

Considerations for a Modern Distribution Grid

Joe Paladino U.S. Department of Energy

Midwest Distribution System Planning Workshop

January 16, 2018

Influencing Factors for Grid Modernization

"The challenge is to manage the transition and related operational and market systems in a manner that doesn't result in an unstable or unmanageable system." from Grid 2020, Resnick Institute Report, Sept 2012

Federal, State and Local Policies

- Renewable and Efficiency Portfolio Standards
- Carbon Dioxide Reduction
- Reliability and Resilience
- Integration of Distributed Energy Resources

Co-Existing Futures

& Energy Reliability

DERs Present Challenges

Source: HECO cited in Hawaii PUC Order No. 34281

High levels of DERs will impact system design and operations

- Convergence of attractive prices, commercial offerings and favorable state policies greatly enhances adoption of PV
- High DER adoption can violate operational criteria related to voltage, thermal, and system protection requirements
- HI PUC October 12, 2015 Ruling modifies NEMS policy with "self-supply" and "grid-supply" tariffs.
 - All pay a monthly fee to cover fixed costs
 - Grid-supply compensated at the wholesale rate for electricity
- Energy storage undergoing similar trend; implications for DERs

DERs Provide Value

From "Evolving Distribution Operational Markets" by Paul De Martini, Resnick Institute, Caltech, and Brenda Chew, Dale Murdock and Steve Fine at ICF

Distribution Grid Evolution

US distribution systems currently have Stage 1 functionality - a key issue is whether and how fast to transition into Stage 2 functionality

Integrated Planning Considerations

Integrated planning and analysis needed within and across the transmission, distribution and customer/3rd party domains

Architecture Manages Complexity

The engineering issues associated with the scale and scope of dynamic resources envisioned in policy objectives for grid modernization requires a holistic architectural approach

So, pick-up a pencil

Before trying to hang windows

Coordination Considerations

Industry Structure Model, New York 2015

Participants

Federal Government Federal Regulators NERC NY Reliability Coordinator Northeast Power Coordinating Council NY State Reliability Council NY ISO (Ops) Neighbor ISO/RTO/BAs NY Wholesale Markets **Bulk Power Marketers/Arbitragers** Merchant Bulk Generation Utility Generation NY Power Authority Long Island Power Authority **Transmission Operators Neighbor Transmission Operators** NY State Government NY PSC **Distribution System Operator** Utility Retail **Residential Customers** C&I Customers **ESCOs** Third-Party DER Aggregator

Interaction Types

Reliability coordination Market interaction Retail Fed/state regulation Energy and services Control and coordination

9

Coordination Frameworks

The presence of DER not owned by utilities changes the problem from direct control to a combination of control and coordination

- Elements need to coordinate to solve common problems
- Each element has performance constraints and optimization objectives
- By examining relationships and interfaces, can develop coordination frameworks and underlying control and communication requirements
- Laminar coordination permits local/system optimization

T/D Markets

From JD Taft, Architectural Basis for Highly Distributed Power Grids: Frameworks, Networks, and Grid Codes, PNNL-25480, June 2016

Architectural Considerations

Grid architecture is a systems analysis discipline that begins with objectives and determines how structures integrate and coordinate

- Traditional siloed approaches to applications systems result in complex integrations
- It is also difficult to future-proof such systems
- By breaking up the silos and converting part of those elements to a layer we can simplify integration and improve futureproofing
- Sensing and communication can become a foundational infrastructure layer

Core Cyber-Physical Operational Platform

Platform Considerations

Core components form a foundational layer; applications sit on this foundation as additional functionality is needed

Customer Portal	Customer Choice Decision Support Analytics										
	Customer Energy Information & Analytics Out				age Information		Customer DER Programs			tais	SL
Grid Data Portal	Locational Value Analysis	Dynamic Analysis	Optimization Analytics		Market Oversight		Market Settlement		DER Portfolio Optimization	ket Por	icatio
	Hosting Capacity	Probabilistic Planning	Smart Meters		Advanced Meters		Volt-var Management		DER Management	Mar	Appl
DER Provider Data/Info	Power Quality Analysis	Fault Analysis	DMS		OMS		GIS	Network Model			s
	DER & Load Forecasting	Power Flow Analysis	s	SCADA		Automated F	ield Devices Ad		vanced Protection		nend
	Operational Data Management										duuo
	Sensing & Measurement Operational Communications (WAN/FAN/NAN)										e C
											Cor
	Physical Grid Infrastructure										

From DSPx, Volume 3 – Decision Guide, under review

Timing & Pace Considerations

Pace & scope of investments are driven by customer needs & policy objectives. Proportional deployment to align with customer value

Data Requirements

Data are required from both utilities and DER providers to support planning, operations, and markets

Walk – Provide clear objectives and begin stakeholder discussions

- System planning data determine data needs among participants; establish coordination processes
- Regulatory compliance data clear descriptions of avoided cost methodologies and inputs; performance objectives

Jog – Establish sourcing mechanisms and situational awareness

- Commercial transaction data create transparency in planning processes; establish operational market mechanisms
- Grid operational data coordinate transaction schedules between distribution operators, wholesale market operators, and DER providers; provide situational awareness

Run – Enable full utilization of DERs

- In general data is needed for market coordination and constraint management (across distribution/transmission systems)
- Market efficiency data needed to provide market oversight and assess market efficacy

Modern Distribution Grid Report

A rigorous approach to support development of grid modernization strategies and implementation plans based on best practices

Volume I: Maps Grid Modernization Functionality to Objectives

- Grid architectural approach that maps grid modernization functionality to state objectives within a planning, grid operations & market operations framework
- > Enables evaluation of functionality required to meet a specific objective

Volume II: Assessment of Grid Technology Maturity

- Assessment of the readiness of advanced grid technology for implementation to enable functionality and objectives identified in Volume I.
- > Enables evaluation of technology readiness for implementation

Volume III: Implementation Decision Guide

- Decision criteria and considerations related to developing a grid modernization strategy and implementation roadmap with examples to illustrate application
- Enables development & evaluation of grid modernization strategies and roadmaps for implementation

Conclusions

- DERs provide capacity, energy and ancillary services, yet require flexible systems due to the variability they introduce.
- Integrated T, D (& C) planning, operations and markets are required at some level of DER integration (and to enable their full value)
- Coordination frameworks (establishing rules, responsibilities, points of interconnection and data requirements among participants) are required:
 - For scheduling and dispatch:
 - Transmission system operators require the predictability and assurance of DER commitments (visibility component)
 - Distribution system operators will need dispatch rights to ensure local reliability (or markets)
 - To enable scalability and optimization (local vs system)
 - To determine the communication and control structure (e.g., who controls the DER resource?)
- Need better optimization tools (to handle various time-scales)
- Need technologies to enable flexible operations (e.g., smart inverters and energy storage)

Thank You

Contacts:

Joe Paladino, joseph.paladino@hq.doe.gov Paul De Martini paul@newportcg.com Jeffrey Taft jeffrey.taft@pnnl.gov

References:

Modern Distribution Grid Report

www.doe-dspx.org

Grid Modernization Strategy Using DSPx

www.hawaiianelectric.com/ gridmod

DSO Paper

https://emp.lbl.gov/ projects/feur

Grid Architecture

http//gridarchitecture.pnnl.gov

