer and output layer. The deep learning neural network 
advances ANN by adding multiple hidden layers to extract different features and to learn 
complicated non-linear relations.  
 
2.2.3 Long term short term memory networks (LSTMs) 
A key characteristic of time series data is the existence of time-dependence, for instance, what 
happened at the timestamp (t-k) might influence the value at timestamp t. To capture this 
time-dependence, the recurrent neural network has been proposed which takes the input of 
value at timestamp (t-1, t-2 … t-n) to predict the value at timestamp t. However, with the 
increasing of n, more memory space and computation capability is demanded. What makes 
things worse, the vanishing gradient problem would be triggered, i.e., the sensitivity decays 
exponentially over time when n is large. To solve this problem, LSTMs, as a special form of deep 
learning, was proposed, and proved to be very useful for inferring and predicting time-series 
data [42]. By inputting the data from the current (t) and previous (t-1, t-2 … t-n) time-stamps 
into the estimator, long-term time-dependencies of time-series data could be captured. LSTMs 
is widely used in speech recognition and other time-series data analysis.  
 
It could be observed that the algorithm complexity increases from the Random Forest to LSTMs. 
In the next section, we will compare not only the estimation accuracy but also the computation 
complexity by looking at the CPU running time of the three algorithms.  
 
2.3 Assessment metrics 
Two assessment metrics are used in this study to compare the estimation accuracy of different 
methods of inferring occupant counts with Wi-Fi connection counts. 
2.3.1 Root Mean Square Error (RMSE) 
RMSE is defined in Equation 1 where n is the sample size, 𝑦𝑛 is the measured value, and 𝑦𝑛 is 
the predicted value. As a two-norm error, which has the same unit as the measured value, 
RMSE is widely used in accuracy comparison. 
 

𝑅𝑅𝑅𝑅 = �∑ (𝑦𝑛−𝑦𝑛)2𝑛
1

𝑛
                    Equation 1 

 
2.3.2 X-tolerance accuracy 
Considering the fact that in practical building control and operation, an error of one or two 
occupants would not lead to real difference especially in a space with dozens of occupants, 
Jiang et al. proposed the metrics of X-tolerance accuracy, defined in Equation 2 as the 
percentage of the estimations whose errors are less than X [18]. 
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𝐴𝐴𝐴(𝑥) = ∑ 1(|𝑦𝑛−𝑦𝑛|≤𝑥)𝑀
1

𝑀
               Equation 2 

 

3. Testbed and data collection 
3.1 Testbed 
3.1.1 The Case Building 
The third and fourth floor of a four-story office building located in Berkeley, California was 
selected as the testbed for this study. We focused on the south end of the two floors, which 
have private and cubicle offices, with a floor area of around 800 m2 on each floor. There are 
seven and nine Wi-Fi Access Points (AP) installed in the south end of the third and fourth floor, 
respectively. As can be seen from Figure 3, some Wi-Fi APs locate very close to the border of 
the target area, especially on the fourth floor. Therefore, it is possible that someone outside 
the target area connecting their devices to those Wi-Fi APs, which would unavoidably result in 
estimation errors. 
 
The data collection period of this study is from late May to early July of 2018. The occupant 
counts and Wi-Fi connection counts data were collected every one minute and every ten 
minutes, respectively. Considering the time-step of HVAC control, both the occupant counts 
and Wi-Fi connection counts are down-sampled and averaged for every 30 minutes. 

 

 
Figure 3: Floor plan and sensor locations of the case building 

 
3.1.2 Ground truth occupancy data  

SE Entrance
NE Entrance

NW Entrance

Wi-Fi Access Point
Occupancy sensors
Target area

SE Entrance
NE Entrance

NW Entrance

Wi-Fi Access Point
Occupancy sensors
Target area
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To collect the ground truth data, three camera-based occupant count sensors manufactured by 
the TRAF-SYS company 1 were installed in the three entrances of the target zone of each floor. 
The camera-based sensor could detect the number of people entering and leaving the space. 
Integrating the net flow of people entering the border could inform the number of occupants in 
the target area. 
 
The occupant counts measured by the camera-based sensors would serve as the ground truth 
data. To validate the measurement accuracy of occupant sensors, we sent a crew of 
researchers to the three entrances of the third floor between 8 and 10 AM, a typical period of 
people arriving in office, to manually count the net number of people through each entrance. 
We compared the people count measured by the occupant sensors and manually counted by 
the researchers. Figure 4(a) plotted the occupants flow from the three entrances we observed 
and the integral of the occupant flow, which is the accumulated indoor occupant count. 
Integrating the net occupant flow could get the indoor occupant counts, which was presented 
in Figure 4(b). It was confirmed that the measurement error of the camera-based occupant 
sensors is 8% 2, and the cumulative error is 9% 3.  

 

 

                                                      
1 https://www.trafsys.com/ 
2 Defined as: ∑ (#(𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓)𝑡 − #(𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓)𝑡)/𝑡 ∑ #(𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓)𝑡𝑡  
3 Defined as: ∑ (#(𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)𝑡 − #(𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)𝑡)/𝑡 ∑ #(𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)𝑡𝑡  
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(a) Measurement error 

 
(b) Cumulative error 

Figure 4: Camera-based sensor calibration: orange line for the sensor measured values, the blue 
line for the manual count values 

  
Due to the sensor errors, the total number of people entering the space during one day might 
not equal to the total number of people leaving the space on the same day. If this error were 
not corrected, the accumulated errors might be substantial after a period of time. Furthermore, 
the sensor measurement error might lead to a negative number of people in the space. To deal 
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with these two types of errors, we processed the data using a script summarized by the pseudo 
code in Appendix A to clean and calibrate the ground truth data on a daily basis. 
 
3.1.3 Wi-Fi data  
Table 2(a) presents a snapshot of the collected Wi-Fi data in this study, which include three 
columns: the timestamp of the recording, the ID of connected devices, the ID of Wi-Fi AP to 
which the device is connected. To protect privacy, the device IDs were randomly shuffled on a 
daily basis.  
 
As we discussed in Section 2.1, theoretically, the method we proposed does not need MAC 
address. What needs to be input into the algorithm is just the number of connected devices for 
each device type, as shown in Table 2(b). The device type could be easily determined by looking 
at the duration that a device is connected to the Wi-Fi on the previous day of the same type 
(working or non-working). For instance, if today is Monday, the device type could be 
determined by checking last Friday’s connection duration of the same device. In this study, the 
data-preprocessing from the raw data (in the form of Table 2a) to the data needed by the 
algorithm (in the form of Table 2b) was done by researchers, to reduce the IT staff’s workload. 
In practice, the process of converting data from Table 2a to Table 2b could be done 
automatically by writing a script. So, the output information is only the device count, without 
MAC address, to protect users’ privacy.  
 

Table 2: A snapshot of Wi-Fi data 
(a) the data used in this study 

Time Device_ID AP_ID 
… 

 
  

20180521_0000 dfd6bafb68c1cd1f1e2d9190ca9d55f0 ap135-4206w 
20180521_0000 e6c1fe930c6d2c2f2e2d9d69fc0abeda ap135-3103 
…    
20180521_0000 dd464552ecc1208e94a955bffee1f749 ap135-4110 
20180521_0010 dfd6bafb68c1cd1f1e2d9190ca9d55f0 ap135-4206w 
20180521_0010 e6c1fe930c6d2c2f2e2d9d69fc0abeda ap135-3103 
…     

 
(b) the data input to the ML algorithm 

Time Target zone Device_type Device_count 
… 

  
  

20180521_0000 Zone 1 Short term (less than 1h per day) 0 
… 

  
  

20180521_0000 Zone 1 Long term (more than 12h per day) 20 
20180521_0000 Zone 2 Short term (less than 1h per day) 0 
… 

  
  

20180521_0000 Zone 2 Long term (more than 12h per day) 15 
20180521_0010 Zone 1 Short term (less than 1h per day) 0 
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20180521_0010 Zone 1 Long term (more than 12h per day) 21  
…       

 
 
3.2 Data collection and exploration 
3.2.1 Typical working and non-working days 
With the sensing infrastructure described in the previous section, we collected the number of 
occupant counts and the number of Wi-Fi connection counts. Figure 5 presented the 
measurement of a typical working and non-working day. Generally speaking, the occupant 
counts and Wi-Fi connection counts follow similar trends, starting to rise at around 8:00 AM, 
dropping around the mid-day for lunch break, and starting to decrease at 16:00 (4:00 PM). 
However, the variation of Wi-Fi connection counts is not as significant as that of occupant 
counts. This might be due to people leave their devices connected with the Wi-Fi for short-term 
leaves. For instance, people might not turn off their computer during lunch break. Therefore 
the decrease in the number of connected devices might not be as marked as the decrease in 
occupant counts. During non-working hours, there are around 20 devices connected with Wi-Fi, 
which might be standby office equipment (e.g., printers, computers). The relatively high 
proportion of office equipment standby during non-working hours (20 out of the peak of 45) 
indicates an opportunity to conserve energy by encouraging people to turn off the office 
equipment before leaving the office for a day. 
 

   

High Wi-Fi 
baseline at 
night

Mismatch 
during lunch 
break
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(a) a typical working day                                       

 
(b) a typical non-working day 

Figure 5: the number of occupant counts (red line) and the number of Wi-Fi connection counts 
(blue line) on the 3rd floor for a typical working (left) and non-working (right) day 

 
3.2.2 Time-series decomposition 
A widely used approach to study time-series data is to decompose it into the trend component, 
the periodic component, and the residual component, as shown in Equation 3 [43]. Where 𝑦𝑡 is 
the observed value at time t. 𝑇𝑡 is the trend component at time t, reflecting the long-term 
progression of the series. 𝑇𝑡 is the moving average calculated from Equation 4, where k 
represents the length of half a period. In this case, the length of a period is one week4. 𝑃𝑡 is the 
periodic component at time t, reflecting the periodic fluctuation. 𝑃𝑡 is calculated by averaging 
the detrended time-series value at the same time of each week. 𝑅𝑡 is the residual component 
at time t, reflecting random, irregular changes. 𝑅𝑡 is calculated by subtracting the estimated 
trend and periodical components from the raw data. 
 
𝑦𝑡 = 𝑇𝑡 + 𝑃𝑡 + 𝑅𝑡              Equation 3 
𝑇𝑡 = 1

2𝑘+1
∑ 𝑦𝑡+𝑗𝑘
𝑗=−𝑘          Equation 4 

 

                                                      
4 Other periods could be chosen like daily or monthly. In this study, we studied weekly patterns considering the 
temporal length of our data 
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(a) Decomposition of occupant counts           

 
(b) Decomposition of Wi-Fi connection counts 
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(c) Time-series of the residual component    

 
(d) Linear regression of the residual component 

Figure 6: Decomposition analysis of the data from the third floor 
 
As observed from Figure 6(a) and Figure 6(b), both the occupant counts and Wi-Fi connection 
counts are highly randomly fluctuated. The irregular fluctuations (reflected by the residual) of 
occupant and Wi-Fi connection counts are at the scale of 25, which is comparable to the 
magnitude of regular component (reflected by the trend and periodic), which increases the 
difficulty of using Wi-Fi data to infer occupant counts. What makes things worse is the irregular 
fluctuations of occupant counts could not be predicted by the irregular fluctuations of the Wi-Fi 
connection counts. As shown in Figure 6(c), the residual component of the occupant counts and 
Wi-Fi connection counts are well aligned during some period of time, for instance, 4th July, 
when both the observed occupant and Wi-Fi connection counts are below average as it is a 
national holiday. However, during other period of time, the residual components of occupant 
and Wi-Fi connection counts are not at the same pace, for instance, a positive occupant count 
residual and a negative Wi-Fi connection count residual (3rd July). Because of this mismatch, the 
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R-squared value (coefficient of determination) of occupant and Wi-Fi connection counts is as 
low as 0.17 between the occupant counts and Wi-Fi connection counts. Because of this complex 
behavior, as Yang et al. pointed out [31], simply using Wi-Fi connection count could not achieve 
an accurate occupant count estimation. Feature engineering is needed for a highly accurate 
occupant count estimator. 

4. Results and Discussion 
As we introduced in Section 2, three algorithms - Neural Network, Random Forest, and LSTM - 
were applied to infer occupant counts from Wi-Fi connection data. In addition to the algorithm, 
the selection of hyper-parameters also influences the inference performance. After hyper-
parameter tuning, the following set of hyper-parameters were chosen in this study, as shown in 
Table 3. In this study, we implemented Random Forest with the open-source Python library 
scikit-learn v0.20.35, implemented Deep Neuron Network and LSTM with the open-source 
Python-based machine learning programming platform Keras6. The default values of hyper-
parameters, listed in the library documentation, were used if not specified in Table 3. 
 

Table 3 Hyper-parameter settings 
 Parameter Definition Value 
Random 
Forest 

𝑛 The number of trees in the forest 1000 
𝑙𝑙𝑙𝑙 Loss function Mean Square Error 

Deep 
Neural 
Network 

𝑙 Number of hidden layers 3 
𝑛[1] Number of units in the first hidden layer 200 
𝑛[2] Number of units in the second hidden layer 100 
𝑛[3] Number of units in the third hidden layer 50 
𝑔() Activation function relu 

LSTM 𝑛 Number of neurons in the hidden unit 50 
𝑘 Number of epochs 300 
𝑡 Time windows for input variables 24 hours 
𝑙𝑙𝑙𝑙 Loss function Mean Square Error 
𝑜𝑜𝑜 Optimization method Adam 

 
In this study, two types of parameters, i.e., time-related, Wifi connection count, were fed into 
the algorithm to infer the occupant counts, as illustrated in Table 4. 
 

Table 4: Input variables to machine learning algorithms 
 Sub-category Examples 
Time-
related 

Day type Holiday (Boolean): yes or not 
Day of week Mon., Tues., … 
Hour of day 0AM, 1AM, …  

Wi-Fi connection Wifi_1h: number of devices connected to Wifi less than 1 hour a day; 

                                                      
5 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html 
6 https://keras.io 
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count Wifi_1-2h: number of devices connected to Wifi between 1 hour and 
2 hours a day; 
… 

  
4.1 Estimation accuracy 
The whole dataset was split into the training and testing sets: the first three weeks serve as the 
training set (purple) and the last two weeks as the test set (blue). Figure 7 plotted and 
compared the estimated values with the ground truth data (red). To avoid redundancies, the 
time-series plots of a typical day and X-tolerance accuracy plots were only provided for the 
random forest algorithm, but the comparison between the three methods will be illustrated in 
Table 5. 
 
The red line in Figure 7 represents the actual occupant counts on this specific floor. The random 
variation of occupant counts is more significant than we expected. For instance, the weekly 
peak occupants happened on Tuesday in the Week starting from 4th June, on Wednesday in the 
Week starting from 11th June, while on Thursday in the week starting from 18th June. The time-
series decomposition result presented in Figure 6 (a) showed that the random variation 
(excluding the trend and periodic component) is between -25 to +20, almost at the same scale 
with the periodic variations. The reasons behind the larger random variation might include 
irregular special events such as seminars, the increasing popularity of working from home, etc. 
Therefore, we could not solely rely on the pre-determined occupancy schedule to estimate 
occupant counts. Instead, we need to input other features (Wi-Fi in this case) and to leverage 
machine learning algorithms to infer occupant counts.    
 
The general trend could be captured in all three estimators. The estimation error is within two 
occupant counts for more than 70% of the estimations, and within six occupant counts for more 
than 90% of the estimations. Considering the average occupant counts during working hours is 
27 on the third floor and 22 on the fourth floor, with a peak value of 74 and 48, respectively, 
this estimation error is acceptable for HVAC control. 
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(a1) Random Forest: the whole data collection period on the 4th Floor 

  
(a2) RF: a typical train day on the 4th Floor      

 
 (a3) RF: a typical test day on the 4th Floor 
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(a4) RF: X-tolerance accuracy on the 3rd Floor     (a5) RF: X-tolerance accuracy on the 4th Floor 

 
(b) Deep neural network: the whole data collection period on the 4th Floor 
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(c) LSTMs: the whole data collection period on the 4th Floor 

Figure 7: Results of occupant count estimation using the three machine learning algorithms  
 
Another observation from Figure 7 is the peak occupancy could not be accurately estimated by 
either of the three algorithms. By revisiting the data, it was found when the peak event 
occurred, the Wi-Fi connection counts did not increase as markedly as the occupant counts 
increased, leading to an under-estimation of the peak occupancy. A possible explanation for 
this phenomenon is the peak occupancy occurred when a seminar was held and lots of people 
from other parts of the building or even other buildings came to the target area. A substantial 
proportion of seminar attendees might not use or connect their Wi-Fi devices during the 
seminar to stay focused. One possible solution to this problem is to introduce and use new 
event-related features to reflect the occurrence of seminars or conferences. 
 
Table 5 and Figure 8 compared the RMSE and computation time of the three algorithms from 
two dimensions, the inference error and the computation time. The algorithm is considered to 
be better if it has a smaller error and consumes less time, as indicated by the green arrow in 
Figure 8. It could be observed that the Random Forest provides accurate occupant counts 
estimation from Wi-Fi data with the least computation time, indicating that more complicated 
algorithms might not necessarily outperform simple ones for this study. 
 

Table 5: Comparison of three algorithms 
 Random Forest (RF) Neural Network (NN) LSTM 
RMSE on the training set 1.20 2.63 2.21 
RMSE on the testing set 3.95 4.62 4.52 
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Computation time7 2.38s 24.86s 65.61s 
 

 
Figure 8: Comparison of three algorithms 8 

  
Table 6 compares the 1- and 2-tolerance accuracy of the method proposed in this study with 
previous studies using different office buildings (i.e., different dataset). The peak and average 
occupant counts were also presented in the table since an estimation error of two in a space 
with 25 people is more acceptable compared with the same estimation error in another space 
with only 15 people.  
 
It can be seen that the estimations from our method delivered a higher accuracy prediction 
than methods proposed by previous research, except for the estimator applying Feature Scaled 
Extreme Learning Machine on smoothed CO2 concentration data documented in Jiang et al. 
(2016) [18]. However, as the authors pointed out, smoothing algorithms require the data to be 
measured. Either locally or globally smoothed CO2 concentration could not be obtained in a 
real-time manner. Therefore, this method could only be used in retrospective analysis but not 
to estimate real-time occupant counts for building control purpose. Additionally, as discussed in 
the Introduction Section, Jiang et al. (2016)’s method requires installing CO2 sensors in the 
target areas. CO2 sensors require to be calibrated periodically. Installing additional sensors 
would lead to extra economic and labor costs.  
 
It is acknowledged that different office spaces might not be comparable to each other. For 
example, offices with more visitors and seminars would be more challenging for using Wi-Fi 
connection counts to infer occupant counts. Therefore, the comparison shown in Table 6 does 
not necessarily mean our method is superior to others, but rather serves as a proof that the 
method proposed in this study could be used to infer occupant counts. 
 

Table 6: Accuracy comparison of Random Forest with previous studies 9 

                                                      
7 On a Dell desktop with 4-Core Intel Xeon CPU E5-1630 v4 @ 3.70GHz 
8 To calculate relative inference error, the Root Mean Square Error (RMSE) is normalized by the peak occupant 
counts, which is 48 in this case.  

0

20

40

60

80

6% 8% 10%

C
om

pu
ta

tio
n 

Ti
m

e 
/ s

Relative Error on Training Set

RF
NN
LSTM



23 
 

  Data 
source 

Method 1-
tolerance 
accuracy 

2-
tolerance 
accuracy 

Peak 
occupant 
counts 

Average 
occupant 
counts 

This 
study 

Floor 3 
training 

Wi-Fi Random Forest 72% 85% 74 27 

Floor 3 
testing 

Wi-Fi Random Forest 57% 72% 74 27 

Floor 4 
training 

Wi-Fi Random Forest 70% 84% 48 22 

Floor 4 
testing 

Wi-Fi Random Forest 56% 70% 48 22 

Jiang et al. 
(2016) [18] 

Measured 
CO2 

Standard Extreme 
Learning Machine 

45% 54% 26 15 

Measured 
CO2 

Feature 
Scaled Extreme 
Learning Machine 

55% 68% 26 15 

Globally 
smoothed 
CO2 

Feature 
Scaled Extreme 
Learning Machine 

71% 86% 26 15 

Locally 
smoothed 
CO2 

Feature 
Scaled Extreme 
Learning Machine 

68% 80% 26 15 

Wang et al. 
(2017) [35] 

Wi-Fi Linear Regression 30% 50% 25 15 
Wi-Fi Support Vector 

Machine 
25% 45% 25 15 

Wi-Fi Auto-Regressive 
Moving Average 

30% 55% 25 15 

Wi-Fi Dynamic Markov 
Time-Window 
Inference 

38% 60% 25 15 

Wang et al. 
(2018) [36] 

CO2 Mass conservation 35% 50% 19 11 
Wi-Fi Markov 40% 60% 19 11 
Wi-Fi Markov-based 

recurrent neural 
network 

55% 70% 19 11 

 
4.2 Feature importance 
The random forest provides us a chance to revisit the topic of feature engineering we discussed 
in the previous section. There are multiple ways to define feature importance, and no strict 
consensus has been reached so far. In this study, we leverage scikit-learn, the Python-based 

                                                                                                                                                                           
9 The value on the reference [18], [35], [36] in this table was estimated from figures and is accordingly 
approximate numbers rather than accurate numbers  
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machine learning library [44], to calculate the feature importance. In scikit-learn, the feature 
importance is defined by the Mean Decrease Impurity (MDI) [45]. MDI is the weighted average 
of the total decrease in node impurity of each feature over all trees of that ensemble. If a 
feature is important, then the node impurity10 would be markedly reduced by passing the splits 
that include that feature. 
 

 
Figure 9: Feature importance for occupant counts estimation  

 
As we expected, the number of long-term connected devices is a better feature for occupant 
count estimation than the number of short-term connected devices. Because Figure 9 
illustrates that the number of devices connected to Wi-Fi for 8-12 hours per day is the single 
most important feature, with higher feature importance than other features. Those devices are 
highly likely to be personal computers that do not shut off during lunch break. It is a bit 
surprising that devices connected to Wi-Fi for more than 12 hours per day are also very 
important features to infer occupant counts. This might be because those devices are good 
indicators of working and non-working days. Devices connected for 5-8 hours per day and 4-5 
hours per day are very likely to be office workers’ cellphones, ranking 3rd and 5th in the feature 
importance lists. Those devices are not as important as we thought because cellphones might 
enter the idle mode from time to time and lose Wi-Fi connection even though the occupants 
keep staying indoors. Accordingly, this information is noisy in inferring occupant counts. 
 
In addition to the number of connected devices, we use the features of the time in the random 
forest algorithm to capture the periodic behavior of occupant counts. Generally speaking, 
features of the time are not very important to infer occupant counts, because the information 
the time features could bring have already been reflected by the Wi-Fi connection counts, as 
Wi-Fi connection counts demonstrate a similar periodic variation. Features of time would be 

                                                      
10 The node impurity is a measure of the homogeneity of the labels at the node. In a regression problem, as in this 
case, the node impurity could be calculated as the variance of observations in that specific node 
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important only when they could capture some behaviors which have not been reflected by Wi-
Fi connection counts. For instance, at 5 PM, the Wi-Fi connection counts are still pretty high 
while the people start to leave the office, due to some time lag effect. Because of this, 5 PM is 
the single most important feature compared with other hours of the day.  
 
4.3 Limitations and future work 
In this study, we rely on tracking the connection time to cluster each device into long-term or 
short-term connected devices. However, we realized that cellphone manufacturers are 
developing new privacy protection functions, such as automatic randomization of MAC address 
when the device is searching for a Wi-Fi network. The automatic address randomization 
technology would make the device tracking and clustering based on daily connection time more 
difficult, and has negative impacts on the inference accuracy. However, we believe this 
influence would be minimal. Because we found the counts of long-term connected devices 
(more than 8 hours per day) are more important features for occupant count inference. The 
number of connected cellphones is actually not a very important feature, as shown in Figure 9, 
because cellphones might enter the idle mode from time to time and lose Wi-Fi connection 
even though the occupants stay indoors. In this regard, the newly developed privacy protection 
functions might restrict the application of this occupant count inference approach, but in a 
limited way. 
 
Another limitation of this study lies in whether the model we learned from one building could 
be applied to another. Transfer learning is associated with the question whether the knowledge 
learned from one task could be transferred to another. To be more specific, whether the 
mapping relation between the Wi-Fi connection counts and occupant counts we learned from 
one building could be applied to another building. This is critical since collecting the ground 
truth data – in this case, the real occupant counts – is expensive in the real world. An occupant 
count estimator would be valuable only if the trained estimator could be transferred to other 
buildings without retraining, as it is expensive and impractical to collect the ground truth data 
(occupant count) for every building. Actually, transferring and generalizing the knowledge 
learned from one building to another is a major constraint to be solved in occupant behavior 
studies as occupant behaviors in different buildings varied significantly [46].  
 
Theoretically, whether an estimator could be transferred to other buildings or not depends on 
whether the mapping relation between the features (Wi-Fi connection counts, and time) and 
outputs (occupant counts) is stable and could be generalized to other buildings. The essence 
behind this mapping relation is the distribution of how many connected devices each person 
has, and whether this distribution would change from building to building. It is reasonable to 
argue that this distribution would change by different building types (e.g., office vs. retail), but 
stays stable and predictable in buildings with similar functions and occupants’ Wi-Fi connection 
behaviors. For example, occupant Wi-Fi behaviors might be different in restaurants and offices, 
since occupants are more likely to have one device connected with Wi-Fi in restaurants (only 
their cellphones), but two in office buildings (cellphones and laptops). Therefore, clustering the 
buildings first and then develop estimators for each category of buildings with similar 
characteristics might be necessary to guarantee the scalability of the occupancy estimator. Das 
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et al. proposed two methods to cluster buildings given the ground truth data are unknown: by 
building functions, and by input data patterns [47]. However, more in-depth discussion is still in 
need. 
 
As for the next step, we plan to collect data from different buildings to test if the estimator 
trained in one office building could be transferred and applied to another building without the 
ground truth data of occupant counts. It would also be helpful if researchers in this field could 
open-source their data and establish a shared database for the testing and comparison of new 
methods and algorithms. 
 

5. Conclusions 
Inferring occupant counts has wide applications in energy efficient building control. Though 
multiple methods have been proposed to estimate occupant counts, there is still a demand to 
detect occupant counts in an accurate and non-intrusive way using existing information 
infrastructure in buildings. 
 
We employed the Random Forest method to infer occupant counts using the Wi-Fi connection 
counts data. The method was tested in a real office building and demonstrated better accuracy 
than the existing methods in the literature. In an office area with an average occupancy of 22-
27 people and a peak occupancy of 48-74 people, the root square mean error is four people on 
the test set. For more than 70% of estimations, the errors are within two people counts, and for 
more than 90% of estimations, the errors are within six people counts. 
 
The major contribution of this paper is proposing a novel and accurate approach to detect 
occupant counts in a non-intrusive way, utilizing the existing Wi-Fi infrastructure in buildings 
without requiring the installation of extra hardware or sensors. As an infrastructure deployed in 
almost every modern building, Wi-Fi data provide a unique opportunity to infer occupant 
counts with minimum additional cost. Our proposed method utilizes anonymized Wi-Fi data 
which can be adopted by other buildings to infer occupant counts for energy efficient building 
control. . Future research will explore transfer learning so the machine trained estimator of 
occupant counts can be applied to other buildings of similar types but without the ground truth 
data of occupant counts.  
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Appendix  
A. Pseudo code for the daily calibration of occupant counts data 
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