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Agenda

► Overview
◼ Definition of net load
◼ Importance of net load shape management
◼ Current trends in net load shapes

► Impact of individual distributed energy resources (DERs) on net load
◼ Solar
◼ Energy storage
◼ Energy efficiency
◼ Demand response

• Time-of-use
• Critical peak pricing
• Direct load control

► Combined impact of multiple DER strategies
► Utility strategies for managing net load shapes
► Questions states can ask
► Resources for more information
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What are net load shapes?

► The profile of a customer’s grid electricity demand over time as affected 
by behind-the-meter generation and other DER technologies

► Net load lessens the impact of idiosyncrasies in individual load shapes but 
accentuates shared patterns of behavior.
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► More flexible electricity systems are more 
reliable and resilient.1
◼ DERs offer the opportunity for utilities and 

customers to control electricity loads during 
periods of high system demand and costs.

◼ Top figure shows energy price curves that 
demonstrate how a small portion of hours 
during the year have much higher prices.

► Variable renewable energy (VRE) 
increases the need for more flexible loads 
and more opportunities to shift load to 
periods with lower energy prices.
◼ Bottom figure shows simulated diurnal energy 

prices and energy price duration curves with 
increased VRE penetration.2

◼ Potential for better alignment of solar and 
demand during summers, when energy 
prices typically are higher

◼ VRE-generated electricity can be stored and 
dispatched when there is more need. 

► State climate goals also will require flexible 
resources to balance generation and load.

DERs are a growing opportunity for net load 
shape management.

Mean Diurnal Energy Price Profiles for Weekdays

Energy Price Duration Curves

Source: Seel, J., A. D. Mills, and R. Wiser. Impacts of High Variable Renewable 
Energy Futures on Wholesale Electricity Prices, and on Electric-Sector Decision 
Making. 2018.

https://emp.lbl.gov/publications/impacts-variable-renewable-energy
https://emp.lbl.gov/publications/impacts-high-variable-renewable
https://emp.lbl.gov/publications/impacts-high-variable-renewable
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► The upper-right figure shows how annual 
generation of small-scale solar (i.e., residential 
and commercial) is increasing each year, as 
estimated by EIA.1

► As solar capital costs decrease, customers will 
continue to install more distributed solar.

► Distributed solar adoption levels in MISO are not 
high, as shown in the lower-right figure, but 
emerging regulatory goals indicate that may 
change.
◼ 4 states working towards plans for 100% 

clean energy goals by 2050 (MN, WI, IL, 
MI),2 with many cities also establishing 
decarbonization goals 

► Many large utilities in MISO’s footprint have set 
clean energy and decarbonization targets:
◼ Xcel Energy, Ameren, Duke, and Alliant 

have net-zero carbon by 2050 goals.
◼ Other utilities in the region also are working 

towards carbon reduction targets.

Net load shapes are changing — for example, 
with increasing penetration of distributed solar.
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https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=table_1_01_a
http://view.ceros.com/miso-energy/misoforward2020/p/1
https://www.eia.gov/electricity/data/eia861/
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► DERs can impact net load in the following ways:
◼ Generation: Provide electricity onsite, behind-the-meter, from sources such as solar or storage 

discharge. Reduce grid demand and potentially export electricity back to the grid.
◼ Energy efficiency: Long-term reduction in energy usage with changes in customer end-uses.
◼ Load shifting: Change the timing of electricity usage using DERs such as storage or behavioral 

demand response
◼ Load shedding: Reduce intended electricity usage, usually for a scheduled period, using DERs 

such as demand response

Impact of individual DERs on net load

Impact of DERs on Net Load Shape1

Source: Neukomm, et al. Grid-Interactive Efficiency Buildings. 2019.

https://www.osti.gov/biblio/1508212
https://www.osti.gov/biblio/1508212
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How DERs affect net load shapes: 
Illustrative examples

► Distributed solar

► Energy storage

► Energy efficiency

► Demand response

◼ Time-of-use

◼ Critical peak pricing

◼ Direct load control
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► Customers use onsite solar PV for self-
consumption, reducing electricity 
purchased from the grid. 
◼ Solar PV lowers net load while generating 

during midday.
◼ Excess solar PV is exported to the grid 

through net metering and other programs.
◼ The top figure shows the modeled impact of 

increasing solar penetration on an aggregate 
load of 60 homes in California.

◼ The bottom figure shows historical average 
daily load for Hawaiian Electric Company. 

► Utilities can use several strategies to 
manage net load impacts from solar PV.
◼ Set late-in-day peak periods (for time-of-use) 

that promote west-facing solar installations
◼ Change compensation for solar exports 
◼ Establish time-based rates to shift demand to 

midday 
◼ Promote technologies that smooth midday 

curve (e.g., energy storage)

Distributed solar PV lowers midday net load 
through self-consumption and export. 
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Oahu Average Daily Net Load by Year 

Source: Ongoing Berkeley Lab research

Source: The Economic Research Organization at the University of 
Hawai’i. Estimating the Opportunity for Load-Shifting in Hawaii: An 
Analysis of Proposed Residential Time-of-Use Rates. 2016.

https://uhero.hawaii.edu/estimating-the-opportunity-for-load-shifting-in-hawaii-an-analysis-of-proposed-residential-time-of-use-rates/
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► Energy storage can charge from solar PV 
generation and discharge during other 
periods, reducing the impact of solar PV 
on midday net load.

► Storage has incentive to dispatch:
◼ When exporting solar is less valuable than 

offsetting net load at other periods (top figure)
◼ When it can offset positive net load during 

peak period (top figure) with TOU pricing
► With value-of-solar tariff, storage dispatch 

is always more economic than solar PV 
export.
◼ Bottom figure shows modeled impact of solar 

and storage on net load for 60 homes with 
flat-rate pricing and a value-of-solar tariff.

◼ Storage absorbs more generation, with larger 
impacts on midday and evening loads.

► With TOU rates and net metering, storage 
only discharges during peak period.
◼ New peak from storage discharge as peak 

period begins; excess solar exported (bottom 
figure)

Customers can use storage with solar PV to 
increase system value, smoothing peaks.
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https://www.nrel.gov/state-local-tribal/basics-value-of-solar-tariffs.html


October 9, 2020 11October 9, 2020 11

► With net energy metering 2.0, solar export 
rates are slightly lower than retail rates due 
to non-bypassable charge (~$0.02/kWh).
◼ Figures show impact of seasonal electricity price 

variation on modeled net load for 60 homes with 
TOU pricing and net energy metering 2.0.

► Storage can create value for customer by 
charging from grid during off-peak, leading 
to new net load peaks if not managed.
◼ Top figure shows storage charging during 

morning super off-peak period in summer 
despite solar availability because of greater 
value to customer

► Smaller difference in winter TOU prices 
eliminates an incentive to dispatch through 
grid or solar charging (bottom figure)
◼ Storage will not discharge if price differential 

of charging and discharging periods is too 
small.

◼ Although price differential is positive, storage 
must overcome roundtrip efficiency losses in 
order to provide value through dispatch. 

Storage behavior is sensitive to electricity 
prices, rate schedule, and efficiency losses.
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► Large commercial customers with demand 
charges ($/kW) are adopting standalone 
storage to target daily peak shaving.
◼ Non-coincident demand charges apply to the 

customer’s highest demand any time during 
billing period. Coincident demand charges apply 
only to defined periods.

► Storage charges when customer demand 
is low and discharges when demand 
exceeds target.
◼ Behavior is dependent on storage dispatch 

algorithm’s ability to predict time, duration, and 
amplitude of peak. 

► Storage shaves peak throughout day for 
non-coincident demand charges, but only 
dispatches during peak with TOU demand 
charges (see figure).
◼ For TOU demand charges, demand reduction is 

more significant as the same amount of energy is 
discharged from storage in a shorter period.

◼ Peak shaving with non-coincident demand 
charge creates a flat net load throughout the day. 
With TOU demand charges, it creates a large 
ramp between the peak period and other hours.

For large commercial customers, storage 
behavior is driven by demand charges.
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Energy Storage Peak Shaving Behavior for Non-
Coincident and Time-of-use Demand Charges

https://emp.lbl.gov/publications/implications-rate-design-customer
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What can utilities do to manage net load 
impacts from storage?

► Paired solar and storage provides load reduction and load opportunities 
only when price signals incentivize storage dispatch.
◼ For example, winter TOU prices with smaller price differentials may lead to 

inactive storage.
◼ Standalone storage can provide load shifting through grid charging, but may 

also create new net load peaks.
► Utilities can design rate structures that incentivize when storage charges 

and discharges based on desired impact. 
◼ For example, non-coincident demand charges target daily reduction of 

consumption, while TOU demand charges cause higher reduction only during 
peak demand.

► Utilities can design value of solar tariffs to incentivize maximizing self-
consumption of solar generation or solar export.
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► Energy efficiency impacts vary based on 
applied measure, generally decreasing net 
load shape in line with customer’s usage.

► Efficiency programs to upgrade buildings 
target common equipment like lighting, 
cooling, heating, water heating, envelope, 
and large appliances.

► Improved building performance can reduce 
system peak demand — e.g., during peak 
hours for space heating or cooling.
◼ Top figure: avr. measured impact of cooling 

equipment replacements in CA homes
► Efficiency upgrades affect different time 

and seasonal periods of net load.
◼ Bottom figure: simulated impact of other 

equipment upgrades for CA homes
► Diversity of efficiency measures provides 

opportunities for specific demand reduction
◼ Utilities can strategically design programs to 

target reduction by period, season, and 
customer sector.

Energy efficiency measures affect net loads 
without active management.

Measured Impact of Residential Energy 
Efficiency Upgrades for Summer Day

Simulated Impact of Residential Energy Efficiency Upgrades
Summer Peak Day Winter Peak Day

Source: Figures from ongoing LBNL research 



October 9, 2020 15October 9, 2020 15

► TOU pricing growing due to increase in:1
◼ Advanced metering infrastructure
◼ Increased DER penetration
◼ Surplus DER generation during midday

► TOU rate design can impact net load by 
influencing changes in customer behavior, 
even absent enabling technologies.
◼ Despite behavior diversity, customers 

consistently reduced or shifted peak period 
consumption in utility pilots2

► Example: modeled customer response to 
TOU pricing based on measured response 
(see figures showing 60 homes)
◼ For 3-period pricing, customers decreased 

usage during peak period and slightly 
increased usage during super off-peak.

◼ Increase in off-peak usage near zero for 2-
period rates (not shown), despite decrease in 
on-peak usage

► Studies show high retention rate for opt-in 
and opt-out groups, with opt-in recruitment 
15% on average2

TOU rates provide demand response 
through price responsiveness.
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Super Off-peak Off-peak Peak

Source: Ongoing Berkeley Lab research

https://emp.lbl.gov/publications/current-developments-retail-rate
https://emp.lbl.gov/publications/american-recovery-and-reinvestment-1
https://emp.lbl.gov/publications/american-recovery-and-reinvestment-1
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► Under critical peak pricing (CPP), 
customers pay a higher price for energy 
during a pre-defined period during critical 
event days (i.e., days with high demand).

► CPP provides a day-ahead net load 
management for targeted peak reduction.

► Critical peak period prices are generally 
much higher than TOU peak prices and 
only occur when called (typically 5-22 days 
per year1)
◼ Median on-peak to off-peak price ratio is 2.7 to 1 

for TOU2 compared to lowest critical peak price 
ratios around 4 to 11

◼ Customers incentivized to enroll through slight 
price reduction for non-peak periods

► Figure shows net load with modeled 
customer response to a critical peak period 
on a peak summer day

► Combination of higher price signal and 
advance notification to customers leads to 
higher reduction during critical peak period

Critical peak pricing provides more control 
through customer response on peak days.

Program Definition

Time-of-use Fixed, pre-set retail rates vary by time of day, season, and day 
type. Generally, period are defined as peak, off-peak, and 
potentially others.

Critical Peak 
Pricing

Event is called day-ahead, and infrequently, where customers 
pay a pre-defined electricity price premium during event period.

Critical Peak 
Rebate

Like critical peak, event is called day-ahead and infrequently. 
Unlike critical peak pricing, customer received a rebate for 
reducing during event.

Variable 
Peak Pricing

Peak hours are defined, like TOU, but peak price is adjusted 
daily based on wholesale market prices.

Real-time 
Pricing

Customers are charged prices that vary over short time 
intervals, typically hourly, that are set one day in advance.

Time-Based Pricing Programs3

CPP Period 
Rate: $1.16

Source: Ongoing Berkeley Lab research

Source: Cappers, R. and R. Scheer. 2016.

https://rmi.org/insight/review-alternative-rate-designs/
http://files.brattle.com/files/12658_the_national_landscape_of_residential_tou_rates_a_preliminary_summary.pdf
https://rmi.org/insight/review-alternative-rate-designs/
https://emp.lbl.gov/publications/american-recovery-and-reinvestment-1
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► Direct load control (DLC) allows utilities to 
remotely cycle air conditioners and water 
heaters, or adjust thermostat settings, 
during events for pre-established periods.
◼ Equipment cycled between 50%-100% during 

event depending on program
► Like CPP rates, there’s a cap on the 

number of events per year.
◼ Customer can opt out for single events.

► Customer receives an annual credit or 
enrollment incentive.

► Top figure shows modeled net load impact 
of air conditioning DLC during a peak 
summer day for varying levels of DLC 
enrollment

► Programs largely target residential (4M 
enrolled in U.S. as of 2018); small C&I 
customers enroll to a smaller extent 
(84,000 as of 2018)1

◼ Bottom figure shows top 10 utilities in MISO 
by customer enrollment in DLC

Direct load control provides predictable 
impact on peak days.
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► Combining DERs provides utilities with a 
menu of options that allow them to 
generate, shift, and shed.

► On peak days, solar and storage provide 
additional benefit by responding to 
changes in net load profile from DLC and 
peak period rate for CPP.

► Top figure shows changes in net load as 
DERs are sequentially applied for a peak 
day (for Pacific Gas and Electric).
◼ CPP alone: est. 15% reduction in customer 

usage during event period (2 pm to 7 pm)
◼ With solar PV: Reduces midday net load; 

generation overlaps with CPP in afternoon
◼ With storage: Charges from solar, absorbing 

all generation at 1 pm and fully discharges 
during CPP period

► Without critical peak period, storage would 
have dispatched only during peak period 
from 5 pm to 8 pm (bottom figure).

Combined DERs provide strategies for 
managing different net load needs.
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Figures demonstrate interaction of DERs with 100% customer adoption. 
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► Utilities are exploring how to have more visibility and control for better DER 
management.

► In California, Rule 21 requires all distributed solar to use inverters with remote 
communication and grid service capabilities. 
◼ While platforms are still developing, distributed solar PV installations will be capable of 

utility control without requiring additional technological upgrades.
◼ CA passed a bill in 2019 that will foster higher adoption of demand response-ready 

appliances.2

◼ Such regulations enable technologies that provide utilities with more visibility and control.
► Some utilities are creating centralized platforms for aggregating dispatchable 

DERs to control net load, such as “virtual power plants” (VPPs), that can 
potentially operate DERs synchronously, provide grid services, and participate in 
wholesale markets.
◼ Like direct load control, utilities can schedule and dispatch other DERs, such as energy 

storage systems.
◼ By aggregating smaller resources, VPPs facilitate a unified approach to providing 

demand response and other grid functions for greater impact.
► Some utilities testing VPPs through pilots:

◼ Portland General Electric, Southern California Edison, Austin Energy, California 
Community Choice Aggregators

Looking forward: Utilities are designing 
platforms to tap into DER flexibility.

https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201920200SB49
https://www.portlandgeneral.com/our-company/energy-strategy/smart-grid/smart-grid-test-bed
https://www.sce.com/sites/default/files/inline-files/2019_PRP_AnnualReport.pdf
https://austinenergy.com/ae/green-power/austin-shines/austin-shines-innovations-energy-storage
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Questions states can ask

► How are your utilities planning for increasing solar PV penetration? 
► What risks are utility systems currently facing from distributed solar PV impacts on 

net load? 
► What DERs and DER programs are currently available for active management of 

net loads?
► How have programs historically used DERs during peak demand? What best 

practices have been learned?
► How is design of energy efficiency programs addressing peak demand reductions 

and changes in peak demand periods?
► How are utilities recruiting and incentivizing customers to enroll in active demand 

management programs?
► Do utilities have a platform in place for controlling DERs? Which DERs and 

customers are eligible?
► How are utilities using pilots and research to better understand net load shapes 

with higher DER adoption?
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Resources for more information

► Schwartz, L., M. Wei, W. Morrow, J. Deason, S. Schiller, G. Leventis, S. J. Smith, W. L. Leow, T. Levin, S. 
Plotkin, Y. Zhou, and J. Teng. Electricity End Uses, Energy Efficiency, and Distributed Energy Resources 
Baseline. 2017.

► Darghouth, N., G. Barbose, and A. Mills. Implications of Rate Design for the Customer-Economics of 
Behind-the-Meter Storage. 2019.

► Satchwell, A., P. Cappers, and G. Barbose. Current Developments in Retail Rate Design: Implications for 
Solar and Other Distributed Energy Resources. 2019. 

► Satchwell, A., P. Cappers, J. Deason, S. Forrester, N. M. Frick, B. F. Gerke, and M. A. Piette. A 
Conceptual Framework to Describe Energy Efficiency and Demand Response Interactions. 2020.

► Cappers, R. and R. Scheer. American Recovery and Reinvestment Act of 2009: Final Report on Customer 
Acceptance, Retention, and Response to Time-Based Rates from Consumer Behavior Studies. 2016.

► Gerke, B., G. Gallo, S. J. Smith, J. Liu, S. V. Raghavan, P. Schwartz, M. A. Piette, R. Yin, and S. 
Stensson. The California Demand Response Potential Study, Phase 3: Final Report on the Shift Resource 
through 2030. 2020.

► Potter, J., E. Stuart, and P. Cappers. Barriers and Opportunities to Broader Adoption of Integrated 
Demand Side Management at Electric Utilities: A Scoping Study. 2018.

https://emp.lbl.gov/publications/electricity-end-uses-energy
https://emp.lbl.gov/publications/implications-rate-design-customer
https://emp.lbl.gov/publications/current-developments-retail-rate
https://emp.lbl.gov/publications/conceptual-framework-describe-energy
https://emp.lbl.gov/publications/american-recovery-and-reinvestment-1
https://emp.lbl.gov/publications/california-demand-response-potential
https://emp.lbl.gov/publications/barriers-and-opportunities-broader
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Integrating Load Shape Analysis into 
Grid Modeling

National Renewable Energy Laboratory (NREL)
Matt Leach
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Objectives

Understanding 
building energy 
consumption at scale 

Capturing building 
demand flexibility

Utilizing grid model to 
evaluate flexibility 
dispatch
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Key Takeaways

Demand flexibility should be treated on par with supply-side options so all grid 
impacts, costs, and benefits to the utility system can be quantified and monetized

DOE and the national labs are developing new tools and analytics to account for:

1. All electric utility system economic impacts resulting from demand flexibility

2. Variability in value based on when and where demand flexibility occurs

3. Impact of distribution system savings on transmission and generation system 
value

4. Variability in value due to interactions between DERs (and between DERs and 
other system resources) providing demand flexibility

5. Benefits across the full expected lives of the resources
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Key Benefits of GEBs

Understanding the potential of building end uses to provide demand flexibility to 
the grid and devising programs to facilitate and incentivize the dispatch of those 
resources will:

1. Reduce grid congestion (at both the bulk power and distribution scales), 
especially during peak demand periods

2. Lower energy bills by reducing the need for future investment in supply-side 
generation

3. Align building energy demand with peak solar and wind output to reduce the 
need for curtailment of renewable generation

4. Reduce overall grid operating costs and net electricity costs for participating 
buildings
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Understanding Building Energy 
Consumption

Where is energy used in the US building stock?

• Where geographically?

• What building types?

• What end uses?

• At what times?

How can buildings provide service to the grid?

• What is the role of efficiency?

• What is the capacity for load shaping?

• What are the time/location/configuration dependencies?
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ResStock and ComStock

Bottom-Up Engineering Models of the U.S. Building Stock 

• ResStock – Residential Stock

• ComStock – Commercial Stock

Finding the Balance between Speed and Complexity

• Highly granular building stock to capture diversity

• Sub-hourly detail – calibrated to real data

• Can model controls, demand response, etc.

• Includes measure interaction

• Visualizations for slicing data

Simple, fast Simple & fast enough Complex, slow

High-granularity



October 9, 2020 28

Building stock 
characteristics 

database

Physics-based
computer modeling

High-performance 
computing

++

ResStock / ComStock Overview
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Census Data

Climate 
Locations

Costs

Building
Characteristics

6000 probability distributions for 
100 parameters structured in a 
dependency tree

Large public and private datasets

ResStock / ComStock Overview
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Building stock 
characteristics 

database

Physics-based
computer modeling

High-performance 
computing

++

Census Data

Climate 
Locations

Costs

Building
Characteristics

6000 probability distributions for 
100 parameters structured in a 
dependency tree

Large public and private datasets

Detailed sub-hourly 
energy simulations

OpenStudio EnergyPlus

DOE energy models ~800,000 simulations 

NREL’s 
supercomputer

Cloud 
computing

Big data technology stack

ResStock / ComStock Overview
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Calibration via End Use Load Profiles 
(EULP) Project

Building stock 
characteristic 
distributions

National Climate/Region

State City/CBSA (Core-Based 
Statistical Area)

Physics-based
computer modeling

Modeling 
Algorithms

Component 
Properties

Performance 
Curves

Schedules Human 
Behavior

Weather
Data

https://www.nrel.gov/buildings/end-use-load-profiles.html

https://www.nrel.gov/buildings/end-use-load-profiles.html
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Overall EULP Calibration Approach

1. Compare to widely available data, including EIA annual electricity sales by 
utility and customer class load profiles

2. Study regional transferability of non-weather-dependent end uses and 
apply schedules nationally (or regionally if supported by data)

3. Perform enhanced calibration for five regions for which we have utility 
Advanced Metering Infrastructure (AMI) data and customer metadata

Guiding principal: Change model inputs only when supported by data
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EULP Model Calibration Data

Type of Calibration Data Summary of Availability

Utility Sales: Annual sales/consumption data by 
sector by utility

Universally available from U.S. Energy Information 
Administration (EIA)

Load research data: Utility customer class aggregate 
load shapes 

Acquired for ~20 utility companies and the Electric 
Reliability Council of Texas

Advanced metering infrastructure (AMI) + metadata:
Whole-building AMI data joined with building 
characteristic metadata

Acquiring ~5 data sets across multiple census 
divisions, via NDAs with utility companies 

Submetered: End-use metering data, including 
smart thermostat data

~4 data sets publicly available for residential; 
procured ~10 data sets under NDA for commercial

Summary of Calibration Data Classes
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Potential Value of Demand Response in 
Bulk Power Systems

Assumptions
• Demand response resource is given
• Zero marginal cost
• Centrally dispatched along with 

everything else to minimize system 
cost

This way we can measure the maximum value of the resource without predicting 
future market structures (utility tariffs, aggregation programs).

Hale, Elaine T., Brady L. Stoll, and Joshua E. Novacheck. 2018. “Integrating Solar into Florida’s Power 
System: Potential Roles for Flexibility.” Solar Energy 170: 741–51. 
https://doi.org/10.1016/j.solener.2018.05.045
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Building Modeling / Grid Modeling Iteration 
and Validation Cycle
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Demand Response Resource Categories

1. Schedulable - discrete decisions per end-use, little environmental coupling 
(ex. pumping)

2. High Thermal Capacity Storage - set-point-driven, moderate environmental 
coupling (ex. refrigeration)

3. Storage - often set-point-driven, potential for high environmental coupling 
(ex. heating and cooling)

4. Sheddable - little tolerance for change in service levels; capacity-only 
resources (ex. lighting, ventilation)

Guiding principal: Change model inputs only when supported by data
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Schedulable Resource: Agricultural Pumping

Average Daily Profiles by Service/Season

Modeled as Generator with Storage Reservoirs
- Generation capacity is maximum over all 

services

- Pumping Capacity(i)  =               
min(2*Energy(i), max(Energy)) - Energy(i)

- Storage must hit a weekly target (daily for 
other schedulable end-uses)

Hale, Elaine T., Brady L. Stoll, and Joshua E. Novacheck. 2018. “Integrating Solar into Florida’s Power 
System: Potential Roles for Flexibility.” Solar Energy 170: 741–51. 
https://doi.org/10.1016/j.solener.2018.05.045
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Storage Resource: Commercial Heating

Average Daily Profiles by Service/SeasonModeled as Generator with Storage 
Reservoirs
- Generation capacity is maximum over all 

services

- Pumping Capacity(i)  =                   
min(max(Energy) - Energy(i), 
max(Energy(day))

- Storage must hit a daily target

- Pumping is restricted to 3am – 7pm        
(make up during occupied hours)

- Energy shifting is limited to a total of 2 use-
hours (sum(Generation(i) / Energy(i)) ≤ 2)

Hale, Elaine T., Brady L. Stoll, and Joshua E. Novacheck. 2018. “Integrating Solar into Florida’s Power 
System: Potential Roles for Flexibility.” Solar Energy 170: 741–51. 
https://doi.org/10.1016/j.solener.2018.05.045
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Sheddable Resource: Commercial Ventilation

Average Daily Profiles by Service/Season

Modeled as Plain Generator
- Generation is restricted to zero

- Reserves provision restricted 
to the appropriate profile

Hale, Elaine T., Brady L. Stoll, and Joshua E. Novacheck. 2018. “Integrating Solar into Florida’s Power 
System: Potential Roles for Flexibility.” Solar Energy 170: 741–51. 
https://doi.org/10.1016/j.solener.2018.05.045
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• Matt Leach
• Senior Engineer
• Commercial Buildings Research Group

• National Renewable Energy Laboratory
• E: Matt.Leach@nrel.gov
• P: 303-384-7987

Thank you!

mailto:Rois.Langner@nrel.gov

	Impacts of DERs on net loads and approaches for actively managing load shapes
	Impacts of DERs on net loads and approaches for actively managing load shapes
	Agenda
	What are net load shapes?
	DERs are a growing opportunity for net load shape management.
	Net load shapes are changing — for example, with increasing penetration of distributed solar.
	Impact of individual DERs on net load
	How DERs affect net load shapes: Illustrative examples
	Distributed solar PV lowers midday net load through self-consumption and export. 
	Customers can use storage with solar PV to increase system value, smoothing peaks.
	Storage behavior is sensitive to electricity prices, rate schedule, and efficiency losses.
	For large commercial customers, storage behavior is driven by demand charges.
	What can utilities do to manage net load impacts from storage?
	Energy efficiency measures affect net loads without active management.
	TOU rates provide demand response through price responsiveness.
	Critical peak pricing provides more control through customer response on peak days.
	Direct load control provides predictable impact on peak days.
	Combined DERs provide strategies for managing different net load needs.
	Looking forward: Utilities are designing platforms to tap into DER flexibility.
	Questions states can ask
	Resources for more information
	Integrating Load Shape Analysis into Grid Modeling ��
	Objectives
	Key Takeaways
	Key Benefits of GEBs
	Understanding Building Energy Consumption
	ResStock and ComStock
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Calibration via End Use Load Profiles (EULP) Project
	Overall EULP Calibration Approach
	EULP Model Calibration Data
	Potential Value of Demand Response in Bulk Power Systems
	Building Modeling / Grid Modeling Iteration and Validation Cycle
	Demand Response Resource Categories
	Schedulable Resource: Agricultural Pumping
	Storage Resource: Commercial Heating
	Sheddable Resource: Commercial Ventilation
	Slide Number 41

