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Logistics

* Welcome back!
* We are recording this presentation.

* Because of the large number of participants on the phone, everyone is in listen-only
mode during presentations.

* Please use the chat box to send us clarifying questions during presentations. We will
unmute lines after each topic for open dialogue.

» Slides and a recording will be available after the webinar.
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Agenda

Welcome & Agenda
Natalie Frick

Noon ET/9 am PT

Region 1 Calibration Results Presentation
Anthony Fontanini

12:10 ET/9:10 PT

Region 1 Calibration Q&A
Anthony Fontanini

12:40 ET/9:40 PT

Residential Stochastic Occupancy Results Presentation
Eric Wilson

12:55 ET/9:55 PT

Residential Stochastic Occupancy Results Q&A
Eric Wilson

1:10 ET/10:10 PT

Output Format Options and Demonstration
Andrew Parker

1:25 ET/10:25 PT

Output Format Options and Demonstrations Q&A
Andrew Parker

1:40 ET/10:40 PT

Break

2ET/M1PT

Breakout Groups (today; more tomorrow)

2:30 ET/ 11:30 PT
315 ET/12:15 PT
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Project Timeline

Year 1 Year 2 Year 3 Beyond

Technical Advisory Group

Define use cases and
requirements

Collect/review existing data

Report on market
needs and data gaps

—

Targeted data acquisition leveraging planned/ongoing sub-metering studies
Data analysis to derive occupant-driven schedules and usage diversity
Rigorous calibration of building stock end-use models

Quantify accuracy of results for target applications

Calibrated

building stock models /DR ST Dl

Stochastic occupancy modeling capabilities Load profile library, Ongoing additions to
documentation, & user guide load profile library
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n Calibration strategy
n Added capabilities

B Baseload updates
n HVAC updates

H Residential stock end-use summary

n Tracking quantities of interest
Current status of nationwide calibration

n Areas for improvement
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Calibration Strategy




Model Architecture

@) ResStock

Housing stock
characteristics database

W B/

National Climate/Region
State City/CBSA (Core-

Based Statistical Area)

Physics-based
computer modeling

\
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Modeling Schedules Human
Algorithms Behavior

C EH O

Performance Component Weather
Curves Properties Data
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Calibration Process for One Region (i.e. ComEd)

Before 04
Calibration ................l...

After
Calibration

0.2 xi
Error
0.1
0

Region 1 Calibration |Region 2 Calibration | Region 3 Calibration |Region 4 Calibration 'Region 5 Calibration

H Region 1
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Calibration Process Over Time

Error
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HRegion1 MRegion 2
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Calibration Process Over Time
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Calibration Process Over Time
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Region 1 Focus: Nationally-Relevant Updates

@) ResStock

Housing stock
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NREL | 9



Region 1 Calibration Strategy

eNumber of dwelling
units

eNumber of residential
customers

r-GeospatiaI
resolution
eMultifamily high-rise

e\Vacant units
\_

ResStock
Capabilities

Scaling
Factors

eSystem saturation & eAppliance saturation

efficiency & efficiency
eSetpoints *Plug loads
e|nfiltration elLighting
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Region 1:ComEd Territory

* Region 1 calibration focused on ComEd
service territory in Northern lllinois
 ComkEd customer classes
e Single-family gas heat (66.2%)
e Multi-family gas heat (17.1%)
* Single-family electric heat (8.5%)
* Multi-family electric heat (8.2%)
* Primarily used data from 2016
* Will see some comparisons from 2012

NREL | 11



List of updates

New capabilities

. Geospatial refactor to allow regional datasets

. Introduce national AMY weather data for the 215 weather stations
Baseload updates

. Fix pool pump saturation

. Update lighting technology saturations to 2015 U.S. Lighting Characterization Study
. Use exterior lighting schedule from T24 2016 Residential ACM

. Reduce saturation of major appliances for multifamily units
. Allow for studio plug load estimates

. Use RBSA plug load schedule

. Update refrigeration efficiencies

. Use more refined square footage bins

HVAC updates

. Introduction of masonry walls

. Improve estimates for window to wall ratio

. Investigate sensitivity to air mass capacitance multiplier
. Integrate LBLs ResDB for infiltration estimates

. Increase cooling saturation for CRO4 (Great Lakes)

. Diversify heating and cooling setpoint setback schedules NREL | 12



Added Capabilities




Update: Geospatial Resolution

Established Geospatial Resolution Added Geospatial Resolution
N Public Use Microdata Area
216 weather regions \ ﬂ _II N \

7/

New Characteristics
* Census Region
* Census Division

Climate Zones
-

« State
*  Top 15 CBSAs
* County
e PUMA

* |ECC Climate Zone 2004

* Building America Climate
Zone

* |ISO RTO Region

ResStock O ResStock 1 NREL | 14



Dry Bulb Temperature [°F]

Update: Weather Data
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Weather Issue

e Cause: use of wrong sentinel value for precipitation for E+ input
e Effect on inputs: ~4 inches of rain per hour all year
e Effect on outputs:

e Substantial decrease of cooling load

* Increase of heating loads

* Presenting difference of results:
* ResStock O = Pre-calibration (simulation year 2016)
e ResStock 1 = After calibration of region 1 (simulation year 2016)
e ResStock 1a = After fix of precipitation (simulation year 2012)
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Update: Weather Data

Summer_Weekday
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Baseload Updates




Update: Lighting Technology Saturation

Lighting Saturation By Bulb Type

80%
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< 41%
20%
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ResStock 0 B Navigant 2015 2015 U.S. Lighting Market Characterization: ResStock 1
(RECS 2009)
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Update: Plug Load Schedule

Plug Load Schedule
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Impact: Lighting Saturation and Plug Load Schedule
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Floor Area (ft2)

Update: Increase Floor Area Bins
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Update: Major Appliance Saturation

Updated:

Shoulder_Weekday
1.2 ResStock 0 (2016)
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Electric Load (kWh/u
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S D

o
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Hour of Day

Multi-Family Gas Heating

* Clothes washer saturation

* Clothes dryer saturation
e Dishwasher saturation
e Refrigeration efficiencies

e Extra refrigerator and freezer saturation
e Specified for Top 15 CBSAs and Census Divisions
e Building type (e.g., multifamily) dependencies e | 2
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Impact: Major Appliance Saturation and Floor Area
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HVAC Updates




Update: Masonry Walls
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Update: AC Ownership
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Update: Infiltration

ResStock 0 (Chan et al.) ResStock 0 (Chan et al.)
Median: 8.29 ACH50 . , . Median: 8.84 ACH50
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http://resdb.lbl.gov/

Impact: AC Ownership and Infiltration
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Update: HVAC Setpoint Schedule Diversity
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Update: HVAC Setpoint Schedule Diversity
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Residential stock end-
use summary
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Seasonal end-use loads by day type
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Daily Electricity Use (2)
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Daily Electricity Use
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Week Stacks (02.01.01) Before Calibration (02.01.01 — 2012 MERRA-2)
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Week Stacks (12.01.01 After Ca|lbratI0n (13.01.01 = 2012) Rlun13,01,01,comp2016
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Tracking Quantities of
Interest




Region 1 Focus: Annual Error

Annual energy use total
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Region 1 Focus: Annual Electricity Error

Single-Family Gas Heating
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Region 1 Focus: Total Error Metrics

Magnitude Metrics
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Current Status of Nationwide
Calibration




ResStock: Annual Retail Sales

Before Calibration (01.01.01 — 2012 MERRA-2)
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ResStock: Annual Retail Sales

After Calibration (12.01.01 - 2012 MERRA-2)
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01.01.01 — 2012 MERRA-2

Residential Summer Average Load Shape by Utility
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12.01.02 - 2012 MERRA-2

Residential Summer Average Load Shape by Utility
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Areas for Improvement




Next Region: Likely Areas for Improvement
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Next Region: Likely Areas for Improvement
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Next Region: Likely Areas for Improvement
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Next Region: Likely Areas for Improvement
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Conclusions

Structural changes enabled incorporation of more granular datasets
* Will benefit all regions moving forward
Ran 14 iterations of ResStock incorporating 16 discrete changes
Saw incremental improvements in our QOI metrics
Improvements made not just to Region 1, but the entire U.S.
Still seeing discrepancies in the following areas:
* Cooling load
* Night-time baseload
* Multi-family baseload
e Multi-family electric heating
Have identified possible causes of discrepancies
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Next Steps

* Will be moving on to Enhanced Region 2, but continue tracking:
— Nationwide calibration data and utility load shapes
— Region 1 metrics

* Enhanced Calibration Region 2:
— Fort Collins, CO
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Discussion Questions

Were there any comparisons of data that you didn't understand or
understand the reason for?

Are there any other ways of looking at the data that you were
surprised NOT to see in the way results were presented?

This calibration focused on updating model inputs. Do you think
there is a role for post-simulation calibration true-up factors, e.g.,
for scaling up or down daily cooling energy?

NREL | 56
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Motivation




To represent realistic load profiles and demand flexibility,

we need to model

z& o
1. Heterogeneity ‘;fg)ﬂ
o v

2. Stochasticity



Why does heterogeneity matter?

06:00
3 occupants



Why does heterogeneity matter?

06:00
3 occupants

16:00 What is the
0.5 occupants demand ﬂexibility
of half of an

occupant?

NREL | 5



Why does heterogeneity matter?

06:00
3 occupants Diversity in occupancy level
IS needed to estimate
demand flexibility
0.5 occupants
0 occupants 2 occupants

(flexible) (not flexible) ~ nreL |6



Why does stochasticity matter?

Daily hot water draw profiles

Blended average of all households
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Why does stochasticity matter?

Daily hot water draw profiles

Blended average of all households An individual household
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Why does stochasticity matter?

Gallons per minute

2.0

Daily hot water draw profiles

Blended average of all households An individual household
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Impact

Z‘c; ®p  These more realistic heterogenous and stochastic load profiles
xS are important for accurate analysis of use cases identified as
important by the TAG

20
Use Case Ranking

10
. I i iR || - N |-
Energy Electricity JPolicy & Rate[Electrification | Distribution Energy Demand J{New building | Photovoltaic | Emissions
Efficiency Resource Design Planning System Efficiency Response design / Planning Analysis
Planning Planning Planning Program Planning rating
\ / \ J Impacts \ JAN A J

H1st m2nd 3rd NREL | 10



Current Progress




= ﬁNREL
i = [
Building America Research Benchmark .
2014 Building America

Definition, Updated December 29, 2004

Historical Context

House Simulation Protocols

S Morowez, and R

« 2004 — NREL has developed and maintained
residential occupancy simulation protocols since
2004 " T | X

2010 - “Tool for Generating Realistic - e
Residential Hot Water Event Schedules”
(Hendron et al. 2010)

— Stochastic hot water draw generator based i
on data from 1200 homes | Low

— Developed initially for analysis of tankless
and solar water heating systems

— Later incorporated into NREL residential
EnergyPlus simulation workflows and used oL L
for analysis of heat pump water heater
performance.

e 2014 — ResStock inherits above residential @
occupancy simulation protocols and stochastic ReSStOCk

hot water draw profiles NREL | 12

Flow Rate (gal/min)

Figure 4 Example series of hot water events



Activity

Historical Context

Occupant (heat gain)
Sinks HW
Showers/Baths HW
Dishwasher HW
Dishwasher kW
Clothes Washer HW
Clothes Washer kW
Clothes Dryer kW
Cooking Range

Misc. Electric Loads
Lighting

Thermostat setpoints
Bath exhaust fan
Kitchen exhaust fan

2019 Status
Schedule Schedule
Heterogeneity Stochasticity
No No
Yes* Yes*
Yes* Yes*
Yes* Yes*
Yes* Yes*
Yes* Yes*
Yes* Yes*
Yes* Yes*
No No
No No
No No
No No
No No
No No

* = Some degree of heterogeneity or stochasticity, but could be improved

NREL

13



Summary of Changes

2019 Status March 2020 Status Type Data sources
Schedule Schedule Schedule Schedule |Occupants/ Magnitude

Activity Heterogeneity Stochasticity | Heterogeneity Stochasticity | Household Start time Duration (Power, Flow)
Occupant (heat gain) No No Yes Yes Occupants ATUS ATUS ATUS
Sinks HW Yes* Yes* Yes Yes Household DHWESG DHWESG DHWESG
Showers/Baths HW Yes* Yes* Yes Yes Occupants ATUS DHWESG DHWESG
Dishwasher HW Yes* Yes* Yes Yes Occupants ATUS ATUS DHWESG
Dishwasher kW Yes* Yes* Yes Yes Occupants ATUS ATUS End-use datasets
Clothes Washer HW Yes* Yes* Yes Yes Occupants ATUS End-use datasets DHWESG
Clothes Washer kW Yes* Yes* Yes Yes Occupants ATUS DHWESG End-use datasets
Clothes Dryer kW Yes* Yes* Yes Yes Occupants ATUS End-use datasets End-use datasets
Cooking Range No No Yes Yes Occupants ATUS ATUS End-use datasets
Misc. Electric Loads No No Yes Yes* Household Modify avg. schedule based on occupancy
Lighting No No Yes Yes* Household Modify avg. schedule based on occupancy
Thermostat setpoints No No Yes No Household RECS, ecobee
Bath exhaust fan No No Yes No Household Modify schedule based on occupancy
Kitchen exhaust fan No No Yes No Household Modify schedule based on occupancy

* = Some degree of heterogeneity or stochasticity, but could be improved
ATUS = American Time Use Survey
DHWESG = NREL Domestic Hot Water Event Schedule Generator (based on data from the American Water Works Association)

End-use datasets = Pecan St., RBSAM, FSEC, etc. NREL |



Completed Activities

¢ Literature Review of Methodologies and Selection of Approach (FY19)
® Occupancy data collection, cleaning, and processing
— ATUS, RBSA, Pecan Street, etc.
® Implemented approach
— Clustering algorithm to group similar ATUS occupancy patterns
— Markov Chain simulations for occupancy status and major activities

— Modification of lighting and misc. electric load schedules based on household
occupancy

— Integrated duration and flow rate sampling for hot water related activities
® Validated Markov Chain simulation outputs against input probability distributions
¢ Integrated approach into ResStock

— Developed OpenStudio measure to generate schedule on the fly

— Modified ResStock OpenStudio measures to use new schedules

NREL | 15



Overview of Approach




100 random occupant days

Overview of Approach

-

1. For a given household, randomly select occupant | T
patterns for each member from available clusters : :

(weekdays and weekends separately)

[oon e ook
- E = E e

—|=

Pattern 1 — mostly at Pattern 2 — mostly at  Pattern 3 — Mostly Pattern 4 — Daytime

home home, early wake-up Away Worker
0 T absent 0 T absent 0 T absent 0 T absent
dishwashing dishwashing dishwashing dishwashing
20 w 0 » 201 » 207
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3 3 3
cookin — cookint — i — cookin,
Y = 9 = cooking % 9
4 T 4 T w1 a
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Home 3 Home 3 Home o Home
o o o
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laundry ° lundy 2 laundry ° laundry
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o o o
80 4 4 O 804
shower ‘9 80 shower ‘9 80 shower — shower
y y T y — Sleep r . r T L Sleep T : T T =L Sleep T T T T — Sleep
0 20 o 60 80 0 2 40 60 80 0 2 40 60 80 0 20 4 60 80

24 hours in 15-minute increments 24 hours in 15-minute increments 24 hours in 15-minute increments 24 hours in 15-minute increménts



Overview of Approach

i ' = ) s ] !
1. For a given household, randomly select occupant $40% - -F20% |- 510% i = L a0%|

patterns for each member from available clusters

(weekdays and weekends separately) | /\

2. For each day, generate activity schedules for each f&@ ‘G@ ‘& @

occupant (occupant-level activities)

18



Overview of Approach

| ‘ s o s 1 ‘
40% |- F20% - E10%3 - £30%
1 | o - E-=l-

(weekdays and weekends separately) ' /\

/
2. For each day, generate activity schedules for each @ @ @ ‘& @

1. For a given household, randomly select occupant
patterns for each member from available clusters

occupant (occupant-level activities)

3. Merge activity patterns for occupants into {n}h w

household schedules

19



Overview of Approach

1.

For a given household, randomly select occupant ] = = § 0% - :
patterns for each member from available clusters B - =

(weekdays and weekends separately)

/\ /
For each day, generate activity schedules for each @ & @ ‘& @

occupant (occupant-level activities)

Merge activity patterns for occupants into
household schedules

PN
L]
Generate schedules for household-level events {n_I\G\“ @I

(sink hot water draws)

20



Overview of Approach

For a given household, randomly select occupant _ == ] —
patterns for each member from available clusters |
(weekdays and weekends separately)

For each day, generate activity schedules for each f& @ @ ‘& @

occupant (occupant-level activities)

Merge activity patterns for occupants into
household schedules

(sink hot water draws)

X
L]
Generate schedules for household-level events {nj’\ -
X
L]

Modify Il?htmg and misc. plug load schedules to

account for household-level occupancy status

O% | ;, 20%8 |- - 0% | - 1 30% f.i.
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Overview of Approach

1. For a given household, randomly select occupant
patterns for each member from available clusters
(weekdays and weekends separately)

2. For each day, generate activity schedules for each
occupant (occupant-level activities)

3. Merge activity patterns for occupants into

household schedules

4. Generate schedules for household-level events

(sink hot water draws)

5. Modify lighting and misc. plug load schedules to
account for household-level occupancy status

6. Export all schedules to .csv file read by

OpenStudio objects

Steps happen on-the-fly for each OpenStudio simulation

$20%i |- F20%1 |-

L
&L @ @9

B10%8 - E30%0-
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Sample Results




Sample Results

ResStock results demonstrating the new stochastic schedule
generation approach are compared to previous results for:

e 1 example home

1000 homes aggregated

* Typical week (e.g., Jan 1 —Jan 7)

 Average week (average of all Sundays in a year, etc.)

Example hot water schedules are also shown

NREL | 24



1 home Typical week (one household)

T ica | wee k Time / Hour of Time Table Names
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1 home Average week (one household)
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1000 homes
Typical week

Greater diversity in
occupancy patterns
across 1000 homes

Spikiness indicates
there was previously
insufficient diversity
to smooth out clothes
dryer load

Typical Week - 1000 households (Hourly)
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1000 homes
Typical week
10-minute
resolution

Previously, using
subhourly resolution
exacerbated
spikiness
dramatically, due to
insufficient diversity

Typical Week - 1000 households (10-min)
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Hot water Typical week (one household) - DHW
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Hot water Average week (one household) - DHW
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Table Names
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Steps for ongoing improvement

* Continue to make improvements, such as:
— Align thermostat schedules with occupancy

— Incorporate demographic variables (age, employment status,
etc.) for ATUS clustering

— Refine clustering algorithm and number of clusters to achieve
more realistic day-to-day variability

NREL | 33



Breakout: Residential Stochastic Occupancy

Objective: Understand if the enhancements to modeling
occupant-driven loads for individual households provide the
needed |level of fidelity for users’ applications.
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Breakout: Residential Stochastic Occupancy

® What additional information do you need to decide if the enhancements will meet
your needs?

® Are there additional features that are necessary for your application of individual
household load profiles?

® What time resolution do you think is necessary for your application?

® How important is it to have realistic day-to-day variation/repetition for individual
household load profiles

®* How important do you think it is to reflect variation in occupant energy use patterns
from region to region?

® Do you think this variation can be accomplished by correlating behavior
to demographic variables like employment status, age, education, income level?

® How important do you think it is to correlate occupant behavior to other housing
characteristics that affect energy use like home floor area and vintage?
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End Use Load Profile Types

Individual building: one building; spiky and variable day-to-day
Aggregate: sum of many buildings; smooth, building-level variability disappears
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What is the output of this project?

End Use Load Profiles for the U.S. Building Stock...
* Aggregate and individual building

* 15 minute time resolution for 1 year

« Calibrated

« Covers the whole U.S.



Working List of End Uses

Commercial

« HVAC *« HVAC
* Heating * Heating
* Cooling * Cooling
* Fans * Furnace/Air-conditioning
* Pumps * Boiler pumps
* Heat rejection * Ventilation fans
« Humidification * Domestic water heating
* Heat recovery * Major appliances
* Service water heating * Refrigerator
* Refrigeration * Clothes washer
* Plug and process loads * Clothes dryer
* Lighting » Dishwasher
* Interior » Cooking range
* Exterior » Pool/spa pumps & heaters
» Miscellaneous plug loads
* Lighting
* Interior
* Exterior
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Working List of Building Types

Commercial

« Small Office

* Medium Office

« Large Office

+ Stand-alone Retail

« Strip Mall

* Primary School

+ Secondary School

* Outpatient Healthcare
* Hospital

« Small Hotel

* Large Hotel
 Warehouse (non-ref.)

* Quick Service Restaurant
* Full Service Restaurant
+ Supermarket

* Mid-rise Apartment

* High-rise Apartment

 Single-Family Detached
* Single-Family Attached
* Multifamily low-rise
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Raw Data for One Building Model

Individual building: one building; spiky and variable day-to-day

)é\ 1 residential model

* 14 end-uses x 8,760 hrs/yr x 4 values/hr = 490,560 values
« ~7MB in optimized format

1 commercial model
* 13 end-uses x 8,760 hrs/yr x 4 values/hr = 455,520 values
« ~7MB in optimized format

£
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Building Models per Geography

1building model B B -

HA
City/CBSA* E? - BB x~1.000s
State Q? - B A x~10,000
Region ‘x - B B x800,000

*Core-Based Statistical Area
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Raw Dataset: Individual Building Models for Nation

Individual building: one building; spiky and variable day-to-day

1 national-scale run of ResStock

w « 450,000 dwelling units simulated
« 2.3 TB (timeseries data and separate tabular metadata file)

1 national-scale run of ComStock
« 350,000 buildings simulated
« 2 TB (timeseries data and separate tabular metadata file)

Pros: Aggregate any way you need to answer specific questions
Cons: Requires significant time, expertise, and computing to analyze
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Representative Individual Building Profiles

Individual building: one building; spiky and variable day-to-day

For each region:
V « Publish a smaller set of “representative” individual
building load profiles
« (Goal: enable realistic use of data on a personal
computer using basic data analysis (Excel,
python, etc.)

Pros: Can use like current profiles (from OpenEl, DOE Prototypes, etc.)
Cons: By definition, data is only a subset
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Proposed Aggregations

Aggregate: sum of many buildings; smooth, building-level variability disappears

Publish most broadly useful pre-aggregated datasets

Sum of all buildings, split by

« Geography AND

« Building type AND

» Others? (building age, fuel type, floor area?)

Pros: More splits = more analysis flexibility
Cons: Larger files, harder to use
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Proposed Geographies

Rationale:
City/CBSA* Ej Cities are driving energy policy
State Q? Useful for national-level policy
Region Useful for electrical planning.
Probably align w/ grid operations?
Others? individual utility territories? Maybe for largest? - ill-defined

*Core-Based Statistical Area
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Demo: VizStock web data viewer




Proposed Output — Aggregate Load Profiles

General use, quick understanding of aggregate profiles:
« Aggregate profile datasets for each geography published
on web viewer — can sort/filter and download

Simplified analysis based on aggregate profiles:
 Downloadable in CSV format for ease of use in Excel.
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Proposed Output — Individual Load Profiles

General use:
« Set of “representative” individual profiles for each region

Advanced analysis/research:

« Full individual building dataset available for download
« Likely a series of parquet files, expect multiple TB

« Requires advanced computing & big data skills to use
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Building Energy Models — Useful to You?

Individual building: one building; spiky and variable day-to-day
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Proposed Output — Energy Models

What-if scenario analysis:
* Publish a set of “typical” models for each region
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Polling Question




Discussion Questions
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Discussion Questions

Does the web viewer look like it will meet most of your needs?

Who would most likely be doing data analysis for you? Engineers, IT people, specialized data
analysts, etc.?

What data analysis tools/processes do you typically use?
Do you have staff with big data experience?
Do you have a preference for file format (CSV, database, parquet, etc.)

Do you have experience dealing with datasets of 100’s of GBs (bigger than a normal
desktop/laptop can handle)

Are individual model (one building) level results useful to you?

Are the raw energy models (EnergyPlus IDF, OpenStudio OSM) files useful to you? The whole
dataset will be 100’s of thousands of models. If you had them, do you have the compute
resources and skillsets necessary to run at that scale?
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Discussion Questions

The full dataset of individual building/household end-use load profiles for ~1 million representative
models will likely be larger than 1 TB (typical size of a laptop hard drive).

9. Would you find it useful to be able to download this these individual profiles as one large dataset?
For individual weather station locations?

10. Would you find it useful to have the full dataset aggregated into diversified average profiles by
building type and location? Would these average profiles be useful for any other parameters
(building vintage, heating fuel type, floor area, etc.)?

11. Would you find it useful to have the full dataset filtered down to a reduced set of individual
building/household profiles per building type and location? How many buildings/household would
be desirable and manageable in this reduced set? 1, 3, 10 per building type and location?
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