APS Experience

U.S. Department of Energy Workshop April 22, 2008

Westin, Dallas Fort Worth Airport

Phoenix Metro Area

- 3 Million People
- Served by Arizona Public Service Co. and Salt River Project
- 11000 MW peak summer load
- 3000 MW local generation
- High concentration of air-conditioning load
- Fast growing 100,000 net population growth in metro area

A/C Load in Phoenix Area

- Summer peak is about 2.5 times the winter peak
- Most of the load increase in summer is due to cooling laod
- Residential air-conditioners contribute substantially to the summer load
- 50,000 new houses, all with airconditioners added in Phoenix area/year

APS Interest

- Residential air-conditioners have a significant impact on electrical system behavior during disturbances
- APS/SRP funded EPRI test program to learn about the residential air-conditioners
- APS has been participating actively in WECC Modeling and Validation Work Group efforts for improving load model

Electric System in Phoenix Metro Area

- Served by 4 Major hubs Westwing, Pinnacle Peak, Rudd, Kyrene
- 230 kV transmission loop surrounds the valley
- 69 kV subtranmission system
- 12 kV distribution system

Desert Southwest EHV Series Compensation

7-29-1995 Pinnacle Peak Capacitor Fault Delayed Fault Clearing

Slow Voltage Recovery Incident 1

Sequence of Events

A single-line to ground fault on a cap bank

Fault clearing delayed from 4 cycles typical to 16 cycles due to CT saturation

Consequences

- Several lines and transformer tripped
- Sustained low voltages after fault is cleared
- Several SRP feeders tripped on undervoltage
- 10% overshoot in voltage recovery

Voltage at Customer Meter

Jul 29, 1995

PH C-NEUT VOLTAGE SAG

2:05:12 PM

77.2 Vrms minimum (64% of Normal)

250V PH C-NEUT VOLTAGE SAG											-	
							,			-		
200	-			-	-	-		-		_		
			-	-	-	· _		-		_		
150 -	-		-	-			-		-	-		
128V				·			···· _····					
110V		{····		·		<u> </u>			• • •]		
73 -	-	4 - -				-		-		-		
ŀ			-	-	•		-	-	-	-		
25	-	Ē	-	-	-	-	-	- [\$ \$75.	<u></u>		
ovL G	2	4	6	8	E ()	12	14	<u>، ز</u>	<u>a-2,5 *</u> 18	<u>**</u> .j 20		
	(Seconds)											

Palo Verde Generators Provided Significant VAR Support

Palo Verde Unit VAR Output (MVAR)

7-1-03 Pinnacle Peak Capacitor Fault Disturbance Slow Voltage Recovery Incident 2

Event Description

- At Pinnacle Peak substation a 230 kV Capacitor breaker failed catastrophically
- Breaker failure relay operated and cleared the bus section
- 1000 MW of firm load shed
- 48,000 customer were impacted

Sequence of Events

Complex Fault

- Started as a Single-line-to ground fault but evolved into a 3-ph fault
- T= 3 to 5 Cy Various lines open and isolate the fault
- T=5 Cy Voltage recovery starts
- T=4 S Undervoltage load shedding starts

Voltage Recovery

- Normally 12 kV voltage is slave to the transmission system voltage
- However, due to stalled motors, the 12 kV voltage sags heavily and pulls the transmission voltage lower
- Stalled motors act like short circuits
- MVAR load increases significantly
- Local generators unable to meet the large increase in VAR demand

— PPK 345 Volts pu

7-01-03 Pinnacle Peak Disturbance Elsol 69 kV bus Voltage

Actions Taken

- Ocotillo Capacitors settings changed
- Under-voltage load shedding relays settings changed to trip load faster
- Studies initiated to understand behavior of induction motor load to be able to better understand vulnerability and apply proper mitigation

7-28-03, 2003 Hassayampa 500 kV Fault

Slow Voltage Recovery Incident 3

Event Description

- 3-ph fault on Hassayampa 500 kV bus
- Fault cleared in 3 cycles
- 2600 MW of generation tripped
- APS shed 440 MW of load
- 90,000 Customer impacted
- Slow voltage recovery seen in Phoenix area

Conclusions

- APS has experienced several slow voltage recovery disturbances
- Residential air-conditioners significantly contribute to the scenario
- APS has installed under-voltage load shedding as an interim safety net
- APS has also added significant new generation in the heart of the city to provide voltage support for the system