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Abstract: We use restricted-access, geocoded data on the near-universe of workers
in 23 US states to quantify the impact of wind energy development on local earnings
and employment, by race, ethnicity, sex, and educational attainment. We find signif-
icant impacts that persist for several years beyond the project construction phase. Our
estimates are larger than those from previous studies but still small relative to typical
economic multipliers for fiscal spending or investment in other industries. We find the
largest percentage increases for black workers and workers who either do not have a
high school diploma or who have a college degree. We also find the economic gains for
men to be much larger than those for women. Finally, we find estimates from data
aggregated to the county level to be significantly lower than our worker-level esti-
mates. We suggest a number of areas for further study building off the justice impli-

cations of our findings.
JEL Codes: J4, J21, Q4, R11
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CONSIDERING THE CURRENT BIDEN ADMINISTRATION’S climate goals, which
include a net-zero carbon pollution—free power sector by 2030 and a net-zero carbon

pollution—free economy by 2050, the United States is poised to undergo an energy
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transition away from fossil fuels and toward renewable energy technologies. This has
the potential to change the landscape of local labor markets as large-scale renewable
energy technologies are deployed in communities across the United States. Renewable
energy development may demand different skills, and occur in different places, than
legacy energy sources. Renewable energy can also change the composition of the local
economy through rent and royalty payments to landowners, tax payments to local
jurisdictions and provision of public services, or local demand from manufacturing fa-
cilities for renewable energy components (Kim 2019; Brunner, Hoen, and Hyman
2022). Some scholars and policymakers raise concerns, however, that these invest-
ments still occur within the same political and cultural contexts that historically create
an uneven distribution of economic welfare, along racial, ethnic, gender, educational,
or other socioeconomic dimensions, which has the potential to continue marginaliz-
ing vulnerable or underrepresented populations (Mueller and Brooks 2020; Mejia-
Montero et al. 2021). The concept of incorporating a justice element into existing and
future US energy policy is often referred to as a “just transition” and lies at the heart
of recent social science research on environmental and energy justice (EEJ)).!

In this study, we use worker- and county-level data to investigate how large are the
local employment and earnings gains for workers from wind energy development and

to whom these gains accrue in terms of different worker subpopulations by race,
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1. Environmental justice and energy justice are distinct but overlapping concepts that together
provide conceptual, analytical, and decision-making frameworks for pursuing a sustainable en-
ergy system that redistributes welfare to avoid undue burdens on marginalized communities
(McCauley et al. 2019; Catley and Konisky 2020). We use the combined acronym “EEJ” because
of the acute interest in how energy transition policy will affect both environmental and equity

outcomes,.
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ethnicity, sex, and educational attainment. We estimate impacts separately for black,
American Indian/Native Alaskan, and white workers; for Hispanic workers; for male
and female workers; and for workers in four educational attainment brackets. We view
this as an important contribution to both economics and EE] because such estimates do
not exist in the literature at the granularity we are able to provide. Although EE]J con-
cepts are much broader than jobs and income, distribution is an important pillar of EE],
and, further, energy transition policies are likely to have distributional consequences
through labor markets. As a secondary research question, we also ask: is there exclu-
sivity in the research community regarding the ability to answer these questions? Spe-
cifically, we illustrate differences in the magnitude and precision of estimates using
county-level data, such as are publicly available, compared to estimates using geocoded
worker-level data such as are only available in restricted-access settings for researchers
with the institutional capacity or connections required to obtain such data.

In order to answer these questions, we combine geocoded data on the near-universe
of workers in 23 US states from 2000 to 2020 with geocoded data on all US wind proj-
ects. We estimate the causal effect of the arrival of utility-scale wind capacity within
20 miles of a worker’s residence on that worker’s earnings and employment status, con-
trolling for wind capacity in place at greater distances. Specifically, we use restricted-
access worker-level data provided by the US Census Bureau’s Longitudinal Employer-
Household Dynamics (LEHD) dataset for 23 participating states, which contains
worker residence coordinates, employment status, and earnings as well as age, sex, race,
ethnicity, and educational attainment for all workers who paid into, or received benefits
from, their state’s unemployment insurance program—more than 96% of workers. We
combine this with the US Wind Turbine Database, which contains the coordinates,
arrival year, and capacity rating of wind plants.

In order to deal with the computational needs for a dataset of this size, we employ
two separate empirical approaches. We first implement a unique shift-share instru-
mental variables (IV) design within a spatial lag model using a subset of the data. This
approach estimates the effect of wind capacity in increasing 20-mile donut-distances
from each residence on that worker’s outcomes. Wind development near an individual
may be correlated with local economic shocks that are not picked up in worker-by-
county or state-by-year fixed effects, such as changes in zoning or land-use rules, expan-
sion/contraction in other local industries, or changes in agricultural productivity and
land rents.? We instrument for capacities in each donut using predicted capacities that
come from a shift-share design. In this design, we predict wind capacity in localized
hexagonal grid cells using local average wind speeds interacted with national aggregate
wind capacity expansion trends and global prices of metals and energy commodities.

We then aggregate these localized predictions to donut-distances around each worker’s

2. We thank an anonymous referee for pointing out the potential agricultural markets

interactions.
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residence to construct the IVs for actual capacity in each donut. Results from this ex-
ercise indicate that the majority of the employment and earnings impacts are captured
by wind development within the first 20-mile ring, with much smaller coefficients and
larger standard errors at greater distances. However, this approach is very computa-
tionally intensive on a large geocoded dataset.

In order to reduce computation time and draw inference from the full dataset, we
then use a brand new difference-in-differences (diff-in-diff) estimator: local projections
difference-in-differences (LPDID) (Dube et al. 2023). The LPDID estimator is a
regression-based approach that avoids the biases associated with two-way fixed effects
in the presence of staggered treatment and heterogeneous, dynamic treatment effects
and provides computational advantages over recent alternative estimators (Cengiz
et al. 2019; Callaway and Sant’Anna 2021; Sun and Abraham 2021) while allowing
for continuous treatment variables. Having established in the initial shift-share ap-
proach that most impacts occur within 20 miles, we use the 20-mile capacity as our
“treatment” variable in the diff-in-diff approach and control for capacity at greater dis-
tances as additional regressors. Despite the computational advantages of LPDID,
estimation on the full dataset is still not feasible. Because we have the near-population
of workers, however, we repeatedly randomly sample 1 million unique workers (with
replacement) and reestimate our models 100 times on each random sample in order to
report the “true” variation in coefficient estimates rather than using analytical standard
errors calculated from a single sample.

We find that wind power development within 20 miles of a given worker causes a
statistically and economically significant sustained increase in earnings and employ-
ment. These impacts vary meaningfully across subpopulations. Black workers experi-
ence the largest proportional marginal impact despite there being few black workers
within 20 miles of a wind project. Men enjoy larger gains than women. Additionally,
workers without high school completion have the largest proportional gains among
the four educational categories, followed by workers with a college degree.

With causal estimates of the effect of wind capacity on each subpopulation at the
geocoded worker level in hand, we then aggregate the worker-level data to county-level
averages and reestimate analogous models on the aggregate data.”> We find that esti-
mates using county-level aggregates are dramatically attenuated compared to the anal-
ogous estimates from worker-level data, especially for earnings. While earnings impacts
are statistically and economically significant for all subpopulations in the worker-level
data, our estimates are effectively zero using the same data aggregated to the county
level. The degree of attenuation is also not uniform across subpopulations, nor does

it vary in predictable ways. For example, the employment impact for workers with some

3. Aggregating to the county level vs. aggregating to the county plus any other county with a
centroid within 20 miles produces very similar effect estimates, so we report county-level esti-

mates here as a comparison to the worker level plus 20 miles results.
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college coursework is 16% as large using county-level versus worker-level data, whereas
the impacts for workers with a bachelor’s degree are 60% as large, and the impact
estimates for Hispanic/Latino and American Indian/Native Alaskan workers is ac-
tually larger using county-level data.* We further discuss potential explanations for
these differences in the paper. These differences suggest that researchers from lower-
resourced institutions, without access to such data resources, face additional barriers
to fully understanding the employment impacts of new energy investments that may
be important to the populations that their institutions serve.

Our findings contribute to a growing literature on the local economic and equity
implications of large-scale energy transitions. The impacts that we estimate are far
larger than can be explained by maintenance workers at the wind plant alone. Our find-
ings confirm other recent studies showing larger local impacts (Brunner and Schwegman
2022; Gilbert et al. 2023) than earlier studies (Brown et al. 2012). However, while our
employment estimates are in line with these recent studies, our earnings estimates are
much larger and our evidence suggests that using county-level data understates earnings
impacts by a far wider margin than employment impacts. The magnitudes of these effects
suggest that the majority of local economic impacts occur through indirect channels. First,
wind projects pay royalties to local landowners that can either be fixed annual payments
or shares of the annual wind revenue. If these landowners reside locally and spend money
in the community, this generates a local economic impact multiplier. Second, wind instal-
lations contribute to the local tax base, raising revenue for school districts (Brunner,
Hoen, and Hyman 2022), counties (Castleberry and Greene 2017), and other local ju-
risdictions and community services (Shoeib et al. 2021). Expenditures by these jurisdic-
tions on local services also generate economic impact multipliers. Third, the infusion of
capital expenditures during the construction phase of a wind project may stimulate the
opening of new establishments, or investments in existing establishments, that may per-
sist when the construction phase ends, such as manufacturers of energy components
(Kim 2019). Although our coefficients are larger than previous wind energy literature,
when we convert these coefficients to local economic multipliers they are still modest
in size compared to central estimates in the literature on earnings and employment mul-
tipliers for fiscal stimulus or industry investment from sectors other than wind energy.
Back-of-the-envelope calculations suggest an employment multiplier of 0.51 jobs per mil-
lion dollars of wind capacity investment, whereas employment multipliers in most other
sectors are more than an order of magnitude larger. Our calculated earnings multiplier is
approximately 0.16 dollars of local worker earnings per dollar of wind capacity invest-
ment, which is about one-fifth or one-sixth as large as central estimates of fiscal stimulus

multipliers. Because direct employment at operating wind projects is very small, these

4. This is in line with recent work by Colmer et al. (2021), who find that county-level es-
timates of air pollution impacts on health may obscure some important within-county hetero-

geneity in responses.
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are likely to be almost entirely indirect multiplier effects. The size of these multipliers
will also depend on what share of wind project development costs are capital expendi-
tures and what share is spent locally.”

We also contribute to the burgeoning field of EEJ. EE] examines how systemic in-
justices embedded in societal and cultural norms can persist in energy transitions and
addresses how to approach solving this from a policy perspective, to ensure a more
“just” energy transition. Access to good-paying jobs is an important component of this.
However, there is currently a knowledge gap in the EE] literature in terms of being able
to carefully measure impacts of energy development on disadvantaged subpopulations
at a granular level. This study attempts to alleviate this gap by obtaining causal esti-
mates from geocoded worker-level data on disadvantaged subpopulations as well as il-
lustrating the challenges that researchers typically face in measuring impacts on specific
groups using county-level data.

The remainder of this paper is organized as follows. Section 1 reviews the literature
on regional economic impacts from energy in relation to the EE]J literature. Section 2
describes the data used in the analyses, which inform the empirical methods we use
described in section 3. Section 4 presents and discusses the results, while section 5

concludes.

1. LITERATURE REVIEW
Often EE] focuses on the ways in which underrepresented communities are harmed
in the context of energy systems. Energy policy and investment may limit or exacerbate
these harms and/or redistribute costs and benefits of energy systems. Within the con-
text of a US transition to a low-carbon-energy sector, renewable energy can often be
portrayed as a more socially just form of energy due to decarbonization (Mejia-Montero
et al. 2021); however, Mueller and Brooks (2020) point out that there can still be an
uneven distribution along social dimensions such as race/ethnicity and other margin-
alized populations. While an energy system might transition, the cultural and societal
practices and norms that existed in the “old” energy system (i.e., fossil based) still re-
main ingrained, maintaining the continued marginalization and underrepresentation
of communities in the “new” energy system. This could be true along many dimensions
of equity and justice, including hiring practices and wage setting. Understanding how
renewable energy investments have altered local labor markets and, in particular, the
position of disadvantaged subpopulations within local labor markets, is therefore im-
portant for evaluating the EE] dimensions of the energy transition.

There is a wealth of literature studying the impact of energy development on economic
outcomes in local communities. Focusing on wind project development and economic out-
comes alone, both Brown et al. (2012) and Varela-Vizquez and Sanchez-Carreira

5. We thank an anonymous referee for pointing this out.
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(2015) estimate positive economic impacts to local communities. However, these works
focus on average impacts without delving into distribution.

Studies on wind energy development in the EEJ literature tend to focus on public
acceptance of wind energy or what is referred to as a “social gap”: where there is wide-
spread public support but localized opposition (Jones and Eiser 2010; Fergen and
Jacquet 2016; Hoen et al. 2019; Mills et al. 2019; Acheampong, Erdiaw-Kwasie,
and Abunyewah 2021; Shoeib et al. 2021). There are some works that focus not just
on the overall acceptance and public perception of wind projects but on the outcomes
of underrepresented communities located near wind projects. Some authors argue
that siting wind projects in areas where residents have lower social capital, financial
capital, and labor force participation imposes costs and burdens on historically mar-
ginalized communities and exacerbates energy injustice (Mueller and Brooks 2020;
Acheampong, Dzator, and Shahbaz 2021). To the extent that wind development gen-
erates local employment, income, tax revenue, and community services, however, the
benefits may exceed the costs. Shoeib et al. (2021), for example, find that wind devel-
opment in rural areas increases public services provision without increasing the cost of
living or the overall demand on public services.

Shoeib et al. (2022), however, argue that larger, more urban counties may be better
able to internalize the potential economic benefits from energy development, in that
they are able to provide specialized services such as banking and legal and secondary
inputs such as skilled workers and raw inputs. Shoeib et al. (2022) also find that wind
development only increases farm income in rural areas, whereas earnings, employment,
and poverty improve on average when studying all counties. Mauritzen (2020) sup-
ports this idea of uneven impacts between rural and urban areas, showing that rural
areas characterized by low incomes are least likely to capitalize on positive economic
benefits of wind power development, compared to more urban, metro areas. Indeed,
Pedden (2006) also demonstrates this, with results showing that smaller communities
see more leakage into nearby areas that are better able to provide more services.
Mauritzen (2020) also finds, however, that wages rise in rural areas, arguing that the
likely mechanism is from landowner lease payments and local tax revenue. While the
rural/urban divide in local economic benefits of renewable energy has been studied ex-
tensively, there has been less attention paid to heterogeneous impacts along other di-
mensions of historical disadvantage, which our study provides.

A puzzle for studies such as ours that find sizable employment and earnings impacts
is by what mechanism does the wind installation generate these local benefits? Hoen
etal. (2015) find that home prices near wind projects are not negatively impacted, while
Brunner and Schwegman (2022) find that wind development increases nearby home
values. More recent studies find evidence for preconstruction proximal impacts that
later fade after operation begins, however (Dong et al. 2023; Brunner et al. 2024).
Brunner and Schwegman (2022) also estimate sizable positive impacts from wind using

county-level data, including increases in GDP per capita, income per capita, and median
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household income, with employment shifts into construction and manufacturing
jobs and out-of-farm employment. Castleberry and Greene (2017) and Shoeib et al.
(2021) find that wind projects increase local tax revenue and availability of community
services, which can generate and sustain employment. Brunner, Hoen, and Hyman
(2022) find sizable increases in school-district-level revenue and expenditures after

wind project installations.

2. DATA SOURCES AND CHARACTERISTICS

We combined several geocoded datasets in order to estimate the models described in
section 3. We gathered latitude and longitude, year of operation, and nameplate capac-
ity for all wind turbines in the United States over the study period from the US Wind
Turbine Database (Rand et al. 2020; Hoen et al. 2021). Lawrence Berkeley National
Laboratory provided project-specific ID numbers to group turbines into wind projects
(collections of turbines analogous to a power plant).

We use restricted-access granular data on workers from the US Census Bureau’s
Longitudinal Employer-Household Dynamics (LEHD) database, which includes quar-
terly data on earnings and employment status for individual workers and their geocoded
residences.® The LEHD is released in multiyear “snapshots.” This study uses the 2014
snapshot, with data from 2000 through 2014, as well as the recently released 2021 snap-
shot with data from 2000 through 2020. We worked with the US Census Bureau’s
Federal Statistical Research Data Center (FSRDC) program to access the LEHD infra-
structure files from within a secure Census data center facility.

The LEHD is built on quarterly state-level unemployment insurance rolls, which
cover more than 96% of workers who reside in the United States. We aggregate to
the annual frequency for analysis. Because the LEHD is constructed from state-level
unemployment insurance programs, state-by-state approval to access the data is re-
quired. The 23 states shown in light gray in figure 1 agreed to participate in our ap-
proved project. As this figure indicates, although we do not have data for Texas or Min-
nesota, we do have access to states with a significant share of wind capacity. For this
study, we used the LEHD's Individual Characteristics File, which indicates race, eth-
nicity, sex, and educational attainment of individual workers. The data do not indicate
whether a worker identifies with multiple races or ethnicities or is gender nonbinary.
This is a limitation of our study. We also used the Employment History Files, which
includes a worker’s quarterly earnings from all jobs held in that quarter. We aggregated
earnings to the annual level. We calculated our employment variable as the number of

quarters in each year in which the worker had positive earnings, divided by 4. We also

6. The LEHD infrastructure provides the inputs required to produce the quarterly work-
force indicators (QWI) (Abowd et al. 2009). Researchers with either paid access or institutional
access to a Federal Statistical Research Data Center can propose research questions using the

underlying restricted-access individual-worker-level and establishment-level data.
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Figure 1. US states with wind projects. States highlighted in light gray are the states exam-
ined in this study; the black dots represent US wind project installations. Source: Graphic cre-
ated by author B. Gilbert based on wind turbine location data provided by Hoen et al. (2021).

used the ICF LEHD Residence Files, which contain latitude and longitude coordinates
for the worker’s residence in each year.”

For this study, we report shift-share IV results using the 2014 LEHD snapshot
with data from 2000 to 2014, and diff-in-diff results using the recently released
2021 LEHD snapshot, which includes employment data through 2021, but residence
data through only 2020. Our preferred results are the diff-in-diff estimates from the
2021 snapshot, but we use our shift-share IV results from the earlier snapshot in order
to guide our estimation approach as we discuss in section 3. Because of migration that
occurred during the COVID-19 pandemic, we were not confident in imputing resi-
dence locations for 2021. We therefore limit our analysis to the years 2000 through
2020.

In each of these datasets we use georeferenced locations (i.e., latitude and longitude)
of both worker residences or centroids of wind projects in order to find the aggregate
wind capacity at various distance bands from each worker residence. This produced an
annual worker-level panel with employment and earnings outcomes, demographic

characteristics, and wind capacity exposure at various distances. Summary statistics

7. To the extent that workers live in one place and periodically travel to distant work sites
with energy installations, our approach would not pick these people up, although our sense is
that this is more common in the oil and gas industry than in the wind industry. One could pos-
sibly look for workers in the LEHD whose establishments of employment are farther from their
residence than a reasonable commuting distance, but this is not straightfoward and is beyond
the scope of this study.
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for this combined panel are given in table 1 of the appendix (appendix is available
online).

Any statistics or model estimates that are publicly released from the LEHD must
undergo strict disclosure avoidance procedures by the US Census Bureau in order to
protect privacy. As part of this process, all statistics, including summary statistics, co-
efficients, standard errors, and so forth., conform to the US Census Bureau’s rounding

rules for disclosure avoidance.

3. METHODS

Worker-level residential location choice and labor supply decisions may be endogenous
with respect to determinants of local wind energy development because of location pref-
erences, local economic shocks, or state and local policies affecting local labor markets.
For example, municipal or county changes in zoning or land-use policies, local business
development in related sectors, and changes in agricultural productivity or land rents
may all affect the local attractiveness of wind development and may not be picked
up in worker-by-county or state-by-year fixed effects. If these changes in local economic
activity make wind development more or less attractive, our wind capacity coefficients
would be picking up these effects rather than isolating the effect of wind projects. We
therefore need a careful identification strategy to recover the causal effect of wind de-
velopment on local labor outcomes.

In addition to these potential endogeneity concerns, our empirical approach needs
to overcome two more important challenges. First is the computational limits on pet-
forming many geospatial calculations of individual worker distances to wind projects
and estimating multiple regression models with over a billion observations. Second,
itis not obvious who belongs in the “treatment” versus “control” groups given previously
documented spatial spillovers of energy development on labor markets (Feyrer et al.
2017; James and Smith 2020).

It is not straightforward to classify worker residences as “wind” versus “non-wind”
households as other individual-level studies have done (Jacobsen et al. 2023) because of
this second concern. As figure 1 indicates, wind projects are spatially clustered. Many
workers may live within a short distance of more than one wind project, so assigning
them as “treated” by their closest wind project will understate exposure. This is one
reason we aggregate capacity in distances around worker residences, despite the com-

putational intensity of doing 0.2 One option to determine treatment status might be

8. Another benefit of aggregating capacity around residences, using the residence as the unit
of analysis, rather than using the wind project as the unit of analysis and including all nearby
households in the “treatment group” is that we can include capacity that may be just across state
borders in states for which we do not have worker data but which may still impact workers that
we do observe. For example, plants in southern Minnesota may affect workers from northern

Towa who are in our sample.
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to select a certain distance cutoff beyond which we assume exposure is zero. In the con-
text of oil and gas, previous studies have found economically and statistically significant
impacts as far as 60—100 miles away (Feyrer et al. 2017; James and Smith 2020). A
100-mile buffer around all wind projects leaves very few areas from which to select a
control group (as illustrated in appendix fig. 1). In order to deal with both the endo-
geneity issues and the spillover concerns with treatment assignment, we first estimate
a spatial lag model 4 la James and Smith (2020), but with a shift-share IV at each spatial
lag that is akin to Feyrer et al. (2017). This approach allows us to establish the extent
of spillover as a guide to determining treatment status. However, the approach is in-
credibly computationally intensive, and we are only able to implement it on a small ran-
dom subset of the full dataset.

As we will show, this exercise suggests that most impacts are captured within the
first 20 miles. Impacts at greater distances are much smaller, but not zero. We therefore
proceed with a more computationally feasible estimation approach that uses capacity
within 20 miles as the main treatment variable, while still controlling for capacity at
greater distances and that leverages the entire dataset.

The solution that we implement, and the source of our preferred results, is the local
projections difference-in-differences (LPDID) framework recently proposed by Dube
et al. (2023), described in detail below. In order to deal with remaining computational
constraints and capture the sampling uncertainty in our estimates, we reestimate
our LPDID models 100 times using random draws of worker IDs from the near-
population in our dataset. Finally, we aggregate the full dataset, as well as relevant sub-

populations, to the county level and reestimate the LPDID coefficients for comparison.

3.1. Shift-Share IV

We estimate our spatial lag regressions with shift-share instrumental variables on a
0.1% random sample of the 2014 LEHD snapshot dataset. The “share” component
of the IV, or the exogenous cross-sectional variation, comes from average local wind
speeds, whereas the “shift” component, or time series shock, comes from national ag-
gregate trends in expansion of wind capacity, number of turbines, and number of wind
plants, as well as commodity prices of crude oil, natural gas, aluminum, and a rare earth
metals composite index. In a shift-share estimator, identification can come from either
exogeneity of the “shares” (Goldsmith-Pinkham et al. 2020) or from many exogenous
“shocks” or “shifts” (Borusyak et al. 2022). In our case, we argue that identification
comes from both sources. Exogenous spatial variation in wind resource has been argued
in Brown et al. (2012) and Brunner, Hoen, and Hyman (2022) as well as for other re-
sources like oil and gas deposits in Feyrer et al. (2017) and Maniloff and Mastromonaco
(2017). We augment this with exogenous time series shocks in the form of national or
global trends in commodity prices that might affect local wind development and national
wind development trends that capture the national policy and investment climate in a

given year.
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Specifically, we estimate the following spatial lag model:

d
Yict = 2 'YdDict + o + Mst + €icts (1)
4€{20,40,60,80,100}

where D, is the amount of wind capacity in donut distance d from person i's residence
in year t, with d ranging from 0 to 20 miles, 20 to 40, and so forth through 80 to
100 miles. We include worker-by-county fixed effects «, to isolate impacts on work-
ers within a spell of living in a given community rather than confounding impacts with
migration. We also include state-by-year fixed effects pi, to control for state-level mac-
roeconomic trends that influence employment and earnings but may be correlated
with energy development in the region. The worker-by-county fixed effects also help
reduce recent concerns about using individual fixed effects in long panels if unobserved
characteristics may change over time (Millimet and Bellemare 2023). Working-age
adults move about every five years on average (US Census Bureau 2021), which re-
duces the time span over which we must assume characteristics are fixed within a
worker-county spell. Although many people move less often or move within their
county, our shift-share IV recovers variation in the wind capacity treatment due to
spatial variation in average wind speeds and temporal variation in global commodity
prices and national wind energy expansion that is likely independent of slowly chang-
ing worker-level unobserved attributes.’

If secular changes in local economic activity like agricultural productivity and/or
land rents are affecting where wind projects get built and how big they are, then iden-
tification relies on the assumption that, conditional on worker-by-county and state-by-
year fixed effects, (a) the preexisting wind resource is uncorrelated with these localized
(substate-level) secular agricultural market changes (and any other local economic
shocks like changes to zoning rules that might affect whether/how much wind gets
built) or that (b) global oil and metals prices and national wind capacity expansion
are uncorrelated with these localized changes agricultural markets or other local eco-
nomic shocks that move independently of state-by-year trends. These assumptions
are plausible; variation in global prices and national trends is already captured in
state-by-year fixed effects, and variation in wind speeds over space is fairly stable over
time and should not affect sudden changes in land rents or agricultural productivity.

Alternatively, wind project development could affect agricultural productivity and
land rents by affecting irrigation, planting, or crop growth, which in turn affect local
jobs and earnings. That would be just fine in our framework, as our coefficients would
measure the net effect of these indirect impacts along with all the other indirect impacts

of wind development that we do not directly measure such as landowner royalty

9. In a replication analysis of James (2015), Millimet and Bellemare (2023) find that their
IV results are also robust to potential temporal changes in supposedly fixed attributes.
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payments leading to increased local spending, or local tax payments leading to increased
government expenditures on public services.

We instrument for each D

¢, using predicted capacity in each donut/ring around

each person’s residence. We construct these predicted capacity instruments using the
following approach. We segment the lower 48 US states into approximately 216,000
evenly sized hexagons and gather data on the average wind speed within each hexagon.
These hexagons are about the size of the average census block group. We used hexagons
rather than other grid tessellations like squares or triangles because we wanted to aggre-
gate the predicted wind capacity (our IV) at fine-scale spatial units into donuts around
each worker residence in order to most closely match the second-stage spatial lag model
(eq. [1]), which uses actual wind capacity in donuts around each residence. The donut
circles are less likely to cut the hexagons at awkward angles than a shape with less obtuse
angles like a square or a triangle. Each hexagon is also equidistant from all of its neigh-
bors, unlike squares or triangles, making it preferable for aggregating among nearest
neighbors (Birch et al. 2007).

Using the geocoded US Wind Turbine Database, we then calculate the total num-
ber and capacity of turbines in each hexagon in each year. The vast majority of hexagons
have zero wind capacity, so we use a fixed effects Poisson quasi-maximum likelihood
regression (Wooldridge 1999) to predict total wind capacity and number of turbines
in each hexagon in each year‘lo The right-hand side of the fixed effects Poisson regres-
sion includes hexagon fixed effects, state-by-year fixed effects, and a cubic polynomial in
average wind speed interacted with the total national US wind capacity in each year, the
total number of wind turbines in the United States in that year, the number of US wind
plants in that year, and the vector of commodity prices. We use a cubic function of wind
speed in order to capture the fact that wind development is not feasible at either very
low or very high average speeds."" The variation in predicted hexagon-year wind devel-
opment is then driven by unobserved hexagon-specific effects such as suitability for
transmission access, secular state-by-year macroeconomic or policy trends such as
state-level renewable energy incentives or mandates, and a nonlinear shift-share com-
ponent driven by the interaction of wind speed with national aggregate investment
behavior, essentially allocating nationwide investment in each year to the locations that
are most suitable for development according to wind speed.

A problem with the fixed effects Poisson approach with hexagon fixed effects is that
the predicted value in any hexagon that never has wind capacity—the vast majority of

them—is zero. As such, the predicted values are extremely highly correlated with the

10. This estimator is also known as the Poisson pseudo-maximum likelihood estimator
(Cameron and Trivedi 1986).

11. The physics and engineering literature also uses a cubic function of wind speed to model
wind power output (Manwell et al. 2010; Pryor et al. 2020). In the economics literature, Cicala

(2022) uses a cubic function of wind speed to impute missing wind generation observations.
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actual values. Aggregating these predicted values around worker residences in order to
construct instruments for equation (1) thus produces instruments that essentially re-
produce the ordinary least squares (OLS) estimates.

In order to deal with this issue, we further aggregate both actual wind capacity from
the US Wind Turbine Database and predicted wind capacity from the Poisson regres-
sion on each hexagon, to the county-year level. We also calculate average wind speed in
each county. We then predict capacity in each county-year using a linear OLS-FE re-
gression with county fixed effects (FE), state-by-year fixed effects, and interactions be-
tween the county-average wind speeds and the sum of hexagon-level predictions within
each county. This procedure generates county-year variation in predicted wind capac-
ity. Finally, we use county centroids to aggregate the county-year predicted capacity val-
ues in donut distances around each worker’s residence. This produces a nonlinear
transformation of unique fixed county and hexagon characteristics, and state-level mac-
roeconomic trends, and shift-share variation from local wind speed and national aggre-
gate wind development trends. These county-level predictions aggregated to 20-mile
donut-distances from worker residences to surrounding county centroids become our
IVs for equation (1) in a standard just-identified linear IV framework."?

We perform this shift-share estimation approach for equation (1) on both a 0.1%

random sample and on county-aggregated data for comparison.

3.2. Shift-Share IV Results

Here we report results from the estimation of equation (1) using a 0.1% sample of
the worker data from 2000 through 2014 (i.e., using the 2014 snapshot of the LEHD).
We cluster standard errors at the worker level in worker-level regressions in order to
adjust for possible autocorrelation in worker outcomes that may persist even when
workers move across counties. We cluster at the county level in county-level regres-
sions in order to adjust for possible autocorrelation within counties in aggregate worker
outcomes.

In table 1 we can see that at the worker level (cols. 1 and 3) the magnitude of the
point estimate for capacity declines steeply at distances greater than 20 miles. This pro-
vides confidence that results for the 20-mile ring reported are capturing most of the
relevant impacts. By comparing the first row across all four columns of table 1 we also
see that within 20 miles the difference between the county-level estimate and the
worker-level estimate is much greater for log earnings than for employment. We will
see a similar general pattern when we compare individual and county-level estimates
using the LPDID estimator on the data through 2020.

Although these are not our preferred estimates, the magnitudes are also compara-
ble to the LPDID results we will see in section 4, despite the different sample and

12. It may be possible to estimate this in a nonlinear approach in one step, but computa-

tional limitations make the linear IV framework more feasible to implement.
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Table 1. Spatial Lag Coefficients (GW within Each 20 Mile Donut)

Outcome
Employment Log Earnings
Worker Level County Level Worker Level County Level
1) (2) 3) (4)
0-20 miles 2.6 3.8 20 4.1
(2.1) (3.3) (12) (2.3)
20-40 miles —-.66 1.8 1.7 2.2
(.:37) (1.7) (2.4) (.84)
40-60 miles -33 2.1 a2 1.2
(.15) (1.0) (.96) (45)
60—-80 miles -.14 1.4 =27 75
(.086) (.71) (.57) (:31)
80-100 miles -.05 1.0 -.075 51
(.052) (.53) (.:34) (:22)
R? 20 22 18 .90
K-P Wald F-statistic 265 2,110 265 2,110
N-T 1,438,000 29,750 1,438,000 29,750

Note. This table reports the spatial lag coefficients from eq. (1) using the shift-share IV procedure de-
scribed in sec. 3.1. The dependent variables are the percentage of the year employed (quarters with nonzero
earnings divided by 4) and the log of earnings. Earnings regressions limit the sample to employed workers
(those with at least two quarters of nonzero earnings in a year). The treatment variables are gigawatts (GW)
of capacity within each 20-mile donut distance of a worker’s residence. We used a 0.1% random sample of
workers from the 2014 snapshot of the LEHD, which includes the years 2000-2014. Standard errors are
clustered at the worker level in cols. 1 and 3 and at the county level in cols. 2 and 4.

estimation method. The first row in column 1 of table 1 indicates that an additional
100 megawatts (MW) of wind capacity within 20 miles causes employment of the av-
erage worker to increase by 0.26 percentage points. The comparable effect using
LPDID on the 2021 LEHD snapshot is 0.13 percentage points from a 100 MW in-
crease, taken from the first column of panel A in appendix table 2. Similarly, the first
row of column 3 of table 1 shows that an additional 100 MW of nearby wind capacity
increases earnings by 2%. The comparable estimate of the continuous treatment effect
using LPDID on the more recent data is in the first column of panel A of appendix
table 3, which corresponds to a 1.2% increase from 100 MW of wind.

3.3. Local Projections Diff-in-Diff
It is not computationally feasible to estimate the shift-share IV approach described in
section 3.1 on the full 2021 LEHD snapshot or even to downsample and perform the

geospatial calculations repeatedly on large random subsamples. We therefore turn to

the LPDID method for our preferred results.
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Under LPDID, the estimation of a diff-in-diff event study is analogous to the esti-
mation of an impulse response function by local projections in a time series analysis.
One estimates a sequence of long-difference regressions with increasingly long differ-
ences in the outcome from the treatment date. Treatment coefficients from each regres-
sion in the sequence make up each element of the event study relative to the treatment
date. In each regression in the sequence, one can obtain “clean controls” (control units
that have not previously been treated) by limiting the sample to those units whose
treatment status changed in the current period and those that have never been treated
during the time horizon of the given long difference.

For this approach, we assume that workers living within 20 miles of utility-scale
wind capacity are “treated,” and all other workers are not. We include capacity exposure
at greater distances as control variables in our regressions. It is possible that some work-
ers with a utility-scale wind plant 19 miles away may be in our treatment group while
others with utility-scale wind 21 miles away are not, despite very similar exposure lev-
els. However, this is a limitation of any study that chooses a hard spatial cutoff for treat-
ment exposure. We deal with this by using the regression to explicitly control for the
exposure that any worker who is just outside the edge of our treatment group might
experience.

We pull from the entire dataset outside 20 miles for our control group. While some
authors argue that the control group should first be narrowed using propensity score
matching or inverse propensity weighting, we are comfortable with our approach for
several reasons. First, most workers have at least some level of exposure to wind even
if they do not live within the 20-mile band, as we can see in table 1 and appendix fig-
ure 1, even if the exposure is small. Second, wind projects have a mix of urban, subur-
ban, and rural exposure as can be seen in figure 1 with wind projects near Chicago, Los
Angeles, and Denver as well as small-to-medium-sized cities like Des Moine and Omaha.
Third, the observable characteristics between treated and control groups are not in-
credibly different even in the near-population (appendix table 1). Finally, although
our randomly selected control workers might have systematically different characteris-
tics in levels from the treated workers, the parallel trends assumption is strongly satis-
fied in all but a few subsamples, as we will see in the results section.

Specifically, our model for outcomes is
Yict = 'YDict + Xt(ctﬁ + (0473 + Mst + €icts (2)

where Y, is either the fraction of the year that person i is employed in year t and
county ¢, or the log of earnings. In logged earnings regressions we restrict the sample
to workers having nonzero earnings in at least two quarters of the year, so coefficients
are impacts on earnings conditional on being employed. In this case, v is a semi-
elasticity approximating the percentage change in earnings for each unit change in the

treatment variable. The term D, is a treatment variable defined as either an indicator
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for the presence of at least 10 MW of wind capacity in year t within a 20-mile radius of
person {'s residence or as a continuous variable measuring the total capacity in gigawatts
within 20 miles that year. Ten megawatts is roughly equivalent to the 5th percentile of
project size during the study period and can be considered a minimum size threshold for a
commercial wind project (Hoen et al. 2021; Brunner, Hoen, and Hyman 2022). The
average exposure to wind capacity for treated workers within our sample is approximately
300 MW, so in regressions with continuous treatment we can interpret 7y - 0.3 as the
semi-elasticity at the mean, from the addition of one average-sized wind project. The
term X, is a vector of control variables. In our case, if wind development is spatially
autocorrelated and there are regional economic spillovers, we would need to control
for wind capacity at greater distances than 20 miles. The term X is the spatial lag of
wind capacity in increasing 20-mile donut distance bins from person {'s residence in year
t, for example, capacity 20—40 miles away, 40—60, and so forth, out to 100 miles. As it is
challenging to causally identify multiple spatial lags within the same diff-in-diff frame-
work, we do not report these coefficients or give them a causal interpretation but rather
control for them in order to causally identify . The term ¢, is a worker-by-county fixed
effect, capturing time-invariant characteristics of the worker-place combination, such as
the worker’s productivity within a particular set of local work opportunities. Finally, ., is
a state-by-year fixed effect capturing regional macroeconomic trends at the state level that
may be correlated with both worker outcomes and wind energy development. With both
sets of fixed effects, variation in the treatment variable comes from changes in wind de-
velopment near a person’s residence, during spells between major cross-county or cross-
state moves, that occur independently of state-level macroeconomic trends.

In order to estimate equation (2) by LPDID, we take successively long differences
of (2) and estimate them one at a time. Specifically, using the full near-population

dataset and each subpopulation of interest, we estimate
h h h
Yic,t+b - Yitt = ahADict + AXI/Etﬁ + A,U'st + Aeict (3)

sequentially for different values of b, limiting the sample each time to newly treated
(AD; > 0) and not-yet-treated (Di¢+, = 0). The treatment coefficient §y, in each re-
gression is the event-study estimate for event time h. Averaging 0, over the posttreat-
ment periods gives an estimate of the average treatment effect, v, from equation (2).
Examining 6, for negative values of h can help evaluate the parallel trends assumption,
such as by plotting the individual coefficients on an event-study graph and/or testing
the significance of the cumulative sum of 0, over pretreatment periods. We report
both approaches. Including temporal lags of Y, on the right-hand side of the regres-
sion can help control away preexisting differences in trends in order to obtain condi-
tional parallel trends, while also controlling for potentially endogenous selection into
treatment based on pretreatment outcomes. Parallel trends tests are satisfied in almost

all of our worker-level specifications, so we do not include temporal lags of Y, in
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results reported here. Note that we have differenced out the worker-by-county fixed ef-
fect a;,, which improves computation time, but this also means that each long difference
is within a spell in which a worker lives in a particular county. Using separate worker fixed
effects and county fixed effects, and differencing within worker (but not necessarily
within county if a worker migrates) produces very similar estimates that we omit for
the sake of brevity. Another advantage of our LPDID implementation is that the time
horizon over which the o;, must remain fixed is relatively short. Millimet and Bellemare
(2023) propose a set of rolling difference estimators to address the problem of individual
characteristics slowly changing in long panels. The successive “long” differences in each of
our regressions are between one and seven years."”

This approach economizes on computational resources, making estimation on very
large datasets feasible, for several reasons. First, a very large set of worker-by-county
fixed effects is removed by differencing before estimation. Second, because each regres-
sion in the sequence limits the sample to clean controls, the “stacking” approach of
Cengiz et al. (2019) is not required. Stacking involves appending panels of treated units
with panels of units that are not treated within the same time window, such that each
treated unit has a set of clean controls. This approach significantly magnifies the size
of the analysis dataset, requiring additional memory and RAM. In our setting with
1.4 billion observations on the near-universe of workers in 23 states observed over
20 years, this approach is not feasible. Third, because this is a regression-based estima-
tor, the computationally intensive task of averaging thousands of individual 2 x 2 pre-/
posttreatment comparisons as in Callaway and Sant’Anna (2021) or estimating shares
of cohort weights as in Sun and Abraham (2021) is not necessary. In fact, Dube et al.
(2023) demonstrate that computation time for LPDID is comparable to two-way fixed
effects estimation and much faster compared to Callaway and Sant'/Anna (2021) and
Sun and Abraham (2021), for which computation time is more than two orders of
magnitude greater. This is a crucial benefit in our case using a massive restricted-access
dataset. Further, LPDID achieves the same reduction in treatment effect bias as these
alternative new estimators when treatment arrival is exogenous, while achieving even
less biased results when selection into treatment depends on past outcomes.

We estimate the regressions in equation (3) using the entire dataset, then estimate them
separately for black, American Indian/Native Alaskan, white, Hispanic, male, and female
workers, as well as those without a high school education, with a high school education, some

college coursework or an associates degree, and those with a bachelors degree or higher.

3.4. Monte Carlo Estimation
Even with the computational advantages of LPDID, estimating equation (3) on the full
LEHD dataset is not computationally feasible. In order to solve this problem, we

13. A reader who is skeptical that characteristics remain fixed for seven years could focus on

the event-study coefficients that are closer to the event date (which use shorter differences).
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repeatedly randomly sampled (with replacement) 1 million unique worker IDs. For each
random 1-million-worker sample, we estimated the sequence of LPDID regressions in
(3) for all available time periods and retained the 6, coefficients. We repeated this exer-
cise 100 times and calculated the mean and standard deviation of coefficient estimates
across the 100 draws. These coefficient means and standard deviations across draws
are what we report in the results section below, rather than using analytical standard
etrors from a particular draw.

Our sampling approach for this Monte Catlo procedure requires some explanation.
In order to deal with the fact that the full population and each subpopulation are un-
evenly geographically distributed across the United States, we randomly sampled the
same number of people from each county such that the total number of unique workers
would sum to 1 million. If too few workers in a given subpopulation resided in a given
county, we took all workers from that subpopulation in that county in each draw and
reallocated the remaining workers to other counties in order to reach 1 million workers
in each draw. This means that subpopulations and counties with fewer workers are
oversampled relative to their population share. This is by design.

We want to measure the effect of the average wind farm on nearby people rather
than the effect of a wind farm on the average person. This is a key distinction. The rea-
son for using approximately equal sample sizes from each county in each draw is that
the “average” person in the United States lives in a city and does not have any wind
capacity within 20 miles of their home. Using a true random sample (or even a random
sample stratified in proportion to county populations) produces a sample that is heavily
weighted toward urban dwellers who only live near wind capacity in very unusual sit-
uations that are not representative of the typical “treatment” of a local wind project.
That sample would be representative of the US population, but it would not be rep-
resentative of our treated population. Our treatment group would then be heavily
skewed toward nonrepresentative urban-adjacent wind farms, rather than capturing
typical effects of expansion in the wind industry. By sampling equal numbers from each
county for the worker-level regressions, the counties are equally represented in terms of
sample proportion in each draw. This is as close as we can get to an apples-to-apples
comparison with the county-level regressions. We do not weight the county-level re-
gressions with population shares, so that each location has an equal weight rather than
giving more weight to more populous counties, and we similarly do not weight the
worker-level regressions with sample weights for the same reason. This is also as close
as possible to the thought experiment of what would happen if a wind developer could
randomly allocate a wind project to a particular location rather than randomly drawing
a person from the population and putting them near a wind project (this is also, in ef-
fect, the desired mechanism behind relying on the exogenous spatial distribution of nat-
ural resources as an IV).

In making these weighting decisions, we follow Solon et al. (2015), who thoroughly

review the econometric theory literature in order to provide guidance on weighting for
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practitioners. Specifically, Solon et al. (2015) show that if the regression controls for
characteristics that are also the basis for calculating the weights, then including weights
will not improve consistency and may harm precision. Our individual-level and county-
level models include county fixed effects (or worker-by-county fixed effects for the
worker-level estimates), so according to Solon et al. (2015) there is no need to add
weights that vary by county, such as county-level population or sample weights.
Solon et al. (2015) further argue that if the goal of weighting is to capture parameter
heterogeneity (e.g., different effects for small vs. large counties) then using weights is
a very constraining functional form to get at that heterogeneity. Practitioners should
directly model the heterogeneity rather than using the constraining functional form
of putting a weight in the denominator. Within the restricted-access US Census data
center, we have estimated a large number of models, including those using pure and
stratified random sampling, population and sample weights, county population inter-
actions, and subsamples that drop the most populous counties from the analysis at var-
ious population thresholds. We chose to obtain Census approval for public release of,
and to report here, the subset of results that are most representative of the effect of the
average wind farm on nearby people, rather than the effect of a wind farm on the av-
erage person. Our findings are robust across a wide variety of specifications, however.
Code to run all of our alternative specifications is available to anyone with LEHD ac-

cess upon request from the authors.

3.5. County-Level Aggregation

We also wish to illustrate how the use of data aggregated to arbitrary and differently
sized administrative boundaries such as counties can produce different impact esti-
mates than individual data and investigate the extent of these differences for different
subpopulations. In order to do so, we aggregate the individual-level outcomes within a
county and reestimate the sequence of regressions from equation (3). In order to define
analogous outcome variables at the county level, we calculate the average fraction of the
year employed for all workers in each county-year, and we calculate the log of average
earnings per worker who had nonzero earnings in at least two quarters of the year. We
perform this calculation for the entire dataset and for each subpopulation of interest.
We then modify equation (2) by using county fixed effects (rather than worker-by-
county fixed effects). We define the treatment variable as either a binary indicator
for whether or not a given county has at least 10 MW of wind capacity or the contin-
uous number of gigawatts of wind capacity in the county.'"* We then estimate the re-

gressions from equation (3) as well as the shift-share exercise for equation (1) on this

14. To be consistent with the 20-mile ring used in the individual-level regressions, we also
estimated regressions in which we defined treatment by aggregating capacity in all counties with
centroids within 20 miles of a given county’s centroid. Results are not noticeably different—

most counties do not have another county centroid within 20 miles of their own centroid.
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county-level aggregate data. As discussed at length in the previous subsection, these
county-level regressions are not weighted by population shares.

County-level results may differ from individual-level results for several reasons. The
ecological fallacy literature suggests that aggregate and individual-level statistics are not
in general the same (Robinson 1950). The composition of county populations changes
over time. Covariances between county residents are captured in the aggregate coeffi-
cients but not in the individual-level coefficients. These issues could lead to differences
in the aggregate and individual-level coefficients even if we were aggregating to a con-
sistent group size and shape.

In addition, the irregular shapes and sizes of counties introduces (potentially non-
classical) measurement error in treatment exposure that is correlated with where wind
resources exist and where wind energy is developed. Our shift-share IV based on spatial
variation in average wind speeds is then less helpful with county-aggregate data because
wind speed may be correlated with the location of irregular county shapes and sizes.
This is closely related to an issue covered more extensively in the field of geography:
the modifiable areal unit problem (MAUP). The choice of an administrative boundary
(e.g., county border) for data aggregation is a “modifiable areal unit.” The size and shape
of the unit affects the correlation in aggregate data between units and therefore influ-
ences how much the aggregate relationships differ from individual relationships. Larger
units will appear more correlated, and differently shaped units will lead to different cor-
relations based on the same underlying individual data depending on how the unit bor-
ders are drawn. Unfortunately it is very hard to predict in advance for particular cases
or make general statements about how aggregate estimates will differ from individual
estimates (Openshaw 1984; Fotheringham and Wong 1991). The extent to which
MAUP drives differences between individual and aggregate estimates depends on com-
plex interactions between the underlying spatial distributions of individual data, the co-
variances of the specific variables being used, and specific sizes and shapes of the areal

units being used.

4. RESULTS

We first report results for the average treatment effects at the individual worker and
county aggregate levels. These are averages of the 0, coefficients from equation (3)
in the posttreatment period, which are estimates of the y parameter from equation (2).
We then discuss comparisons of these treatment effects between subpopulations and

illustrate the dynamics of these effects through event-study graphs.

4.1. Average Effects

Tables 2 and 3 show the average treatment effects (average of event-study coefficients
in the posttreatment period) for binary treatment on employment and log earnings, re-
spectively. Appendix tables 2 and 3 report an analogous set of results for continuous

wind capacity treatment. Panel A in each table shows the effects from the same model
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estimated on 100 Monte Carlo random draws of the geocoded worker-level data, re-
porting means and standard deviations of parameter estimates across draws. Panel B
in each table shows the effects using the full data aggregated to the county level, with
analytical standard errors clustered at the county level. The first column in each table
reports these results for all workers, whereas each subsequent column reports results
for each of the subpopulations that we study.

The first row and column of table 2, for example, shows that being exposed to
utility-scale wind installations within 20 miles increases employment by 0.42 percent-
age points for the average worker. Given that approximately 55,000 workers live within
20 miles of a utility-scale wind project, this translates to an average effect of approxi-
mately 231 jobs per project. We use similar calculations to translate coefficients into
jobs for each subpopulation in table 2. By contrast, previous studies find local impacts
of approximately 50—90 jobs per project (Brown et al. 2012; Gilbert et al. 2023). In
terms of an employment multiplier, this translates to approximately 0.51 jobs per mil-
lion dollars in wind project investment.' This is a fairly modest employment multiplier
compared to those in other industries or from federal stimulus that tend to be at least
an order of magnitude larger (Chodorow-Reich 2019). Multipliers may be small be-
cause most of the expenditure in wind project development is capital expenditure rather
than ongoing operations. However, the multiplier would be larger if only part of the
project cost is spent locally. According to Stehly et al. (2023), about 40% of project
costs are spent locally. This implies a multiplier on local dollars that is closer to 1.3 jobs
per million dollars.

In the worker-level data, the cumulative pretrends are not statistically significant for
any subpopulation except for American Indian/Native Alaskan workers. The other
key feature to note from table 2 is that the county-level impact estimates are much
smaller than the worker-level estimates. They are not statistically significant for any
subpopulation or overall, and with the exception of Hispanic and American Indian
workers, the point estimates are quite a bit smaller than in the worker-level regres-
sions—coming in at about one-third of the worker-level estimates on average.

Using a continuous treatment variable in GW of capacity yields similar results. The
first row and column of appendix table 2 indicates that each additional GW of capacity
within 20 miles increases the average worker’s employment by 1.3 percentage points.
The average capacity within 20 miles of a treated worker is 0.3 GW, which yields a
treatment effect at the mean that is very similar to the binary treatment coefficient.
However, the average treatment effect estimates are somewhat noisier using the con-

tinuous variable.

15. We arrive at this multiplier by the following calculation: utility-scale wind installation
costs are approximately $1.5 million per MW (Wiser et al. 2023), and the average exposure
of treated workers is 300 MW within 20 miles, or $450 million of wind investment. Dividing
231 jobs by $450 million gives the result.
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Similar patterns arise when examining table 3 regarding impacts on log earnings (con-
ditional on being employed). The first row and column of table 3 shows that earnings
increase by 4.0% following the arrival of a nearby wind project. This is also somewhat
larger than previous literature, which has faitly mixed results for earnings impacts ranging
from no impact to about 3% (Brunner and Schwegman 2022). Considering that the av-
erage earnings of treated workers in our sample is $31,100, this translates to an impact of
approximately $1,270 per employed worker per year. In terms of an earnings multiplier,
this is equivalent to about 0.16 dollars in worker earnings per dollar invested in local wind
capacity. This is also modest compared to similar infusions of spending such as govern-
ment fiscal stimulus, which has earnings multipliers estimated to range from 0.3 to 2, but
with most estimates falling between 0.6 and 1 (Ramey 2019). Again this may be small
because most of the project costs are capital expenditures, but the multiplier on local dol-
lars is likely larger. If 40% of project costs are spent locally (Stehly et al. 2023), this trans-
lates to a multiplier of about 0.4 dollars in worker earnings per dollar of wind investment
spent locally, which is closer to the low end of fiscal multipliers.

Cumulative pretrends are again only significant for American Indian workers. When
comparing earnings impacts at the worker level in panel A to the county level in panel B,
however, we see even more dramatic attenuation at the county level for earnings than for
employment. Almost all county-level estimates are close to zero and many are the opposite
sign. None are statistically significant. They are especially lower for black and Hispanic
workers, men, and workers either with a college degree or without a high school diploma.

As with employment, using a continuous treatment variable in GW of capacity
yields similar results for earnings as the binary treatment variable. The first row and
column of appendix table 3 indicates that each additional GW of capacity within
20 miles increases the average employed worker’s earnings by 12 percentage points. With
an average treated capacity of 0.3 GW the treatment effect at the mean is again very sim-
ilar to the binary treatment coefficient. As with employment, the average treatment ef-

fect estimates for log earnings are somewhat noisier using the continuous variable,

4.2, Treatment Effect Comparisons

Table 2 shows that among race and ethnicity subgroups, the binary treatment effect on
employment is proportionately largest for black workers at 0.64 percentage points as
compared to white workers at 0.36 percentage points. However, because more white
workers live near wind projects, the total jobs impact is still much larger for white work-
ers (160 jobs) versus black workers (25 jobs). The impact is much larger for male than
for female workers (0.46 vs. 0.33 percentage points increase in employment, translating
to 131 vs. 88 jobs). The effect is also proportionately largest for workers with either
very low skill (no high school education) or high skill (college education), while again
the aggregate jobs impact is still greater for more-educated workers (roughly 46 jobs
for people with high school education or below vs. 66 for people with at least some

college).
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Table 3 similarly shows that the binary treatment effects on log earnings are propor-
tionately largest for black workers and workers without a high school education and are
heavily imbalanced for men versus women. Unlike the employment impacts, these propor-
tionate impacts are also reflected in the actual dollar magnitudes of earnings impacts. Black
workers increase earnings by over $1,300 per year while workers without a high school
education gain almost $1,200. However, the increase in male earnings is almost three
times that of female earnings, and the largest earnings increase is enjoyed by college grad-
uates at over $2,000 per year. These impacts are statistically significant for all subpopu-
lations except for women, and black, Hispanic, and American Indian workers.

Table 4 summarizes the difference of estimated average treatment effects (in

percentage point terms) between subpopulations, averaged across Monte Carlo draws

Table 4. Differences in Average Treatment Effects (Binary > 10 MW within 20 Miles)

Average Difference in ATE across Draws Employment Log Earnings
White - Black -.28 -2.3
% positive 23 23
White - American Indian -.036 -.65
% positive 58 57
White - Hispanic -.085 -.025
% positive 35 49
Male - female 13 2.0
% positive 77 .84
No high school - high school .26 3.1
% positive .89 .90
No high school - some college 21 2.2
% positive .84 .85
High school - some college -.049 -91
% positive 38 .30
College - no high school -.088 -2.0
% positive 35 15
College - high school 17 1.2
% positive .84 .69
College - some college 12 25
% positive 75 50

Note. This table reports the average across Monte Carlo draws of the difference in average treatment
effects (ATE) between different demographic groups from the individual worker-level regressions with a
binary treatment variable. These are the differences between average treatment effects in tables 2 and 3,
with slight differences due to US Census Bureau rounding rules for the release of individual estimates.
For each comparison, this table also reports the percentage of draws in which the difference is positive

as a way to describe the statistical significance of each comparison.
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of worker-level data. The table also shows the percentage of draws for which the difference
in treatment effects is positive. It should be noted that treatment effect differences
between subpopulations are not statistically significant at conventional levels, with the
percentage of draws with a positive difference always below 95%. However, the treat-
ment effect differences are on average larger in percentage point terms and are most
frequently larger across draws, for black workers compared to white workers, men com-
pared to women, workers without a high school education compared to workers with
either a high school diploma or some college, and workers with a college degree com-
pared to those with a high school diploma. These comparisons reflect similar patterns
that we can see by inspection of tables 2 and 3.

We conduct similar comparisons, and find similar patterns, using our continuous
variable of GW of capacity in appendix table 4. In those results, however, the differ-
ences between black and white workers are more pronounced whereas the differences
between workers with very high and very low education are somewhat dampened—
both in terms of magnitude and frequency—relative to the binary treatment variable.

These differences are consistent with a variety of possible mechanisms, and we do
not have enough evidence to isolate which ones are most important. It may be that
landowners spend their royalties to hire more unskilled laborers who do not need a high
school education. In addition, landowners and wind project construction workers may
spend more money in local restaurants that employ workers without a high school di-
ploma. Tax payments to local school districts may cause them to hire more teachers,
which requires a college degree. Understanding these channels in more detail is a topic
for future research.

Using county-level data, comparisons between the subpopulations can be made by
inspecting the 95% confidence intervals in panel B of tables 2 and 3 (and analogously
appendix tables 2, 3 for the continuous treatment variable). In almost all cases, the magni-
tude of differences in treatment effects is smaller at the county level, and there is consid-
erable overlap in the confidence intervals. The exceptions are employment treatment
effects for American Indian and Hispanic workers as compared to white workers, This
is not surprising given that the county-level treatment effects for these are larger than the
estimates using worker-level data whereas the county-level estimates are smaller than the

worker-level estimates in most other subpopulations.

4.3, Event-Study Graphs

Figures 2 and 3 plot the LPDID event-study coefficients for employment and log of
earnings, for worker-level and county-aggregate data. We plot the confidence intervals
calculated from the analytical standard errors in the county-level event studies and
from the standard deviation of point estimates across Monte Carlo draws in the worker-
level event studies. We normalize to two years before any wind project is operational
in order to capture potential construction effects in the year preceding the first year of

operation.
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Figure 2. Impact of wind capacity on employment: worker-level versus county-level. These
are event-study estimates from equation (3) using worker-level data versus county-aggregate
data. Treatment is a binary variable for whether at least 10 megawatts of wind has arrived within
20 miles of the worker’s residence or arrived within the county. Event year 0 equates to the year
wind project operations began. Wind project construction may have occurred in the preceding

year, so we normalize to event year —2.

We can see several important findings in both figures. First, we can see from both
figures that impacts are not concentrated around the construction phase of event years
-1 and 0. Rather, impacts grow over time and persist as many as six years after the
project becomes operational. This is consistent with the hypothesis that there are
many indirect channels through which renewable energy can improve the local econ-
omy, not just related to direct employment at the renewable energy installation. Indi-
rect impacts may occut, for example, because of local landowners spending royalty
payments, additional community services stimulated by additional local tax payments,
or other indirect channels. A similar time path of event-study coefhicients was found
by Brunner and Schwegman (2022) in their study of wind installations and local eco-
nomic development.

Second, we can see from both figures that error bars on the worker-level estimates

are relatively large compared to county-level error bars, despite the fact that worker-level
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All Workers: % Change in Earnings
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Figure 3. Impact of wind capacity on log earnings: worker-level versus county-level. These
are event-study estimates from equation (3) using worker-level data versus county-aggregate
data. Treatment is a binary variable for whether at least 10 megawatts of wind has arrived within
20 miles of the worker’s residence or arrived within the county. Event year 0 equates to the year
wind project operations began. Wind project construction may have occurred in the preceding
year, so we normalize to event year —2. The dependent variable is logged earnings, so impact es-

timates are semi-elasticities, or approximately percentage changes in annual earnings.

sample sizes are in the millions while county-level sample sizes are in the thousands.
This suggests that there is significant heterogeneity in impacts that is picked up through
our repeated random sampling procedure.

Third, the figures help visualize the degree of attenuation from using county-level ag-
gregates. Figure 2 shows that county-level estimates are smaller and still quite noisy; yet
point estimates are on average positive and less than half of the worker-level estimates.
By contrast, figure 3 shows that earnings estimates at using county-level data are, essen-
tially, precisely estimated zeroes. This suggests that earnings impacts as reported in the
literature are likely understating true earnings impacts by a wider margin than employ-

ment estimates.

4.3.1. Event Studies: Race and Ethnicity
Figures 4 and 5 also confirm the average treatment effects in the previous tables. The

effect on black workers for both employment and earnings is both larger and more
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Worker-Level by Race and Ethnicity: % Change in Employment
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Figure 4. Impact of wind capacity on employment: worker-level by race and ethnicity. These
are event-study estimates from equation (3) using worker-level data versus county-aggregate
data. Treatment is a binary variable for whether at least 10 megawatts of wind has arrived within
20 miles of the worker’s residence or arrived within the county. Event year 0 equates to the year
wind project operations began. Wind project construction may have occurred in the preceding

year, so we normalize to event year —2.

persistent than for other races and ethnicities; appendix table 1 shows that despite
there being relatively few black workers with wind projects within 20 miles, the average
“treated” black worker is also exposed to significantly more capacity. Yet appendix tables 2
and 3 show that the marginal impact of an additional gigawatt of wind capacity is also

larger for black workers.

4.3.2. Event Studies: Sex

Figures 6 and 7 further show that impacts on employment and earnings are consis-
tently larger for male workers than female workers. The impacts on men start sooner,
are larger, and persist longer than for women. However, there is much overlap in the

confidence intervals at each time step.

4.3.3. Event Studies: Educational Attainment
Finally, figures 8 and 9 again show persistent impacts that are largest for workers with-
out a high school education or workers with a college degree. However, impacts for all
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Worker-Level by Race and Ethnicity: % Change in Earnings
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Figure 5. Impact of wind capacity on log earnings: worker-level by race and ethnicity. These
are event-study estimates from equation (3) using worker-level data versus county-aggregate
data. Treatment is a binary variable for whether at least 10 megawatts of wind has arrived within
20 miles of the worker’s residence or arrived within the county. Event year 0 equates to the year
wind project operations began. Wind project construction may have occurred in the preceding
year, so we normalize to event year —2. The dependent variable is logged earnings, so impact es-

timates are semi-elasticities, or approximately percentage changes in annual earnings.

educational categories are statistically significant and persistent for many years follow-

ing the arrival of a wind project.

5. CONCLUSION
As the United States continues to make unprecedented investments in renewable en-
ergy in order to meet carbon emissions goals, this will shift the demand for skilled and
unskilled labor and generate new sources of income, tax revenues, and expenditures,
possibly in places that have not previously been major energy-producing communities.
These developments could either continue to allocate benefits to privileged groups
while continuing to restrict access to disadvantaged groups or they could increase ac-
cess to economic opportunity among vulnerable populations.

In this study, we use restricted-access geocoded data on the near-universe of work-
ers in 23 US states in order to estimate the local earnings and employment impacts of

wind energy development. We estimate these effects for all workers and separately for
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Worker-Level by Sex: % Change in Employment
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Figure 6. Impact of wind capacity on employment: worker-level by sex. These are event-study
estimates from equation (3) using worker-level data versus county-aggregate data. Treatment is a bi-
nary variable for whether at least 10 megawatts of wind has arrived within 20 miles of the worker’s
residence or arrived within the county. Event year 0 equates to the year wind project operations began.

Wind project construction may have occurred in the preceding year, so we normalize to event year —2.

black, American Indian/Native Alaskan, white, and Hispanic workers, male versus
female workers, and those without a high school diploma, with a high school diploma,
some college coursework, and with a college degree. We then aggregate these data to
the county level in order to compare our estimates with those we would have obtained
with county-level aggregates using data such as is available in the public domain.

We find economically and statistically significant employment and earnings gains
from wind development within 20 miles of a worker’s residence. We also find that
these impacts are relatively more pronounced for black workers, men, and very low
skilled or high skilled workers. These impacts persist for years after the construction
phase ends, suggesting that there may be multiple indirect channels through which
wind capacity in place in a community can generate benefits.

We also find that impact estimates are dramatically lower when using county-level
aggregate data and that the differences in the estimates vary across subpopulations in

ways that are not obviously predictable. This likely arises because of the well-known
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Worker-Level by Sex: % Change in Earnings
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Figure 7. Impact of wind capacity on log earnings: worker-level by sex. These are event-study
estimates from equation (3) using worker-level data versus county-aggregate data. Treatment is
a binary variable for whether at least 10 megawatts of wind has arrived within 20 miles of the
worker’s residence or arrived within the county. Event year 0 equates to the year wind project
operations began. Wind project construction may have occurred in the preceding year, so we
normalize to event year —2. The dependent variable is logged earnings, so impact estimates

are semi-elasticities, or approximately percentage changes in annual earnings.

issue of MAUP in the geography literature. This finding also suggests that there is an
inequity within the research community in terms of which researchers have access to
better data in order to generate a full understanding of impacts on the communities
who may be served by their institutions.

Our study is limited in several respects. We were not able to access data on two
major wind energy states: Texas and Minnesota. We were also not able to explore im-
pacts of other energy sources, compare a variety of identification strategies, or evaluate
additional outcome variables because of limitations on computation time using such a
large dataset. Future research using the LEHD could explore a narrower selection of
control groups using various matching and propensity weighting methods in order to
more precisely measure comparisons between subpopulations or consider changes in
earnings within a given spell at a specific employer. Further examination of the mech-
anisms driving the impact multipliers and subpopulation differences would also be

valuable. For example, are multipliers low because expenditures travel through worker
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Worker-Level by Education: % Change in Employment
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Figure 8. Impact of wind capacity on employment: worker-level by education. These are
event-study estimates from equation (3) using worker-level data versus county-aggregate data.
Treatment is a binary variable for whether at least 10 megawatts of wind has arrived within
20 miles of the worker’s residence or arrived within the county. Event year 0 equates to the year
wind project operations began. Wind project construction may have occurred in the preceding

year, so we normalize to event year —2.

types with a lower marginal propensity to consume? What features of wind energy
communities help men, black workers, and workers without a high school diploma gain
the most from wind development? We were also not able to look at more intersectional
outcomes, starting with more race and ethnicity categories but also including workers
with more than one race or ethnicity, non-gender-binary workers, or more granularity
in worker skill level. We further did not consider impacts on migration decisions or im-
pacts on workers in specific industrial sectors. These are all important areas for future
research. Similarly, understanding the “boundary” of a local community and its economy
is also an interesting question for future research. While we have followed the common
approach from the literature of using concentric circle distances, other methods such as

. . . . . 16
isochrones for commuting time may be interesting to explore.

16. We thank Justin Kirkpatrick for this suggestion.
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Figure 9. Impact of wind capacity on log earnings: worker-level by education. These are
event-study estimates from equation (3) using worker-level data versus county-aggregate data.
Treatment is a binary variable for whether at least 10 megawatts of wind has arrived within
20 miles of the worker’s residence or arrived within the county. Event year 0 equates to the year
wind project operations began. Wind project construction may have occurred in the preceding
year, so we normalize to event year —2. The dependent variable is logged earnings, so impact

estimates are semi-elasticities, or approximately percentage changes in annual earnings.
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