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DMS: Monitoring and 

control of 

Distribution level 

assets for better 

reliability of the 

system

Technological Advancements in Management Systems

DERMS: Monitoring 

dispatch and control  

of DERs 

Microgrid Control and 

Management: Control, 

Schedule and Dispatch 

of assets with in the 

Microgrid for system 

resiliency
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• Seamless Integration 

among multiple systems

• Sharing common 

platform

• IT- OT convergence

• Cybersecurity

• Integration of different 

data systems to 

enhance decision 

making

Enterprise Systems Integration and Interoperability
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Short term Planning and Operations

Convergence of systems operations 

and short term planning

• Generate possible control 

scenarios for optimal system 

operation 

• Spatial and temporal visualization 

of multiple scenarios and possible 

mitigation measures

• Cost and Benefit Analysis
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• DERMS provide situational 

awareness, control/dispatch and 

monitoring of DERs in the 

distribution system:

– PV with and without smart inverters

– Energy storage

– Electric vehicles 

Distributed Energy Resource Management System
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• Understand the true value energy 

storage can generate when they are 

highly utilized by stacking multiple 

grid services.

Multi Service Dispatch of Energy Storage
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• Tools to model large scale distribution 

systems for evaluating ADMS applications

• Integrate distribution system hardware for 

PHIL experimentation

• Develop advanced visualization capability

ADMS Testbed 

OMS 

DERMS 

A 

Actual ADMS Deployment
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What Makes Grid Smart?

• New intelligent devices 

• New data analytics and predictive analytics 

techniques 

• Foundational optimization and control theory 

methods 

• New Business Models (eg., “PaaS” (Platform 

as a Service) or “SaaS” (Software as a Service)) 

• Tools for modeling, simulation and 

visualization
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A Decision Support System to assist the 
control room and field operating 

personnel with the monitoring and 
control of the electric distribution 

system in an optimal manner while 
improving safety and asset protection

Distribution Management System

1) Network Connectivity Analysis (NCA)
2) State Estimation(SE)
3) Load Flow Applications (LFA)
4) Volt/ VAR Optimization (VVO)
5) Load Shed Application(LSA)
6) Fault Location, Isolation & System 

Restoration (FLISR)
7) Load Balancing via Feeder Reconfiguration 

(LBFR)
8) Distribution Load Forecasting

*Slide Source: http://www.smartgridnews.com/artman/uploads/1/Distribution_Management_Systems_-_Robert_Uluski.pdf
and http://distributionmanagementsystem.blogspot.com/

http://www.smartgridnews.com/artman/uploads/1/Distribution_Management_Systems_-_Robert_Uluski.pdf
http://distributionmanagementsystem.blogspot.com/


October 2, 2017 10

Distribution Grid Modernization – Advanced 

Distribution Management Systems Applications
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Volt-VAR Optimization
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Volt-VAR Optimization (VVO)

► In contrast to the traditional operational methods, 

Volt-VAR Optimization controls multiple devices to 

achieve a global optimum.

► Volt-VAR Optimization, and the associated global 

optimum(s), exists in many forms.

► The general principle is to control the voltage and 

reactive power on a distribution feeder so that load 

can be managed.

► One example of VVO:

◼ Voltage optimization involves “flattening” the voltage 

profile and lowering.

◼ VAR optimization involves controlling the flow of 

reactive power, which has an impact on voltage.
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Volt-VAR Optimization

► Voltage Reduction

◼ Voltage is reduced to the low end of ANSI 
C84.1, customer voltage never go below 
114V.

◼ Rule of thumb: for every 1% reduction in 
voltage, there is a 0.7% reduction in energy 
consumption. 

◼ The majority of energy savings, >90%, are 
behind the customer meter.

► VAR Optimization

◼ Capacitors are switched to reduce the 
reactive power flow on the feeder.

◼ This reduces the series losses of the line, 
increasing efficiency.
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Automated Reconfiguration
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Switching Devices

► Switches

◼ Can be manually or remotely operated.

◼ Are not designed to interrupt load.

◼ Cannot be part of an automated 

reconfiguration scheme.

► Breaker/reclosers

◼ Can be manually or remotely operated.

◼ Are designed to interrupt load and fault 

currents.

◼ Can be connected to a SCADA system.
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Fault Location, Isolation, and Service Restoration

► Auto-loop

◼ Recloser type devices operated in pre-defined 
teams.

◼ Static set points that can only respond to conditions 
within a predefined range. 

◼ Can operate independently or connected to DMS.

► Adaptive Reconfiguration

◼ Recloser type devices operate in flexible 
configurations.

◼ Can operate independently or connected to DMS.

◼ Complex to operate and fully functional systems are 
still emerging. 

Substation

CB

CB

RCL

RCL

CB

CB

RCL

RCL

RCL

RCL

RCL

RCL

RCL

RCL
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► 15 ADMS applications considered for review 

(DR, Short Circuit Analysis, DERMS, SOM, 

etc.)

► Four applications that are being evaluated:

◼ Volt-VAr Optimization (VVO)

◼ Fault Location Isolation & Service 

Restoration (FLISR)

◼ Online Power Flow (OLPF)/ State 

Estimation (DSSE)

◼ Market Participation

ADMS Applications
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► Model Improvement

◼ data needs for feeder models; specs and locations for adding new telemetry points; evaluate 

impact on ADMS applications

► Calibrate OLPF/DSSE functions

◼ Compare the states testbed measurements, tune algorithms

► Evaluate performance of hierarchical distributed sensing

◼ Integrating sensing technologies like AMI, OpenFMB, OpenADR, grid-edge smart controls, 

distribution PMUs 

► Modeling loss of PV

◼ Behavior of behind-the-meter components (PV), net load allocation, integrate forecasting, 

customer facility data, load models, etc.

OLPF/DSSE Use Cases
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► Voltage Regulation

◼ legacy voltage control assets, smart inverters, 

energy storage, autonomous controllers

► Peak Load Management

◼ CVR for peak load management and 

interaction with “aggregators” like DERMS 

and DRAS

► Performance evaluation

◼ Multi-objective VVO, different control 

architectures

► Interaction with Active Grid Edge Devices

◼ Centralized VVO with grid-edge controllers

Volt-VAr Optimization (VVO) Use Cases
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► High Penetration of DERs

◼ Upstream & downstream DERs; line loading before and after fault; intermittency & 

visibility challenges

► Interaction with Microgrids

◼ Impact of temporary fault, black start, need for direct comm

► Very High Loading Conditions

◼ Unnecessary backup feeder trip, Use of load forecasting 

► Multiple Simultaneous Faults

◼ Thunderstorms leading to multiple faults, feeder re-tripping & lockouts

► Widespread Outages

◼ Uncertain distribution configurations, comm status and feeder outages

Fault Location Isolation & Service Restoration 

(FLISR) Use Cases
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► Maintaining power quality while 

providing bulk grid services

► Distribution System Operations 

(DSOs) providing market functions

► Estimating available capacity for 

bidding in energy markets

Market Participation Use Cases
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ADMS Case Studies
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Case Study 1: Feeder Voltage using Advanced 

Inverters and a DMS 

Objective:

Understand advanced inverter and distribution management 
system (DMS) control options for large (1–5 MW) distributed 
solar photovoltaics (PV) and their impact on distribution system 
operations for:

 Active power only (baseline);

 Local autonomous inverter control: power factor (PF) ≠1 and 
volt/VAR (Q(V)); and

 Integrated volt/VAR control (IVVC)

Approaches:

 Quasi-steady-state time-series (QSTS)

 Statistics-based methods to reduce simulation times 

 Cost-benefit analysis to compare financial impacts of each 
control approach.

Energy Systems 

Integration 

Recloser 1

Recloser 2

Recloser 3

Cap Bank 1

Cap Bank 2

Regulator 1

Regulator 2

Regulator 3

Feeder Head – Breaker/Regulator DMS

Opal-RT
Real-time 
Simulator

Grid Simulator

Grid Simulator

Visualization

PV Inverter

Cap/VR

Palmintier, B., Giraldez, J., Gruchalla, K., Gotseff, P., Nagarajan, A., Harris, T., ... Baggu, M. (2016). Feeder Voltage Regulation With High Penetration 
PV Using Advanced Inverters and a Distribution Management System: A Duke Energy Case Study (NREL Technical Report No. NREL/TP-5D00-65551). 
Golden, CO: National Renewable Energy Laboratory.



October 2, 2017 24October 2, 2017 24

The Problem!
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Study System Characteristics

 Cap1: A  450-kVAR (150 kVAR per phase) VAR-controlled capacitor with temperature override. Cap2: A three-phase 450-
kVAR capacitor (always disconnected unless controlled otherwise by IVVC)

 Reg1: A set of three single-phase 167-kVA regulators with a voltage target of 123

 Reg2: A set of two single-phase 114-kVA regulators on phase B and phase C with a voltage target of 123 V; 

 Reg3: A second set of two single-phase 76.2-kVA regulators on phase B and phase C with a voltage target of 124 V; 
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Data and Statistical Processing

 To capture the high 
ramp rates associated 
with the PV plant 
variability on the feeder 
and to generate 
accurate feeder 
statistics, a complete 1-
minute data set (i.e., 
525,600 
measurements) for 
2014 were provided

 Statistical smoothing to 
create native load
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Data Analysis: 1 Year ➔ 40 Days  1 Year
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Simulations Cases

► Baseline

► Local PV Control (PF = 0.95)

► Local PV Control (Volt/VAR)

► Legacy IVVC (Exclude PV)

► IVVC with PV @ PF 0.95

► IVVC (Central PV Control)
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Baseline Results
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Autonomous Local Control
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Integrating Advanced Inverters into IVVC
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Feeder 40-day results of number of 

operations of voltage regulation equipment
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Feeder 40-day results of number of load-

voltage violations 
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Summary Comparison of Annualized 

Scenarios

Scenario

Baseline
Local	PV	Control

(PF	=	0.95)

Local	PV	Control
(Volt/VAR)
Legacy	IVVC
(Exclude	PV)

IVVC	with	PV
(PF	=	0.95)

IVVC
(Central	PV	Control)

PV	Mode LT
C

R
eg
u
la
to
rs

C
ap

ac
it
o
rs

P
V LTC Regulators Capacitors Total Over Under

Default - - - - 5,043							 19,160					 125											 24,328				 1.47% 0.00%

PF=0.95 - - - - 5,063							 19,943					 505											 25,511				 1.48% 0.00%

Q(V) - - - - 5,087							 19,857					 541											 25,485				 1.44% 0.00%

Default Y Y Y - 2,869							 2,943							 1,863							 7,675							 0.02% 0.00%

PF=0.95 Y Y Y - 2,498							 1,888							 1,409							 5,795							 0.01% 0.00%

IVVC	for	
reactive	power

Y Y Y Y 2,312							 2,698							 1,151							 6,161							 0.05% 0.02%

IVVC	Control Annualized	Equipment	Operations Voltage	Challenges
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Substation P/Q Plots 
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Cost-Benefit Analysis Assumptions

Calculate 
Commodity 

Value Streams

Extrapolate 
Last Simulated 

Year Values

Apply Annual 
Capital and 
Non-Capital 
Unit Costs

Apply 
Inflation

Apply 
Discounting

Cross-tabulate 
(pivot) and 

Present Results

Accumulate 
Discounted 
Cash Flows

Value Streams: PV energy production, feeder losses, loads, and the 
frequency of operation of switching equipment with the expected 
resulting requisite maintenance and replacement expenditures 
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Categorical Cost and Savings
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Case Study 1: Conclusion

► This work Illustrates the potential for coordinated control of voltage management equipment, 

such as the central DMS-controlled IVVC by:

◼ Providing substantial improvement in distribution operations with large-scale PV systems

◼ reducing regulator operations 

◼ Decreasing the number of voltage challenges 

► The preliminary cost-benefit analysis showed operational cost savings for the IVVC 

scenarios that were:

◼ partially driven by reduced wear and tear on utility regulating equipment, 

◼ but dominated by the use of CVR/Demand reduction objective 

► Work needed in the area of integrating advanced inverters as controllable resources into 

IVVC optimization strategies 

◼ Event triggered operation of DMS IVVC

◼ Power factor set point in place of reactive power set point
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Thank you

Questions? 

Backup slides
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Case Study 2: Voltage Support Using Smart 

PV Inverters  

• 2040 nodes, serving ~4.15 square miles.

• Peak load = 9.89MW

• One controllable 1200 kVAr capacitor: switch on 

at 6 am, switch off at 10 pm

• ~1 MW existing PV power with standard inverters 

(~10% penetration)

• ~700 kW planned PV with smart inverters  (~7% 

penetration)

• ~500 kW planned PV with standard inverters  

(~5% penetration)

• Planned PV Systems are distributed at 16 service 

transformer locations.

F. Ding, A. Pratt, T. Bialek, F. Bell, M. McCarty, K. Atef, A. 
Nagarajan and P. Gotseff, “Voltage support study of 
smart PV inverters on a high photovoltaic penetration 
utility distribution feeder,” in IEEE 43rd Photovoltaic 
Specialists Conference (PVSC), Portland, OR, June 2016.
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Voltage Impact Analysis

• Maximum Load Day
• Minimum Load Day
• Clear Day
• Cloudy-Intermittent Day
• PV Intermittent Day

For each type of day, simulated:
• Unity power factor
• Six fixed power factors:

o 0.95, 0.9, 0.85 leading
o 0.95, 0.9, 0.85 lagging

• Three Volt/VAr curves
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Voltage Impact Analysis: Fixed Power Factors

Maximum voltage change 
throughout the feeder under 
different fixed power factors for 
each type of days.
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Voltage Impact Analysis: Volt/VAr Control

AvailableQ = Sinverter
2 -Pout

2
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Voltage Impact Analysis: Volt/VAr Control

Maximum load days: Voltage 
Results at Two AMI locations

The voltage range (maxV-
minV) was reduced the most 
with Volt/VAr curve-3: by 
0.007 p.u. (22%) at AMI-1 
and by 0.006 p.u. (28%) at 
AMI-2. 
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Voltage Impact Analysis: Reactive Power 

Output

• At Phase A: PV systems 1, 2, 3, 4, 
6, 9, 12, 13, 14, 15, 16.

• At Phase B: PV systems 5, 10, 11.
• At Phase C: PV systems 7, 8.

Reactive Power Output: 
Volt/VAr Curve-1
Max Qtotal = 134 kVAr

Terminal voltages of three representative smart inverters, one for each phase.
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Voltage Impact Analysis: Reactive Power 

Output

Reactive Power Output: 
Volt/VAr Curve-2

Max Qtotal = 150 kVAr
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Voltage Impact Analysis: Reactive Power 

Output

Reactive Power Output: 
Volt/VAr Curve-3

Max Qout = 250 kVAr
(33% of rated kVA rating)



October 2, 2017 52October 2, 2017 52

Voltage Impact Analysis: Statistics 

Summary

• Voltage range reduced by up to 0.009 p.u. (11%) on maximum load days.

• Standard deviation reduced by up to 0.002 p.u. (23%) on minimum load days. 

Voltage range and standard deviation for 1) unity power factor, 2) Volt/VAr curve-1, 3) Volt/VAr curve-2, 
and 4) Volt/VAr curve-3. Data in red indicate values beyond 1.5 times the interquartile range. 

“Tighter” Voltage Profile
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Case Study 2: Conclusion

• Results from a specific utility feeder:

• Fixed 0.85 power factor  change in primary voltage just over 1% 

• 700 kW of PV with smart inverters had comparable voltage impact 

to 1,200 kVAr switched capacitor

• Volt/VAr reduced range and standard deviation of voltages 

• No deadband had most significant voltage profile improvement

• Reduced voltage range up to 11%; standard deviation up to 23 %



October 2, 2017 54October 2, 2017 54

Conservation of Voltage Reduction

Conservation of Voltage Reduction (CVR): A voltage reduction scheme that flattens and 

lowers the distribution system voltage profile to reduce overall energy consumption. 

• Works best with resistive and constant impedance loads

• Normally performed by flattening the system voltage 

using capacitor banks and/or voltage regulators and  

lowering the voltage by controlling a substation Load Tap 

Changer

• Also performed by using a central volt/VAR optimization 

performed by a distribution management system (DMS)

Recloser 1

Recloser 2

Recloser 3

Cap Bank 1

Cap Bank 2

Regulator 1

Regulator 2

Regulator 3

Feeder Head – Breaker/Regulator DMS

PV Inverter

Capacitor Bank

Voltage Regulator
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Case Study 3: Smart Inverter Volt-VAR 

Function for CVR and Power Quality

LTC

Capacitor
PV/Smart 

Inverter

Randomly allocate PV locations and smart inverters

Various PV penetration levels, Various Smart inverter densities

Voltage Optimization  Methodology

Annual Energy Saving Power Quality

Q
ST

S 
Si

m
u

la
ti

o
n

 

Objective: Evaluate the effects of
distributed PV with smart inverters on
the conservation of voltage reduction
(CVR) energy savings and power quality
in distribution systems.

F. Ding et al., "Application of Autonomous Smart 
Inverter Volt-VAR Function for Voltage Reduction 
Energy Savings and Power Quality in Electric 
Distribution Systems,” IEEE Innovative Smart Grid 
Technologies , Washington DC, 2017.
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Voltage Reduction Optimization Method

 Energy saving is used to measure the
voltage reduction effect:

VRsaving =
EnergyVR -BaseEnergynoVR

BaseEnergynoVR
×100%

 CVR factor (the percentage change in energy consumption per percent change in the load’s
voltage): 0.8 (real) and 4.0 (reactive)

Start

Disable smart inverters

Capacitor Optimization LTC Optimization

Enable smart inverters

Solve Power Flow with Smart Inverters 

Vmin>=0.95? Tap up the LTC by 1 step

Tap down the LTC by 1 step

Capacitor Optimization

Solve the power flow, Vmin>=0.95?

Restore to the previous capacitor states 
and LTC tap position

Record the present LTC tap position and capacitor states
YES

NO

Stop

YES

NO

Voltage Reduction 
Without Smart 

Inverter

• Capacitor Optimization: flattest voltage 
• LTC Optimization: adjust LTC tap position to 

achieve the lowest voltage 
• Autonomous Smart Inverter Volt-VAR Control
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Power Quality Scoring Methodology

 Power Quality
Metrics

 System Average Voltage Magnitude Violation Index
(SAVMVI): average value of all voltage magnitude
violations for all buses at all time steps.

 System Average Voltage Fluctuation Index (SAVFI): average value
of voltage fluctuations for all buses at all time steps.

 System Average Voltage Unbalance Index (SAVUI): average value
of voltage unbalances for all three-phase buses at all time steps.

 System Control Device Operation Index (SCDOI): total number of
capacitor switching operations and LTC tap changes.

SAVMVI =
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QSTS

 System Reactive Power Demand Index (SRPDI): average value of reactive power demands from the
substation during the entire simulated period.

 System Energy Loss Index (SELI): the ratio of total energy loss and total load demand during the entire
simulated period.
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Power Quality Scoring Methodology

 Power Quality Score (PQS) Both min and max of each metric are calculated 
from the definition or determined from IEEE 
standards and practical limits. 

Model Property Value

Substation Bank Size 45 MVA

Circuit Primary Voltage 21 kV

Number of Circuits 3

Peak Bank Load 37.09 MW

Max Circuit Distance 6.63 miles

Total Primary Circuit 

Miles
85.65 miles

Capacitor Banks 7 (12 MVAr total)

SAVMVI/SAVFI/SAVUI/SCDOI/SRPDI/SELI

Scenario

PV 

Penetration

0, 10%, 30%, 50%, 100% of peak 

load

Smart Inverter 

Penetration
0, 25%, 50%, 100%

Voltage 

Optimization
With, Without

Simulation 1 year with 1 h time step

 Case Study

[Min(Metric), 10]

[Max(Metric), 0]

Metric Value

Individual Score

S(.)
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One-Year Energy Saving

0.95

0.97

0.99

1.01

1.03

0 5 10
V

o
lt

ag
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 (
p

.u
.)

Distance from the substation (km)

Base Case
Without
CVR

Voltage profile at one 
time step obtained 
for three cases

Voltage reduction energy savings at 
different PV penetrations and smart 
inverter densities.
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Case Study 3: Conclusion

• Voltage reduction energy savings increased with autonomous smart inverter Volt-VAR 

control. Smart inverters with a lower VVC band center allowed the tap position of the 

substation LTC to be lower, compared to cases without smart inverters. This resulted 

in a lower distribution system voltage profile and increased voltage reduction energy 

savings. 

• Since voltage reduction energy savings were prioritized over the PQS, the 

implementation of the proposed voltage reduction scheme lowered certain power 

quality scoring metrics, including SCDOI and SRPDI, leading to an overall lower PQS. 

• Overall without CVR VO, smart inverters had a positive impact on the PQS, and helped 

to reduce energy losses and voltage fluctuations.


