Grid Modernization Planning

Paul De Martini
Newport Consulting

Integrated Distribution System Planning
Training for Western States
March 5, 2021
Grid Architecture Approach

► Grid modernization planning starts with objectives & capabilities needed

► Scale and scope of needs require a holistic architectural approach.

► Resist temptation to start with technology choices
Grid Mod Strategy & Planning Process

What, Why, How, When & How Much

While encouraged, it is not essential to start with a grid mod strategy. But, a clear set of objectives is necessary to develop and assess implementation plans.
Objectives Drive Grid Mod Planning

PUC Ohio example:

- **A Strong Grid:** A distribution grid that is reliable and resilient, optimized and efficient and planned in a manner that recognizes the necessity of a changing architectural paradigm.

- **The Grid as a Platform:** A modern grid that serves as a secure open access platform—firm in concept and as uniform across our utilities as possible—that allows for varied and constantly evolving applications to seamlessly interface with the platform.

- **A Robust Marketplace:** A marketplace that allows for innovative products and services to arise organically and be delivered seamlessly to customers by the entities of their choosing.

- **The Customer’s Way:** An enhanced experience of the customer’s choosing on the application side, whether for reasons arising from financial, convenience, control, environmental, or any other chosen consideration.

Note: The ‘safe, reliable, and affordable’ components were included in the mission statement, which was incorporated into the principles of the PowerForward Roadmap.
Customer Needs & Policy drive grid capabilities and corresponding enabling business functionality and technology

<table>
<thead>
<tr>
<th>Capabilities</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Safety & Operational Efficiency</td>
</tr>
<tr>
<td>Market Operations</td>
<td>○</td>
</tr>
<tr>
<td>Grid Operations</td>
<td>○</td>
</tr>
<tr>
<td>Planning</td>
<td>○</td>
</tr>
</tbody>
</table>

This analysis helps to identify the core platform functions and related technologies as well as the applications linked to specific policies/customer needs/locational value realization.
Taxonomy Example

<table>
<thead>
<tr>
<th>Objective</th>
<th>Capability</th>
<th>Function</th>
<th>Technology</th>
</tr>
</thead>
</table>
| Reliability
improvement by reducing customer unplanned outage durations | Improve outage identification and customer service restoration | Fault Identification
Fault Location
Fault Isolation
Service restoration | Fault Current Indicators
Outage Notification from Meters
Outage Management System
Geospatial Information System
Distribution Management System and/or SCADA
Automated Switches
Work Management System |
Distribution Grid as a Platform

The Grid as a Platform: A modern grid that serves as a secure open access platform—firm in concept and as uniform across our utilities as possible—that allows for varied and constantly evolving applications to seamlessly interface with the platform.

— Public Utility Commission of Ohio

Source: P. De Martini
Distribution System Platform

Logical layering of core components that enable specific applications

Green - Core Cyber-physical layer
Blue - Core Planning & Operational systems
Purple - Applications for Planning, Grid & Market Operations
Gold - Applications for Customer Engagement with Grid Technologies
Orange - DER Provider Application

Identify Starting Point for Grid Investment

This graphic is a summary illustration of a more complete assessment documented in narrative and tables to enable a gap analysis against objectives and identified capabilities & functionalities.
Distribution & Modernization Investment Categories

Grid Modernization technologies layer on top of & integrate with foundational physical grid infrastructure.
Sequencing of Investments

Long-term strategic plan of distribution grid investments

<table>
<thead>
<tr>
<th>Foundational Investments</th>
<th>Near-Term (2019 – 2023)</th>
<th>Medium-Term (2024-2028)</th>
<th>Long-Term (2029-2033)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOU Rate Pilot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLISR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underlying IT Infrastructure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVVO</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Planned or Potential Future Investments</th>
<th>Substation Upgrades and Additional Distribution Automation</th>
<th>Customer Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMS Upgrade</td>
<td>MDMS Enhancement</td>
<td></td>
</tr>
<tr>
<td>Demand Response (DRMS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution Planning Tools</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric Vehicle Infrastructure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric Vehicle Pilots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DERMS Monitoring & Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DERMS/DRMS Integration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distributed Intelligence</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From Xcel Energy’s 2019 Integrated Distribution Plan
Considerations

► Have clear modernization objectives been established in policy or regulation, or proposed by the utility?
► Has a clear starting point for modernization been identified?
► What is the pace and scope of change expected over the planning period & does the grid mod plan address the needs?
► Are grid mod plans aligned and integrated with asset management and resilience planning?
► Do grid mod plans incorporate flexibility needed for the uncertainty in needs and emergent grid technologies?
Contact:
Joe Paladino, joseph.paladino@hq.doe.gov

References:

Modern Distribution Grid Report
https://gridarchitecture.pnl.gov/modern-grid-distribution-project.aspx

PUCO Grid Mod Roadmap
https://puco.maps.arcgis.com/apps/Cascade/index.html?appid=59a9cd1f405547c89e1066e9f195b0b1

Grid Modernization Strategy Using DSPx
https://www.edockets.state.mn.us/EFiling/edockets/searchDocuments.do?method=showPopup&documentId=098D466-0000-C319-BEF6-08D478889999&documentTitle=201811-147534-01

Grid Modernization Strategy Using DSPx
www.hawaiianelectric.com/gridmod

Grid Architecture
http://gridarchitecture.pnl.gov
Distribution Resilience Planning

Paul De Martini
Newport Consulting

Integrated Distribution System Planning
Training for Western States
March 5, 2021
Electric Grid Resilience is a Top Planning Priority

2017 U.S. Billion-Dollar Weather and Climate Disasters

- North Dakota, South Dakota and Montana drought, Spring-Fall
- Western wildfires, California firestorm, Summer-Fall
- California flooding, Feb. 8-11
- Colorado hail storm and Central severe weather, May 8-11
- Minnesota hail storm and Upper Midwest severe weather, June 9-11
- Midwest tornado outbreak, March 6-8
- Central/Southeast tornado outbreak, Feb. 28-March 1
- Missouri and Arkansas flooding and Central severe weather, April 25-May 7
- Southeast freeze, March 14-16
- Southern tornado outbreak and Western storms, Jan. 20-22
- Hurricane Harvey, Aug. 25-31
- Hurricane Irma, Sept. 6-12
- Hurricane Maria, Sept. 9-21

This map denotes the approximate location for each of the 16 billion-dollar weather and climate disasters that impacted the United States in 2017.

Source: NOAA
Electric Distribution Grid Planning

Distribution planning across the U.S. addresses 3 key overlapping areas of focus to meet customer needs:

- Reliability & Resilience
- DER Integration & Utilization
- Safety & Operational Efficiency
Electrification and distributed resources necessitate closer examination of the interdependencies among critical infrastructure and the distribution grid.

Context: Distribution grids in the United States are on average ~30-years old (of ~40-year asset life), with increasing demands placing significant challenges on a system that was not structured & designed for this new reality.
“Resilience” in an engineering context is the grid’s ability to withstand an impact from cyber and physical threats.
Assessing Resilience Threats

Threat assessments are integral to understanding the potential impact of various physical and cyber threats.

Source: Hawaiian Electric Resilience Stakeholder Working Group
Assessing Resilience Threats

Distribution resilience events involve various potential scales and scopes based on different events.

- Scale and scope of potential events inform requirements.
- Scale and scope shape the economic impact and related value of solutions.
- Need to unpack threats to gain insights into the nature of grid failures and potential structural/design options.
Bow-tie Threat-Risk Mitigation Analysis

Threat analysis provides input into a “Bow-tie” Assessment which is a process to identify potential vulnerabilities ("needs") that will cause a specific failure and appropriate mitigations.

Challenges involve identifying the additional risk exposure from a range of threats and the system impacts given the increasing complexity of distribution systems along with the potential overlapping set of grid needs identified in the other planning analyses.

Source: DOE
Resilience Dependency on Distribution Investment

Most distribution capital investments factor into overall grid resilience capability

Distribution Resilience Considerations need to be integrated into distribution expansion, upgrade & asset planning

- Systematic engineering analysis of grid architecture, design practices, observability, protection & controls
- Grid interfaces with and dependencies on DER & Microgrids need risk-based operational performance and security assessment

Blue shaded areas impact resilience & reliability
Modern Grids are dependent on a resilient foundation

Holistic View Required to Address Both Normal Conditions & Resilience Needs to Optimize Investments

Distribution investment categories:

- Enable community and customer resilience solutions
- Enhance reliability & provide additional resilience functionality
- Improve customer reliability
- Foundational safety, resilience & service quality requirements

Source: De Martini
Determining Resilience Solutions

• Policymakers, regulators, utilities and customers are considering and implementing various point & community solutions.
 • Community: Cyber-physical grid hardening, mini-grids, multi-user microgrids, etc.
 • Point Solutions: Back-up generation, energy storage, customer microgrid, etc.

• Specific solutions don’t necessarily solve all the needs – a portfolio is needed
 • Solutions usually address specific functional resilience needs
 • Solutions have different potential societal benefits based on type of event and severity

• How to determine an effective portfolio?
 • Structural analysis of existing system resilience (what is the current state?)
 • Architectural-Engineering analysis of potential solutions regarding resilience improvements (or not)
 • Least-cost engineering-economic analysis to determine portfolio of solutions

Note: Reliability economics don’t apply, and alternative economic methods focused on local societal and customer benefits are in development.
Roles and Responsibilities

Scale of potential impact shapes who will likely be involved in process.

Consider how should roles, responsibilities and coordination be considered in an integrated, resilient distribution planning process.
Coherence Among Roles and Responsibilities Across Domains

Legislatures, Governors / Energy Advisors and State Energy Officials

- Develop policy goals
- Require plans and objectives
- Fund improvements
- Require coordination and oversight (ex: coordination & data-sharing among state agencies, eg, sharing cybersecurity information and practices, and conducting independent evaluations)
- Facilitate specific risk mitigation strategies
- Develop further recommendations (ex: establishing commissions, boards and state offices with specific charges)

Public Utility Commissions

- Set substantive and procedural requirements for plans, including
 - Set objectives, based on state policy goals and customer expectations
 - Establish scope and timing requirements based on priorities
 - Establish metrics to measure performance
 - Determine cost recovery mechanisms
- Approve or accept plans (cost recovery approval through and/or outside General Rate Case)

Utilities

- Develop plans
 - Align objectives
 - Develop long-term strategy and short-term implementation plans integrated with current planning processes
 - Prioritize short-term vs long-term needs through risk assessments
 - Establish staged, technology deployment plans and cost estimates
- Implement approved plans

Stakeholder Processes

State Policy Makers and Implementers --- System Owners & Operators
Hawaii Resilience Planning

State & Community Actions Toward Greater Resilience

► Hawaii Act 181, 2011 - Required development of a sustainability-resilience planning and coordination program to liaise among state and local government as well as private or non-profit organizations.

► PUC required resilience planning incorporated into system planning & rate making considerations

► Hawaiian Electric formed state/community resilience working group in 2019 to inform planning criteria and priorities

► Hawaii Act 200, 2018 – Enabled the development of microgrids as another solution for addressing resilience for critical facilities and communities.

Michigan Resilience Planning

Improving Resilience by Transforming Electric Grid

► Governor Ordered Michigan Statewide Energy Assessment Report, 2019

► Grid Security and Reliability Standards
https://www.michigan.gov/mpsc/0,9535,7-395-93307_93312_93593_95590_95596_95597-508672--.00.html

► MI Power Grid Initiative

 ■ Improved Integrated Electric System Planning
 https://www.michigan.gov/mpsc/0,9535,7-395-93307_93312_93593_95590_95596_95599-508714--,00.html

 ■ Updated Utility Distribution Plans with a Resilience focus by September, 2021

Considerations

The majority of distribution grid investments affect a system’s physical and/or cybersecurity resilience capability

► How are potential threats being assessed and translated into planning considerations?
► Is there clear logical explanation of how a proposed investment directly or indirectly supports resiliency?
► Is there sufficient transparency in the distribution planning process to understand how resiliency is being addressed and reflected in investment plans?
► How are grid investments and customer/independent solutions like microgrids being considered as part of an overall resilience portfolio?
► Are all of the key stakeholders involved in an effective engagement process?
Thank you

Paul De Martini
paul@newportcg.com