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Abstract 
New smart building technologies that offer continuous dynamic optimization of Heating, 
Ventilation, and Air Conditioning (HVAC) control hold promise to advance building operations 
for efficiency and grid response. These technologies use data from the control system to 
determine the analytically optimal setpoints, and then write back the optimal setpoints into the 
control system to minimize system energy consumption or costs. There are limited studies 
documenting field validations of these technologies. This paper presents the results from a 
long-term field evaluation of a model-predictive HVAC optimization system that installed in four 
commercial buildings.  

Energy savings analysis was conducted based on pre/post submetered energy use. Across the 
cohort of evaluation sites, HVAC savings following the implementation of the optimization 
system were mixed, ranging from 0-9%. Analysis of site operational data showed that occupant 
comfort was neither positively nor negatively impacted. Key technology adoption 
considerations and recommendations are summarized in the paper.  The technology performs 
best when HVAC systems are in good working condition, and can be exercised to achieve the 
full range of its optimized setpoints - however it may not provide extensive additional savings 
over cases where best practice sequences of operation and reset strategies are already 
comprehensively implemented.  

1. Introduction
In 2012, U.S. commercial buildings used 7.346 quadrillion Joule of total site energy: 4,474 
quadrillion Joule of electricity, 2,372 quadrillion Joule of natural gas, 141 quadrillion Joule of 
fuel oil. Overall, total energy usage in commercial buildings increased 7% since 2003 (EIA 2016). 
Within commercial buildings almost 54% of end use energy use is due to heating, ventilation 
and cooling (EIA 2016). To achieve energy efficiency in commercial buildings therefore it is 
important to improve the energy efficiency of the heating, ventilation and air-conditioning 
(HVAC) system.  

Model-predictive control (MPC) optimization approaches present a promising solution for 
increasing the operational efficiency of building HVAC systems.  These techniques use a 
dynamic system model and disturbance forecast to predict system performance with a given 
control law, thereby allowing the control law to be optimized for a given objective and taking 
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into consideration future events. They combine the model with the real-time data read from 
building automation system (BAS) to determine the optimal control setpoints (e.g. supply air 
temperature setpoint, chilled water leaving temperature setpoint, and zone air temperature set 
point), and write analytically based optimal setpoints back to the BAS. Two-way communication 
with BAS during HVAC operation process is the distinguishing feature of MPC solutions in this 
paper. This process of reading and writing happens repeatedly at regular time interval in the 
optimal operation process. The literature reflects a broad family of work to develop and test 
the performance of these solutions across a diversity of HVAC system types, modeling, and 
optimization approaches. The more commonly demonstrated HVAC optimization solutions are 
observed to rely upon data-driven models, given the practical implementation challenges 
associated with physics-based modeling approaches - particularly in terms of computational 
complexity as noted in Sun 2005, but also in terms of configuration and customization. Several 
publications provide a thorough examination of these modeling approaches which primarily 
include black box models that relate a signal to a response, and grey-box models that include 
some a priori knowledge of the physical representation of the HVAC system - see for example Li 
2015 and Ma 2011.  
 
A snapshot of the more recent literature shows that optimized control solutions have been 
developed and tested for cooling plants (Ma 2011), pumping systems within complex cooling 
plants (Wang 2012), air handler units (AHUs) and variable air volume (VAV) terminals (Bengea 
2015; Li 2015; Liang 2015; Platt 2011; West 2014), and packaged systems (Putta 2013). To test 
and evaluate these optimized control strategies, researchers commonly conduct simulation-
based assessments, such as Ma (2011), Wang (2000, 2013), and Liang (2015). Simulation-based 
studies offer the obvious advantages of controllability, ease of permutation to quickly cover a 
variety of operational conditions, and ease of implementation, but may not reflect as-operated 
‘real world’ conditions. Validations of these optimized control strategies in actual operational 
buildings are therefore very important. Such studies provide information on in-situ 
performance, including the natural non-idealized stochastic variability in building operations 
such as bandwidth-limited networks, diverse system design, faulty or missing sensor 
measurements, system degradations, complex control strategies, and occupant impacts. They 
can provide a valuable complement to simulation-based analyses, particularly in terms of 
technology’s practical applicability, generalizability, and robustness.  
 
Given the logistical complexities, time, and cost of conducting experiments in existing occupied 
buildings, field evaluations are often constrained in terms of scale of implementations (one 
subsystem, one floor, two buildings in rare case), or duration of the study (days to two months 
in selected seasons). For example, Platt (2011) demonstrates a 30% energy savings over a 
week-long testing period in one floor of an office building using a grey-box MPC system to 
determine optimal AHU on/off schedule and zone temperature setpoint. West (2014) continues 
Platt’s research and provides evaluation results of the commercialized version of the 
technology in two buildings. The technology is shown to save 19% HVAC energy over a 51-day 
period in one office building, and 32% over a 10-day period in another office building. Bengea 
(2015) describes a fault-tolerant MPC system for AHUs and VAV terminals, and reports 30%-
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60% HVAC energy savings for its implementation in a building for several days. Li (2015) 
implements a MPC in a rooftop unit and its associated VAV boxes in a medium-sized building. 
The MPC reduced the equipment’s electricity use by more than 20% over 20 test days in swing 
season.  
 
While these solutions have shown promising performance, model-based optimization is not yet 
the norm in commercially available building control and analytics technologies. In the realm of 
commercial solutions, “Energy Management and Information Systems (EMIS)” are understood 
to comprise a broad family of tools and services to manage commercial building energy use. 
These technologies offer a mix of capabilities to store, display, and analyze energy use and 
system data, and in some cases, provide control (CEE 2012; King 2017). They include: 
benchmarking and monthly utility bill analysis tools; energy information systems, that focus on 
interval meter data analysis; building automation systems (BAS); and fault detection and 
diagnostic (FDD) tools (Harry 2016; US DOE 2015). Within the EMIS technology space, the 
market has relatively recently begun to deliver automated system optimization technologies 
that provide model-predictive supervisory optimization through two-way communication with 
the BAS. Although relatively few examples exist in today’s market, these offerings are becoming 
available for use in commercial buildings (Smart Energy Analytics Campaign 2017). In spite of 
their commercial availability, assessments of their performance most commonly take the form 
of vendor-provided case studies and customer testimonials.    
 
Given the scope of prior research and current technology trends, more comprehensive field 
validations are critical to understand the state of MPC optimization technology, provide 
informative assessments to utilities and building owners, and to inform the research and 
development community of outstanding needs and implementation challenges. To this end, 
this paper provides five primary contributions to the literature. 1) It provides a field assessment 
of a commercialized model-predictive HVAC optimization product. 2) It comprises a 
comprehensive field evaluation across four building types, located in three different climate 
zones. 3) The field evaluation encompasses a long-term performance analysis based on 
pre/post submetered energy use over a period of 7 to 15 months. 4) The energy savings 
analysis is combined with an assessment of the impacts of the optimization on occupant 
thermal comfort based on measured data from the evaluation sites. 5) Practical 
recommendations are offered for future MPC development and to building owners for 
deployment decision-making.   
 
In the material that follows, we describe the technology and the methodology that was used to 
evaluate its performance. We then present the evaluation findings followed by a discussion of 
the results. Finally, we present conclusions and review compelling directions for future work. 
 
2. HVAC Optimization Technology Description 
The technology evaluated in this study is a commercially available offering that dynamically 
optimizes commercial building HVAC control setpoints for system efficiency, occupant comfort, 
and cost.  It integrates with the BAS to conduct supervisory control. The technology’s algorithm 
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defines optimal space air temperature setpoints that are automatically implemented at the VAV 
terminal units when possible, or through supply air temperature and duct static pressure 
setpoints at the AHU level. The algorithm aims to exercise temperature control between upper 
and lower control limits to maintain occupant comfort. The optimization is built upon a learned 
predictive grey-box model that provides a 24-hour ahead forecast of the building’s load profile, 
using weather forecasts and historical operational data; this model is updated every 4 to 6 
hours.  
 
3. Evaluation Methodology 
The HVAC optimization system was installed for evaluation in four sites. The evaluation was 
designed to assess:  

 achieved energy and utility cost savings, and factors in building operations and 
technology use that influenced those savings  

 impact of the optimized supervisory control on occupant comfort 

 technology adoption potential, as indicated by installation and integration effort, and 
impacts on building management activities   

3.1 Site Characteristics 

The four sites at which technology was installed are summarized in Table 1, including their 
location, size, HVAC systems, and control baseline for the targeted optimization setpoints. This 
cohort reflects climatic diversity, spanning the Southern California (ASHRAE Zone 3B dry), 
Midwest (ASHRAE Zone 5A cool humid), Northeast and Mid-Atlantic (ASHRAE Zone 4A mixed 
humid) regions. It also represents diversity in commercial building types, including an office, a 
courthouse, a hospital, and a high school. These sites also offer a variety of baseline control 
strategies, including no reset, outdoor air temperature-based, return air temperature-based, 
and terminal damper position-based reset.  

 
Table 1: Demonstration site characteristics 

Site Location Size  HVAC System* Control Baseline in Occupied Hours** 

Office Long Beach, 
CA 

15,608
m2 

A central chiller/boiler 
plant as well as 1 AHU 
equipped with variable 
frequency drive (VFD) 
supply fans 

AHU supply air temperature setpoint is reset 
based on outdoor air temperature. AHU duct 
static pressure setpoint is a fixed value.   

Courthouse Dayton, OH 15,621
m2 

A central chiller/boiler 
plant as well as 7 AHUs 
equipped with VFD supply 
fans 

Both AHU supply air temperature and duct 
static pressure setpoints are reset based on 
VAV terminal damper positions.  

Hospital New York, 
NY 

27,871
m2 

15 rooftop units (RTUs) 
equipped with VFD supply 
fans 

RTU supply air temperature setpoint is reset 
based on return air temperature. RTU duct 
static pressure setpoint is a fixed value. 

High School Washington, 
DC  

21,832
m2 

A central chiller/boiler 
plant, as well as 7 AHUs 
and 10 RTUs equipped 
with VFD supply fans  

Some of the AHU and RTU supply air 
temperature setpoints are reset based on 
return air temperature and the rest are fixed 
values. The duct static pressure setpoints are 
fixed values.  
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* Except for the high school, all sites featured reheat at the VAV terminal boxes 
** The HVAC system in all sites operates in occupied and unoccupied modes. During unoccupied hours, the system 
is off. 

 
3.2 Energy and Utility Cost Savings 

Rather than relying upon the technology’s built-in savings measurement and verification 
capability, an independent assessment of energy savings was conducted according to Option B 
of the International Performance Measurement and Verification Protocol (IPMVP) (EVO 2012). 
Option B quantifies HVAC system energy savings through isolated measures of system load. 
Results from an Option C whole building analysis were used as a comparative cross check.  
Table 2 summarizes the data that was collected at each site to determine energy (and utility 
cost) savings. 

 
Table 2: Data collected at each site to determine energy and utility cost savings 

 
Quantity Measurement Level of 

Measurement 
Source 

Whole-building electricity 15-minute interval 
kilowatt (kW) data 

Whole building On-site meter 

HVAC electricity 15-minute interval 
kW data  

Submeters to 
isolate HVAC loads 

On-site meter 

Whole-building gas  
 
 

15-minute interval 
energy or demand 
data 

Whole building On-site meter 

Local outdoor air 
temperature 

Hourly data  Area-local Weather Underground data 
feed 

Site-specific utility tariff 
proxies 

n/a n/a Site-provided information 

Other factors (i.e., occupancy 
levels, space changes, etc.)  

n/a n/a Regular discussion with site 
operations staff 

 
Under IPMVP Options B and C, energy savings are estimated as defined in Equation 1. A 
mathematical baseline model is created from data when the technology is not operating. The 
baseline model is then forward projected into the measure post-installation verification period 
to determine what the energy use would have been in the absence of the technology. The 
difference between this baseline projected energy use, and the metered post installation 
energy use is taken as the energy savings. The Adjustments term is used to capture the effects 
of variables not included in the baseline model, and not associated with the technology, such as 
increased internal loads, or changes to equipment or building occupancy. 

 

Savings= Baseline Projected Energy-Post Installation Energy ± Adjustments (1) 
 
The baseline model that was used to characterize building energy use of the courthouse, 
hospital, and high school sites is a piecewise linear regression that relates load to time-of-week 
and outdoor air temperature (see equations 2-3). This model is defined in detail in the 
literature and has been tested and shown to predict energy use with a high degree of accuracy 
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(Granderson 2015, 2016; Mathieu 2011). A brief overview is provided: We divide a week into 
15-minute-intervals (indexed by i), e.g., the first interval is from midnight to 12:15 on Monday 
morning, the second interval is from 12:15 to 12:30, and so on. A different regression confident 
for each time-of-week, 𝛼𝑖, allows each time-of-week to have a different predicted load. We also 
divide the outdoor air temperatures experienced by that building into six equally-sized 
temperature intervals. A temperature parameter, βj with j = 1...6, is assigned to each outdoor 
air temperature interval. To achieve piecewise linearity and continuity, the outdoor air 
temperature T at time t (which occurs in time-of-week interval i), T (ti), is broken into six 
component temperatures, Tc,j(ti) with j = 1...6. Each Tc,j(ti) is multiplied by βj and then summed 
to determine the temperature-dependent load. Let Bk (k = 1...5) be the bounds of the 
temperature intervals. Component temperatures are computed using the following algorithm:  

1. If T (ti) > B1, then Tc,1(ti) = B1. Otherwise, Tc,1(ti) = T (ti) and Tc,m(ti) = 0 for m = 2...6, and 
algorithm is ended. 
2. For n = 2...4, if T (ti) > Bn, then Tc,n(ti) = Bn − Bn−1. Otherwise, Tc,n(ti) = T (ti) − Bn−1 and 
Tc,m(ti) = 0 for m = (n + 1)...6, and algorithm is ended. 
3. If T (ti) > B5, then Tc,5(ti) = B5 − B4 and Tc,6(ti) = T (ti) − B5. 

 
The temperature parameters βj are only used when a building is operating in occupied mode 
since one would expect a building’s response to temperature would change at unoccupied time 
period. For all buildings, occupied energy use, Eo, is estimated as follows: 
 

𝐸�̂�(𝑡𝑖, 𝑇(𝑡𝑖)) = 𝛼𝑖 + ∑ 𝛽𝑗𝑇𝑐,𝑗(𝑡𝑖)
6
𝑗=1         (2) 

 
To predict energy use when the building is in unoccupied mode, we use a single temperature 
parameter, βu since we expect a building doesn’t response to temperature at unoccupied time 
period. Unoccupied energy use, Eu, is estimated as follows: 
 

𝐸�̂�(𝑡𝑖 , 𝑇(𝑡𝑖)) = 𝛼𝑖 + 𝛽𝑢𝑇(𝑡𝑖)         (3) 

 
The parameters αi and βj and βu are estimated using actual metered energy use and 
temperature data during the baseline time period with ordinary least squares. Each of the 
parameters is physically meaningful: power use varies in each 15-minute-interval in a week and 
varies as a function of outdoor air temperature. 
 
For the office site, a different baseline model (linear daily) was used to obtain an improved fit 
over hourly the time-of-week and temperature model that was suitable for the other sites. The 
mathematical form of the model is defined as: 

𝐸𝑖 =  𝛾0 + 𝛾1 �̅�𝑖 + 𝛾2𝑠𝑑( 𝑇𝑖) + 𝛾3𝐻 + ∑ 𝛾𝑑𝐷𝑑𝑑      (4) 
 
where �̅�𝑖 is the daily average outdoor air temperature, 𝑠𝑑( 𝑇𝑖) is the standard deviation of the 
daily outdoor air temperature, 𝐷𝑑 are binary variable (dummy variable) corresponding to the 



  

 

 7 

day of the week, 𝐻 is a dummy variable that is equal to 1 if the considered day is a holiday and 
0 if not, and 𝛾0, 𝛾1, 𝛾2,𝛾3,  and 𝛾𝑑 are model parameters that are determined from baseline data. 
 
Three statistical goodness of fit metrics were used to verify the accuracy of the baseline models 
that were created: the coefficient of determination (R2); the normalized mean bias error 
(NMBE), and; the coefficient of variation of the root mean squared error (CV(RMSE)). These 
metrics are used to characterize different aspects of model error. Formulas to compute these 
metrics can be found in ASHRAE Guideline 14 (ASHRAE 2014). They are defined as 

𝑅2 = 1 −
∑ (𝐸𝑖−𝐸�̂�)2𝑛

𝑖=1

∑ (𝐸𝑖−
∑ 𝐸𝑖

𝑛
𝑖=1

𝑛
)2𝑛

𝑖=1

         (5) 

NMBE =

∑ |𝐸𝑖−𝐸�̂�|𝑛
𝑖=1

𝑛
∑ 𝐸𝑖

𝑛
𝑖=1

𝑛

          (6) 

CV(RMSE) =
√

∑ (𝐸𝑖−𝐸�̂�)2𝑛
𝑖=1

𝑛
∑ 𝐸𝑖

𝑛
𝑖=1

𝑛

         (7) 

Where  𝐸�̂� and 𝐸𝑖 are the predicted values and actual metered energy use respectively, and n is 
the total number of predictions in the prediction horizon. 
 
Over an evaluation period that ranged from 7 to 15 months, the technology’s optimized 
controls were toggled on and off for one week at a time. The off periods were taken as the ‘pre-
installation’ baseline for savings estimates, while the on periods were taken as the ‘post-
installation’ performance period. This approach is consistent with that outlined in IPMVP 2012, 
Section 4.5.2 on Measurement Period Selection (EVO 2012). 
 
Cost savings were estimated using a blended estimated cost of electricity from site-specific 
utility bills, in combination with energy savings. To determine how energy savings were 
achieved by the model-predictive optimized controls, trend log data from the BAS was 
inspected to compare operational parameters in the on and off periods.  
 
3.3 Occupant Comfort 

To verify that the HVAC energy savings gained from optimization were not achieved at the 
expense of occupant comfort, two types of analysis were conducted to compare conditions 
during on, and off, i.e. conventional, control: 1) changes in space conditions (temperature and 
relative humidity) relative to the ASHRAE thermal comfort zone; 2) changes in stability of space 
air temperature.  

 

Changes in space conditions relative to the ASHRAE thermal comfort zone: This analysis used a 
simplified model of the ASHRAE thermal comfort zone (ASHRAE 2013), shown in Figure 1. In this 
model, regions of comfort for winter and summer are defined by boundaries on a plot of 
relative humidity versus air temperature, as measured in the interior space. To analyze the 
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impact of the technology on comfort conditions, the fraction of points outside of the comfort 
zone when the optimization is on is compared to that when the optimization is off.  

 

 

Figure 1: A simplified representation of the ASHRAE thermal comfort model, with comfort as a 
function of relative humidity and air temperature 

 

Changes in stability of space air temperature: ASHRAE Standard 55 (ASHRAE 2013) specifies the 
maximum change in operative temperature allowed during specified time periods. The 
standard states that the operative temperature may not change more than 1.1°C during a 15-
minute period, 1.7°C during a 30-minute period, 2.2°C during a one-hour period, 2.8°C during a 
two-hour period, or 3.3°C during a four-hour period. To determine the impact of the 
optimization on space air temperature stability, the number of departures from the maximum 
specified changes was compared during the time periods when the optimization was on versus 
when it was off. 

 
3.4 Technology Adoption Potential 

Conclusions regarding adoption potential and broad-scale applicability were important desired 
outcomes of the field validation, so factors such as setup and integration effort, tuning and 
troubleshooting, and impact on building management activities, were also included in the 
evaluation. Bi-weekly calls were held with site operations staff over the duration of the field 
assessment to document staff experiences installing and using the technology. In addition, the 
evaluation team conducted short, directed interviews with site points of contact after 
installation and configuration, and at the end of the evaluation. Finally, scale-up was evaluated 
in terms of HVAC system and control requirements, building size and type requirements, and 
other operational factors that were found to influence savings at each site in the validation 
cohort. 
 
4. Results 
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4.1 Energy and Cost Savings 

4.1.1 Baseline modeling and savings results 

Table 3 summarizes the duration of the data collection period, number of days in the baseline 
and post periods, and goodness of fit for the baseline models. (In three sites, gas data could not 
be acquired due to absence of a meter or poor data quality.) Although recommendations vary, 
‘strong’ fit is taken as R2 greater than approximately 0.7, CV(RMSE) < 25%, and NMBE < 0.5%. 
While the values of some of the CV(RMSE) metrics were modestly higher than preferred, 
overall, the baseline model were deemed sufficient for the savings analysis.  
 
Table 3: Baseline model goodness-of-fit metrics for each site at HVAC isolation level, for baseline data 

collected 
Site Extent of data 

period 
# of days in 
the baseline 

# of days in the 
post-installation 

Baseline Goodness-of-fit Metrics at HVAC 
isolation level 

R2 CV(RMSE) NMBE 

Courthouse 6/30/2016-
9/26/2017 

166 170 0.88 37% -0.1% 

Office 8/23/2016-
8/23/2017 

116 108 0.81 39% 0.0% 

Hospital 8/16/2016-
3/14/2017 

127 113 0.95 14% -0.03% 

High School 3/22/2016-
2/28/2017 

156 148 0.90 27% 0.34% 

 

Table 4 shows the HVAC savings results for each of the four sites. In the table, the electricity 
savings observed at the HVAC submeter levels are presented, followed by the total HVAC 
savings for the site at which gas data was available. The final column contains the total absolute 
savings in kWh.  
 

Table 4: HVAC energy savings at each site 

  

Site HVAC Electricity 
Savings [%] 

Total HVAC Savings  
(Electricity + Gas) [%] 

HVAC Electricity 
Savings [kWh] 

Courthouse 1.4% N/A due to poor gas data quality  5,662 

Office 8.9% N/A due to poor gas data quality 7,167 

Hospital -0.4% N/A, no gas meter installed -2,672 

High School 1.9% 1.0% 11,425 
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In addition to the tabulated and reported savings determined from the HVAC electricity 
submeters, the electricity savings indicated at the whole-building meter were used as a cross 
check. Overall the savings observed at the HVAC submeter level were consistent with those at 
the whole building level – that is, they were in the same range of percent savings observed at 
the whole building level, given an assumed fraction of the whole building load that is 
attributable to HVAC end uses.  
 
At the office site 9% HVAC savings were quantified. These savings were annualized to a 12-
month kWh and combined with site-specific blended average electricity rates ($0.14/kWh) to 
determine annual cost savings. The calculations showed 17,200 kWh annual savings, with an 
associated annual cost savings of $2,410. 
 
At the other three sites, savings ranged from zero to two percent. In the following sections each 
site is further discussed, including an analysis of how savings were achieved, and factors that 
could have compromised the realization of savings. These analyses were conducted through 
BAS trend log analysis and review with site operational points of contact.  

4.1.2 Office Building Savings Analysis 

Figure 2 shows the average HVAC electricity load for each day of the week at the site. The post-
installation condition is plotted in blue, and the baseline projection is shown in red. The 
difference between the red and blue lines therefore represents the normalized average daily 
savings throughout the post-installation period. Tuesdays are excluded in Figure 2, as there was 
insufficient Tuesday data to provide statistically accurate results. This is because the technology 
was often switched from on to off, or off to on, on Tuesdays, precluding categorization of the 
entire 24 hour period as entirely representing either on or off operations. 
 
Further analysis showed that this load reduction was in part attributable to a decrease in the 
AHU static pressure, and increase of the AHU supply air temperature affected by the optimized 
supervisory control. As illustrated in Figure 3 the averaged static pressure in the post-
installation (on) mode is 2.8 kPa lower than in the baseline (off) mode, resulting in a decrease in 
fan speed. Engineering calculations estimate that the reduction in fan speed caused a 50% 
reduction in fan energy use. 
 
In addition to decreases in AHU static pressure an increase in AHU supply air temperature (SAT) 
was effected by the model-predictive optimization algorithm, also contributing to energy 
savings. Figure 4 shows that when the optimization technology is operating and the outdoor air 
temperature is above 13.6 °C the averaged SAT is 0-1.7°C higher than when the technology is 
not operating (plotted in green). Increasing the SAT has three savings benefits: it reduces 
cooling energy as it reduces cooling load; it increases the number of hours when the 
economizer is able to provide all necessary cooling; and it also leads to a decrease in the 
amount of simultaneous heating and cooling (Murphy 2011). 
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Figure 2: Daily power comparison for the HVAC system time averaged over the 12-month monitoring 
period at the office site 

    

 
 

Figure 3: Decrease in AHU static pressure and fan speed at the office site                                 

 
Figure 4: AHU supply air temperature comparison in on and off mode at the office site 
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4.1.3 Courthouse, Hospital, and High School Savings Analysis  

  

 

 

                
Figure 5: Time averaged HVAC power comparison at the courthouse (top left), hospital (top right), and 
high school (bottom left) sites; red indicates the baseline projected load for each hour of the day, and 

blue indicates the metered load under optimized control.   

 
The HVAC savings identified in at the courthouse, hospital, and high school sites ranged from 
zero to two percent. Following the convention used in Figure 2, Figure 5 shows the average 
HVAC electricity load for each hour of the day at the three sites during the post-installation 
period. These plots show little difference between the post-installation (on) case and the 
baseline projection case.  
 
Analysis of the issues that may have compromised savings at the three sites were conducted, 
and the findings were confirmed through discussion with the operations staff at each site. The 
issues are summarized below. 
 

Fixed chilled water (CHW) valve position control requirement in AHU operation: AHU CHW valve 
usually modulates to maintain the SAT setpoint. This fixed valve position was necessary to 
maintain minimum flow to the chiller, but prevented the optimized SAT setpoint from being 
met in a unit that served approximately 35% its building’s load. 
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Humidity control requirements: In one site, the optimized SAT setpoint could not be met due to 
required humidity control; this was observed across a set of units that served ~28% of the total 
building cooling load. Figure 6 shows a one-day example. During 7:00am and 8:30am, the SAT 
met the setpoint. After 8:30am, the AHU return air relative humidity (RARH) exceeded 50% 
which leaded to the 100% open of the CHW valve (CHWV). As a result, SAT was much lower 
than the proposed optimized setpoint.  
  

 
Figure 6: AHU supply air temperature and setpoint, return air relative humidity, and chilled water 

valve open position on September 19, 2016 at the high school site 

 
Humidity and pressure control requirements: The hospital had strict space humidity and 
pressure control requirements. Optimized (reduced) duct static pressure setpoints will cause 
the decrease in space pressure, therefore, optimized setpoints were frequently overridden due 
to compensatory adjustments made by the operators to meet zone pressure setpoints. 
 
Baseline reset strategy based on terminal boxes damper positions: In one site it was possible 
that the optimized setpoints were equally (but not more) effective as those in the baseline 
strategy. 
 
Partial capacity of RTUs: In one site half of the RTUs were running at 50-60% of capacity due to 
refrigerant undercharge or issues with the compressor, constraining the extent to which the 
systems could be exercised for optimization. 
 
Incomplete control of full HVAC load: In two sites units comprising 20-25% of the building 
cooling load were not placed under optimized control. 
 
Poor controllability of chilled water valve position and supply fan speed: In one site a host of 
mechanical issues impacted the controllability of these parameters.  
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Overrides and reheat: At one site, for unknown reasons, a third party engineer intermittently 
overrode the optimized control setpoints. Additionally, during summer when the boilers were 
shut down, VAV reheat was not possible, reducing savings potential from reheat reduction. 
 
4.2 Thermal Comfort 

As outlined in Section 3.3 thermal comfort impacts were assessed by analyzing changes with 
respect to the ASHRAE comfort zone, and the stability of space temperature. Taken as a whole, 
these analyses indicate no significant changes in thermal comfort between baseline operations 
and post-installation operations. 
 
 4.2.1.Comfort Zone Analysis 

The analysis of comfort using the simplified ASHRAE comfort model as described in Section 3.2 
was performed at two sites where the zone temperature measurements in VAV boxes were 
available. Data were gathered from a set of AHUs and associated VAV boxes representative of 
standard occupied spaces. For each AHU, the linked VAV boxes that served typical spaces were 
studied. The analysis time period only included the hours when the building was heavily 
occupied.  
 

The analysis was conducted for a total of 10 zones of space conditions. Across the 10 zones that 
were analyzed, 23 percent of the points were outside of the comfort zone in the baseline 
conditions when the optimization was not in operation, and 24 percent of the points were 
outside of the comfort zone it was in operation. Figure 7 shows the results when each of the 10 
VAV zones was considered individually. In 6 zone spaces, the optimized operations showed a 
slight increase in the number of points outside of the comfort zone, and in 4 zone spaces, the 
optimized operations showed a modest decrease. 
 

 
Figure 7: Percentage of operational points (space temperature paired with space humidity) outside of 
the comfort zone for each VAV, during the on (blue) and the off (red) time periods at the courthouse 

and high school 
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4.2.2 Space Air Temperature Stability 

ASHRAE Standard 55 defines the maximum space air temperature changes allowed over several 
time periods: 15 minutes, half an hour, one hour, two hours, and four hours. Each of the VAV 
boxes that were analyzed according to the simplified thermal comfort model was also analyzed 
to evaluate departures from these temperature stability thresholds. Table 7 summarizes the 
number of times that the space air temperature at the courthouse and high school sites 
changed by an amount greater than that allowed under the standard. Across each of the 10 
zones, and each of the time periods, there were 435 instances of departures from the standard 
when the technology was off and 295 instances when the technology was on. These data 
indicate that the optimized controls may have modestly improved space temperature stability. 
 

Table 7: The number of times that the change in space air temperature exceeded the maximum 
allowable during the studied time period, for each time duration in ASHRAE Standard 55  

 

PEO Status Courthouse - Time duration (hours) High school - Time duration (hours) 

0.25 0.5 1 2 4 0.25 0.5 1 2 4 

Baseline (Optimization off) 13 25 25 46 36 5 23 44 122 96 

Post-installation(Optimization on) 7 6 14 21 14 4 17 29 87 96 

 
4.3 Technology Adoption Potential 

Consideration of adoption potential extends beyond energy and cost savings into issues related 
to ease of technology adoption, and general usability. The findings reported in the following 
subsections comprise information obtained from interviews with key points of contact at each 
demonstration site, as well as observations from the evaluation team. 
 
Up to 3 days of the building operation staff’s time was necessary to support system installation 
and configuration (this did not include time for IT staff or controls contractors), including 
interfacing with the IT department to acquire approvals for installation, provision of control 
specifications, device and system access, and scheduling site access and site walkthroughs. 
Additionally, up to 3 days staff time was required to help troubleshoot connectivity, and 
monitor stability as the system was brought into full control. While the overall staff time was 
modest, the calendar time for implementation can be protracted across many months, due to 
the lead-time to coordinate work amongst IT, controls contractors, and the technology team. 
The government courthouse and hospital facilities were most challenged in this respect. In the 
most difficult case, it took six months to obtain IT approvals. 
 
Organizational requirements for network and data security can vary greatly in stringency. 
Depending on the scope of these requirements, higher-level approvals from within IT business 
units may be necessary to implement the technology as it requires two-way communication 
(read and write) with the BAS.  In highly protected networks such those in government facilities, 
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custom solutions may need to be defined – although once defined they can be replicated across 
properties. Once the system is up an running, results from the field installations in this study 
suggest that the connectivity between the on-site gateway and the BAS or cloud can be 
somewhat brittle to power outages, power disconnects, and network addressing changes.       
 

5. Discussion  
In general the savings achieved by the demonstrated MPC technology in this field study, at 0-
9%, are lower than the results reported in previous simulation and experimental studies of 
similar technologies for AHU/VAV systems (Platt 2011, West 2014, Bengea 2015, Li 2015, and 
Liang 2015). In addition to longer testing periods in this study, and the different optimization 
algorithms, there are three potential causes for the difference in savings. 
  
1) Non-idealized system conditions: As described in Section 4.1.3, in one building the systems 

were not well tuned or operating properly upon adoption of the MPC, and in another 
building operational and mechanical issues led to poor controllability preventing realization 
of the optimized setpoints from the MPC algorithm. 

2) Complexity of baseline control strategies: At all sites (Table 1), the AHU or RTU supply air 
temperature setpoints are reset between minimum and maximum limits based on variables 
representing the actual loads within the spaces. One site implemented a reset strategy for 
the duct static pressure setpoint as well. Reset is proven to be more efficient than strategies 
that use fixed value settings, thus the already some-what optimized baseline control limits 
the savings percentage. Similar constraints are noted in Ma (2011) which documents 
relatively small MPC savings due to an effective control baseline, whereas Liang (2015) 
documents 28% savings relative to a fixed AHU SAT baseline control strategy. Finally, three 
sites in this study had specialized control requirements (space pressure, space humidity, 
and minimum chiller flow) that impacted efficacy of the MPC.  

3) Control variables optimized: The MPC product evaluated in this study provides optimized 
setpoints for AHU supply air temperature and duct static pressure. Other studies include 
the same and/or additional control variables such as AHU start on and shut off schedule 
(Platt 2011, West 2014), outdoor air damper position (Liang 2015, Bengea 2015), VAV 
terminal flow rate and reheat coil valve position (Bengea 2015, Li 2015). 

 
The varying levels of MPC savings observed in this study suggest several opportunities to 
advance the state of knowledge and deployment practices in several areas. Expanding the 
scope of optimization to consider the most effective combination of optimized control 
parameters in more systems and their interactions could potentially drive deeper and more 
reliable savings. Robust optimization algorithms are needed to adapt to imperfect system 
conditions and special control needs. Furthermore, it will be valuable to document the 
conditions under which predictive control optimization can be expected to provide significant 
savings with respect to best practices sequences of operation. It is notable that demonstration 
site engineers, and contracted engineering service providers deemed each site in this study a 
suitable fit for the technology, with high savings potential in spite of the three factors described 
above.  
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Although results were mixed across the cohort of evaluation sites, the field study and site 
participants surfaced several recommendations to maximize success in implementing the type 
of technology in future: 

 Solutions to accommodate cyber security requirements can be identified, but may take 
some time to define, and should be communicated to peers for replication. 

 Ensure that the IT department, contractors, energy managers, and operations staff are 
all engaged, and clearly understand the scope and intent of technology installation and 
use - each has a critical role in ensuring smooth and timely installation and operation. 

 Phase in the extent of administrative privileges that are granted to the supervisory 
controls over time, expanding as site operations staffs become increasingly comfortable 
with the system.  

 Understand when system or equipment problems are not related to the optimization 
technology, to make sure these problems can be resolved by the appropriate 
contractors. There may be a (mis)perception that the optimization system is meant to 
resolve all aspects of HVAC system operation; however, there will still be need for 
standard maintenance and service support for areas outside the scope of the 
supervisory control system. 

 Before beginning installation, document any known mechanical issues, collect 
mechanical system drawings, and document space usage details.  

 Before initiating the optimal control policies, allocate resources to resolve all mechanical 
issues, as successful optimization and associated savings potential is severely challenged 
if systems are underperforming or not operating well.   

 

6. Conclusions and Future Work 
In this study, a commercially available MPC technology was implemented at four sites and 
evaluated over a period of 7 to 15 months. These sites represented a diversity of commercial 
building types, control strategies, and geographies, including a courthouse, school, hospital, 
and office. The evaluation was designed to assess energy and cost savings attributable to use of 
the technology, impacts on occupant comfort, and scale-up considerations to inform future 
adoption. Across the cohort of evaluation sites, HVAC savings following the implementation of 
the optimization system were mixed, ranging from 0-9%. Analysis of site operational data 
showed that occupant comfort was neither positively nor negatively impacted. At the site that 
was most successful in achieving savings were attributable to the implementation more 
aggressive and comprehensive AHU supply air temperature and static pressure reset strategies. 
In cases where savings were modest or not achieved, several factors were identified that could 
have compromised the technology’s effectiveness.  
 
Complementing the energy and cost savings findings, key technology adoption considerations 
were identified in the course of the field evaluations. Modest time is required from building 
staff to support system installation, configuration, and tuning. However, the calendar time for 
implementation can be much longer, due to the lead-time to coordinate and schedule work 



  

 

 18 

amongst IT department, controls contractors, and the technology team. Data security and IT 
approvals are still challenges for technology implementation.  
 
Taken as a whole, the detailed findings from the field evaluation coupled with guidance from 
the technology team indicate that the technology is best suited for application in large buildings 
such as offices and schools. Buildings such as hospitals that have specialized pressure and 
humidity requirements may be constrained in benefitting from the technology without changes 
to operational and control strategies in the affected areas. The technology performs best when 
HVAC systems are in good working condition, and can be exercised to achieve the full range of 
it’s optimized setpoints - however It may not provide extensive additional savings over cases 
where best practice sequences of operation and reset strategies are already comprehensively 
implemented. The technology is not well suited for buildings without variable air volume 
controls. Organizations that are not able to integrate the activities of IT, facilities, and 
operations will be challenged to successfully install, maintain, and sustain ongoing value from 
the technology. Most sites reported that they would recommend the technology to their peers, 
but emphasized the importance of the success factors noted in the Section 5. 
 
Future work is needed to continue publicly documenting field studies of commercialized 
optimization products to provide a deeper understanding of what today’s technology is 
delivering and how it can be improved upon. From a practical standpoint of technology 
development, machine-to-machine integration presents further opportunity for advancement. 
For example, truly pervasive “plug-and-play” functionality is still being developed, as are 
solutions to automatically extract and semantically interpret data across diverse systems and 
data types. A convergence of the capabilities of fault detection and diagnosis systems and 
control optimization systems would provide beneficial streamlining for building operators and 
managers. It could also potentially offer and enhanced ability to ensure that operational design 
intent is correctly implemented and maintained over the duration of the operational stage in 
the building lifecycle. 
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