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Potential of artificial intelligence in reducing
energy and carbon emissions of commercial
buildings at scale

Chao Ding 1, Jing Ke 1, Mark Levine1 & Nan Zhou 1

Artificial intelligence has emerged as a technology to enhance productivity
and improve life quality. However, its role in building energy efficiency and
carbon emission reduction has not been systematically studied. This study
evaluated artificial intelligence’s potential in the building sector, focusing on
medium office buildings in the United States. A methodology was developed
to assess and quantify potential emissions reductions. Key areas identified
were equipment, occupancy influence, control and operation, and design and
construction. Six scenarios were used to estimate energy and emissions sav-
ings across representative climate zones. Here we show that artificial intelli-
gence could reduce cost premiums, enhancing high energy efficiency and net
zero building penetration. Adopting artificial intelligence could reduce energy
consumption and carbon emissions by approximately 8% to 19% in 2050.
Combining with energy policy and low-carbon power generation could
approximately reduce energy consumption by 40% and carbon emissions by
90% compared to business-as-usual scenarios in 2050.

Climate change is a critical theme and challenge in the past and current
centuries. Many regions of the world have experienced extreme
weather events such as floods and heat waves, and these events have
been happening more frequently in recent years. To limit global
warming, the Paris Climate Agreement sets a 1.5 °C global warming
target by reducing energy consumption and carbon emissions1. Gov-
ernments worldwide have already established ambitious climate tar-
gets to address this goal. For example, the United States is targeting a
50–52% greenhouse gas (GHG) pollution reduction from2005 levels in
20302, China announced3 an action plan for CO2 peaking before 2030,
and the EuropeanUnion proposes to cut GHG emissions to at least 55%
below 1990 levels by 20304.

Meanwhile, the global urban population has experienced rapid
growth since 1950. In 2018, ~55% of the world’s population lived in
urban areas. This number is expected to increase to 68% by
2050, according to a United Nations prediction5. Due to this rapid
urbanization, there will be considerable new construction. The
world’s building stock is expected to double by 2060, which is
equivalent to building an entire New York City every month for the
next 40 years6.

According to the US Energy Information Administration (EIA), the
building sector accounted for 39% of primary energy consumption in
the United States in 20117. Therefore, to support energy efficiency and
carbon reduction targets, it is crucial to study buildings.

With the rapid development of computer technology, artificial
intelligence (AI) is becoming increasingly accessible for different
domains and applications. It “solves complex cognitive problems
commonly associated with human intelligence, such as learning, pro-
blem-solving, and pattern recognition”8. As of February 2020, 50
countries had announced national AI strategies9.

AI has been widely adopted in different application domains,
such as computer vision, robotics, natural language processing,
and machinery. Recently, it has also been used to improve energy
efficiency and reduce carbon emissions in the building10–12

transportation13–15, and industry sectors16–18. Some popular research
directions include smart control, system diagnostics, occupancy
behavior, load prediction, and demand response.

However, the energy-saving potential of AI in buildings has not
been thoroughly understood. Existing literature primarily focuses on
specific aspects of building performance such as building design19,20,
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construction21–24, operation and control25–28; the research indicates a
diverse range of potential savings, spanning from 2 to 60%. Moreover,
a systematic and standard method for AI savings quantification is still
lacking. Themechanismof howAI could best be used to reduceenergy
consumption and carbon emissions in buildings is also not clear.

Buildings are complex systems, with thousands of components,
such as walls, windows, and HVAC and lighting systems. Building
constructions usually involve planning, analyzing, developing and
constructing, each requiring substantial knowledge, investment, and
labor. Building constructions often pose potential threats to the health
and safety of constructionworkers. AI has the potential to reduce costs
across various stages of the construction process, mitigate risks, and
enhance health and welfare benefits22–24,29–33. Moreover, the interac-
tions between building occupants and building components are non-
linear and difficult to capture using traditional rule-based control
algorithms. With advanced AI algorithms such as deep learning and
reinforcement learning, the AI model can itself learn from operational
data and evolve itself with continuous live data to optimize objective
functions and improve performance.

What is the future of high-efficiency buildings in the United
States? How can AI influence building design? If we assume that AI
reduces the cost of implementing energy efficiency by 5%, how much
additional energy and carbon benefit could be achieved? Instead of
concentrating on a specific AI technology, the objective of this study is
to explore the potential impact of AI on enhancing energy efficiency
and reducing carbon emissions in commercial buildings at scale. Fur-
thermore, the study aims toproposea systematic approach that can be
applied to quantify the benefits of AI in various building types beyond
commercial buildings. The paper is organized as follows. Result sec-
tion proposes a four-key structure to systematical decouple and
evaluate the theoretical maximum energy-saving potentials across an
individual building’s lifetime; andquantifies the impact ofAI at scaleby
developing energy efficiency technology adoption and building stock
modeling. Discussion section discusses future research directions and
summarizes the conclusions. Finally, Methods section describes the
methodologies in details.

Results
AI’s impact on energy and emission reductions
To understand the areas in which AI can contribute to reducing energy
consumption, it is first necessary to understand the average building
energy efficiency level and the current best practices.

According to the EIA’s Commercial Buildings Energy Consump-
tion Survey (CBECS) in 201234, office buildings are the most common
type and account for the highest electricity consumption (20%) among
all commercial buildings. The median US office building energy use
intensity (EUI) is 167 kilowatt-hours per square meter (kWh/m2) (53
thousand British thermal units per square foot, kBtu/sf), which is

considered tobe thebaseline officebuilding energy consumption level
(EUIbase) in this study. Based on a review of 67 low-energy verified
buildings in the United States, the median of the gross EUI is 57 kWh/
m2 (18 kBtu/sf)35. The difference between the average and the best
practice (high-energy efficiency building, HEEB) is assumed to be the
technical building energy saving, which may be attributed to several
factors.

We break down the building energy saving into four key cate-
gories: (1) equipment, (2) occupancy influence, (3) control and
operation, and (4) design and construction.

The energy consumption in office buildings is dominated by
medium office buildings, accounting for 70% of the total34. To
demonstrate ourmethodology, amedium office building was selected
as an example for the following analysis. Annual building energy con-
sumption of a prototype medium office building was modeled using
theUSDepartment of Energy’s (DOE’s) EnergyPlus simulation tool. The
prototypemediumofficemodel is defined by ASHRAE standard 90.136,
which has detailed building characteristics such as geometry, thermal
properties, HVAC system, occupancy, and more. The geometry infor-
mation, as well as other key assumptions of the baseline EnergyPlus
model setting, is summarized in Supplementary Table 1. The DOE’s
prototype building models have undergone rigorous calibration using
real data, making them highly reliable. These calibrated models have
been used in the evaluation of building energy codes and the for-
mulation of code amendments by the DOE’s Building Energy Codes
Program37.

Four representative cities were simulated in detail, to consider
building energy consumption in different climate zones. Table 1
shows the baseline medium office energy consumption of each
selected city. The electricity use breakdown can be found in Fig. 1. It
was assumed that natural gas is used to provide hot water and
heating.

EnergyPlus building energy models were developed to consider
different design variations among the proposed four key categories.

The Pacific Northwest National Laboratory (PNNL) conducted a
comprehensive analysis to study the impact of controlmeasures onUS
commercial building energy savings27. Thirty-four energy efficiency
measures in nine prototypical buildings were modeled using Energy-
Plus. Sixteen US climate regions were considered and weighted
according to the EIA’s 2012 CBECS data. The study assumed three
different penetration scenarios (inefficient, typical, and efficient) and
calculated the national total energy savings of the different building
types. The research showed that the national typical total energy
saving from controls is 27.2% for a medium office.

Wedevelopedeight cases to evaluate the energy-savingpotentials
from equipment efficiency improvement. Supplementary Table 2
summarizes the energy savings from each case among the four dif-
ferent climate zones. Based on the energy performance of the baseline
equipment and commercially available best practices, conservative
equipment efficiency improvement assumptions are made in the
analysis to consider the uncertainty and technology applicability
across different climate zones. Cases 1–3 show the energy-saving
potentials from the HVAC system. The baseline system provides
cooling using a two-speed direct expansion cooling coil and heating
using a natural gas furnace inside the packaged air conditioning unit.
Case 1 increases the cooling efficiency by 20%. Case 2 increases the
heating efficiency by 12%. Case 3 integrates both cooling and heating
efficiency improvements. Cases 4 and 5 show the energy-saving
potentials from the lighting system. The baseline average lighting
power density (LPD) is 10.76 watts per square meter (W/m2). Cases 4
and 5 reduce the LPD by 15% and 21%, respectively. Cases 6 and 7 show
the energy-saving potentials from the electric equipment and
plug loads. The baseline average equipment power density (EPD) is
8.07W/m2 with two elevators (32,433W). Cases 6 and 7 reduce the EPD
by 10% and 20%, respectively. Case 8 combines the energy-saving

Table 1 | Simulated total energy consumption of the baseline
medium office buildings

Baseline Climate
zone

Electricity
(kWh/m2)

Natural gas
(kWh/m2)

Total
(kWh/m2)

Honolulu 1A 158 4.0 162

Los Angeles 3B 127 4.6 132

Baltimore 4A 140 16.2 155

Buffalo 5A 141 26.8 168

Annual energy consumptions of baseline medium office buildings from four representative US
climate zones defined by the International Energy Conservation Code (IECC) standard were
simulated in EnergyPlus based on key input assumptions from building energy efficiency
standards36. The details are summarized in Supplementary Table 1. The results were verified
using CBECS 2012 data34. Figure 1 shows the electricity breakdowns of each representative city.
Note that the total electricity consumption, as well as the energy use breakdown percentage,
vary by climate. It is necessary to conduct whole building energy simulation for each cli-
mate zone.

Article https://doi.org/10.1038/s41467-024-50088-4

Nature Communications |         (2024) 15:5916 2



measures of Cases 1–7. Case 9 considers the replacement of packaged
air conditioning units with heat pumps for space heating in addition to
Case 8. Supplementary Table 2 shows the integrated energy-saving
potentials. The total energy savings from equipment efficiency
improvement are 11.5~17.3%.

Regarding building design and construction, nine cases were
considered to evaluate the energy-saving potential. Supplementary
Table 3 summarizes the energy savings from each scenario among the
four different climate zones. Cases 1–3 show the energy-saving
potentials from building orientations. The baseline orientation is
north. The other three orientations were achieved by rotating the
building by 90° (east), 180° (south), and 270° (west). Based on this
analysis, we found that orientation has a limited impact on annual
building energy consumption in three different climate zones. The
best orientation is north. Cases 4 and 5 show the energy-saving
potentials from building envelopes. Case 4 implements high insula-
tions for external walls, slabs, roofs, and windows. Supplementary
Table 4 shows in Case 4 U-factors of different envelope components
compared with the baseline model. Using high levels of insulation can
save 3.2~6.7% of total building energy consumption. Case 5 increases
the infiltration by ~60% to match the ASHRAE 90.1-2016 prototype

medium office building level. Cases 6–8 studied the energy-saving
impact from window-to-wall (WWR) ratio. The baseline average WWR
is 0.33. Case 9 combines all three energy-savingmeasures (orientation,
insulation, and WWR). Supplementary Table 3 shows the integrated
energy-saving potentials. The total energy savings from building
design and construction are 5.9~9.1%.

Energy-related occupant behavior in buildings includes open/
close windows, switch/dim lights, turn on/off lights and plug
loads, turn on/off HVAC and adjust thermostat, and more. Occupants
can interact with building energy systems (HVAC, windows,
lights, and plug-in equipment). Based on the literature review, the
integrated energy-saving potential between wasteful and austerity is
15~20%38–40.

Integrating the four climate zones shown inFigs. 2 and 3 (basedon
the work described herein) summarizes the energy-saving potentials
of a typical medium office building in the United States. The energy-
saving potentials across the building’s lifecycle vary across the four
different climate zones for each category. Noted that the saving
potentials are maximum technical potentials based on energy simu-
lation results, and that itmay require a large amount of time and effort
from architects and engineers to optimize the entire building system
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Fig. 1 | Baseline annual electricity consumption, by use and climate zone. The four selected cities represent four typical climate zones in the United States. Sources:
authors’ calculation based on annual building electricity consumptions of the baseline EnergyPlus model described in Supplementary Table 1.
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Tables 2 and 3.
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from design to operation. We assume that AI could help automate this
processwithmuch lower costs andminimal labor involvement. Table 2
shows some AI applications that can help buildings approach their
theoretical maximum energy savings at a lower cost.

AI reduces emissions of buildings
We believe that AI can improve energy efficiency and reduce carbon
emissions through twomain approaches: (1) AI helps scale up the best
available technologies and practices. Because it can significantly help
to scale up the technologies and speed adoption by reducing the
construction and labor costs. Thus, it can lead to larger scale pene-
tration of efficient technologies; (2) AI can further improve and opti-
mize design, construction, and operation over the entire buildings’
lifecycle, which brings in additional savings.

After we quantified the energy savings potential of individual
HEEBs, the energy savings and emission reductions at scale needed to
be extrapolated from our representative climate zones to the whole
country. We developed six scenarios, including a Frozen scenario
using the current building efficiency level as our baseline, two
business-as-usual (BAU) scenarios with and without adopting AI, and
three policy-driven scenarios promoting HEEBs and net-zero energy
buildings (NZEBs) and evenmore aggressive policy implementation to

achieve zeroemissions by 2050. Thedefinitions of the six scenarios are
listed in Supplementary Table 5.

All scenarios used the same building stock. In the Frozen scenario,
themarket shares of the baseline buildings (average energy efficiency),
HEEBs, and NZEBs remain constant at the 2020 level throughout the
future until 2050. However, in other scenarios, differentmarket shares
are employed to explore alternative scenarios and their impacts. The
scenario with AI leads to a higher market share of HEEBs and NZEBs
over time comparedwith the scenariowithout AI. This trend continues
until the market share of net NZEBs reaches its maximum share.

The major policy measures include the promotion of efficiency
technologies, implementation of building codes and energy efficiency
standards, incentives, subsidies, financial assistance, and government-
funded programs. These policies were constructed based on the
pathway to the Long-Term Strategy of the United States41, which aims
for 100% clean electricity by 2035 and net-zero GHG emissions
by 2050.

The policy scenario in our study encompasses four main
pathways.
1. Decrease in the cost premium for highly energy-efficient (HEE) or

net-zero energy (NZE) medium office buildings through invest-
ment on R&D and deployment of cost-effective technologies
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Fig. 3 | Integrated technical building energy-saving potential of a typical
mediumoffice building in the United States.We broke down the building energy
saving into four key categories α1–α4 are the saving potentials (%). E0–E4 represent
different gross site energy use intensity (EUI). E0 represents themedian of US office
buildings34; E4 is the median of zero energy verified building in the US35.

The selected climate zones (CZs) represent the top four regions (Honolulu: CZ 1A,
Baltimore: CZ 4A, Buffalo: CZ 5A, and Los Angeles: CZ 3B) defined by the Interna-
tional EnergyConservationCode (IECC)basedon a number of officebuildings from
CBECS 2012 data34,59.

Table 2 | Examples of AI applications in different categories

Problem Example AI application Energy-saving
potential

Cost-saving potential

Equipment Aging equipment Failure detection, predictive maintenance53 √

Imperfect design MEP clash BIM model checker22 √

Complex design Architectural design optimization32 √ √

Imperfect construction Schedule management Project schedule optimizer33 √

Envelope leakage, infiltration Drone/robotic construction54 √ √

3D concrete printing/digital construction55 √ √

Workforce/safety
management

Safety sensors, image recognition56 √

Subpar controls/operation System malfunction/failure Fault detection diagnostics (FDD)57 √ √

Optimal control Model predictive control; deep learning; reinforce-
ment learning11

√

Occupant influence Thermal comfort Smart occupancy sensor, behavior prediction38–40 √

Education, training High labor cost, low scalability AI-based software, tools58 √

MEP mechanical, electrical, and plumbing.
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including additive manufacturing, incentives, subsidies, financial
assistance, and government-funded programs.

2. Increase in the retrofit share of existing commercial buildings to
improve their energy efficiency through building codes and
energy efficiency standards, incentives, subsidies, financial assis-
tance, and government-funded programs.

3. Increase in the share of new commercial buildings that achieve
NZE status until the maximum allowed share is reached for each
region or climate zone through investment on R&D and deploy-
ment of cost-effective technologies including additive manufac-
turing, building codes andenergy efficiency standards, incentives,
subsidies,financial assistance, and government-fundedprograms.

4. Increase in the share of retrofitted commercial buildings that
achieve NZE status until the maximum allowed share is reached
for each region or climate zone through building codes and
energy efficiency standards, incentives, subsidies, financial assis-
tance, and government-funded programs.

Sensitivity analysis was conducted to accommodate the uncer-
tainty in the energy use projection. Based on uncertainty analysis and
the pathway to the US Long-Term Strategy41, the following assump-
tions were adopted for the sensitivity analysis: (1) the uncertainty will
increase to ~10% by 2050 for the Frozen scenario; (2) the uncertainty

will increase to ~30–40% around 2030–2050 for the BAU scenarios; (3)
the uncertainty will increase to ~20–30% around 2035 and then
decrease to ~10% around 2050 for the Policy scenarios.

Figures 4 and 5 show the analysis results of the projected total
final energy consumption and CO2 emissions of the six scenarios,
respectively. Supplementary Tables 6 and 7 summarize the analysis
results of the projected total final energy consumption and CO2

emissions of the six scenarios, respectively.
As shown in Fig. 4, if there is no energy efficiency improvement

and policy support, building energy consumptionwill keep increasing,
as described by the Frozen scenario. Considering continued technol-
ogy improvement and increased shares of HEEBs and NZEBs in new
construction and building retrofits, the BAU scenario without AI will
peak around 2040. AI could help reduce the cost premiumof HEE and/
or NZE buildings and therefore could increase their market shares23,24.
It was estimated that cost savings and revenue generation from
adopting AI could be >10% of annual on-site energy costs42, and AI,
together with robotics and the Internet of Things, can reduce building
costs by up to 20%43. In this study, we assumed that AI could help
reduce building costs by 10%. Adopting AI will help the BAU scenario
peak earlier, around 2035, and reduce energy consumption by ~8% in
2050 compared to BAU, or by ~21% compared to the Frozen scenario.
Meanwhile, if energy efficiency policies (such as retrofit programs,
incentives, rebates, or subsidies) are implemented, the cost premium
of HEE/NZE buildings will be further reduced, which will further
increase the share of NZEBs, even though it may be difficult and not
cost-effective to reach this high share. Finally, to achieve the carbon
neutrality target, the low-emission power generation (LEPG) was
assumed to decrease carbon emission from the 2020 level to zero
emissions by 2050. Adopting AI will help the policy scenario further
reduce energy consumption by ~19% in 2050 compared to the policy
scenario without AI. As a result, when integrated with energy policy
and AI, the best scenario is expected to reach ~40 and 50% reductions
in energy consumption in 2050 compared with the BAU and Frozen
scenarios, respectively.

Similarly, Fig. 5 shows the analysis results of the CO2 emissions.
Adopting AI will help the BAU scenario peak earlier, around 2035, and
reduce CO2 emissions by ~8% in 2050 compared to the BAU scenario,
or by ~35% compared to the Frozen scenario. Adopting AI will help the
policy scenario further reduce CO2 emissions by ~19% in 2050 com-
pared to the policy scenario without AI. As a result, efficiency policy
implementation along with AI technology could reduce CO2 emissions
by ~40% compared with the BAU scenario and 60% compared with the
Frozen scenarios in 2050, respectively. Adding LEPG would help
achieve a near zero-emission target in 2050, with ~93% savings from
the BAU scenario and ~95% from the Frozen scenario, respectively.

Discussion
Limitations
Insteadof concentrating on a specific AI technology, this paper utilizes
engineering and energy simulation methods to quantify the potential
impact of AI on enhancing energy efficiency and reducing carbon
emissions in general. Enabled by advanced AI algorithms and techni-
ques, data-driven modeling and decision-making approach can pro-
vide customized solutions and greatly enhance the adoption and
implementation of high-energy technologies at scale with low cost. To
further improve the accuracy and applicability of the proposed
methodology, the applications of advanced control models (such as
deep learning or reinforcement learning) can further be explored by
following the same framework in future work.

While this paper takesmediumofficeas an example, the proposed
methodology can be applied to different commercial building types
with appropriate adjustments of the input parameters based on spe-
cific characteristics and energy consumption patterns of each building
category. To develop a comprehensive understanding of AI’s energy

Fig. 4 | Energy consumption by scenario. BAU stands for business-as-usual. The
darker color for each scenario indicates the average estimate and the lighter color
for each scenario indicates the estimated ranges from the sensitivity analysis.

Fig. 5 | CO2 emissions by scenario. BAU stands for business-as-usual; LEPG stands
for low-emission power generation (decreasing from the 2020 level to zero emis-
sion by 2050). The darker color for each scenario indicates the average estimate
and the lighter color for each scenario indicates the estimated range from the
sensitivity analysis.

Article https://doi.org/10.1038/s41467-024-50088-4

Nature Communications |         (2024) 15:5916 5



savings potential and carbon reduction opportunities across diverse
building types, future work can expand the analysis to encompass a
wider range of commercial and institutional buildings.

As AI continues to evolve rapidly, including recent advancements
such as generative AI and large languagemodels, there is potential for
future research to track the evolving impact of AI beyond the scope of
this study. Literature reviews indicate a wide range of diverse impacts
across various domains and applications resulting from AI adoption,
which highlights both significant potentials and uncertainties. Further
investigations are required to explore this breadth and depth more
comprehensively.

AI’s impact at scale
AI has been widely adopted in many application domains. In the
building industry, it has been treated as an emerging technology that
can be used to reduce energy consumption and carbon emissions to
adapt to climate change. However, AI’s saving potentials in buildings
are not well understood and remain difficult to quantify. To fill the
gaps, this paper:

• Proposes a four-key structure to systematical decouple and
evaluate the theoretical maximum energy-saving potentials
across an individual building’s lifetime. The saving potentials vary
based on different climate zones. AI is assumed to help buildings
achieve these potentials at a lower cost.

• Quantifies how AI can help increase the adoption rate of low-
energy use/NZEBs by developing energy efficiency technology
adoption and building stockmodeling. Topredict theAI impact at
scale, we considered the construction costs and deep retrofit
costs of new and existingmediumoffice buildings by climate zone
and calculated the building stock turnover and technology
adoption. The benefit of introducing AI technology was also
analyzed.

This research shows that AI could help reduce the cost premium
of HEEBs and NZEBs and therefore increase their market share pene-
trations. Adopting AI technology at scale is expected to decrease
US medium office buildings’ energy consumption and CO2 emissions
by ~8%comparedwith theBAUscenariowithoutAI and ~19%compared
to the policy scenario without AI in 2050, respectively. Integrating
AI with energy efficiency policies and LEPG shows energy use
decreasing by ~40% and CO2 emissions by ~90% from the BAU scenario
in 2050.

This research can help provide policymakers with quantitative
decision support on energy saving and carbon reduction when pro-
moting AI in the building industry. As a genericmethodology, a similar
approach can also be applied to estimate AI’s savings potential for
other building types and for other regions or countries. As discussed
previously, by utilizing the same analytical framework and considering
the unique characteristics of different building types, the proposed
method can provide valuable insights and high-level conclusions
applicable to a broader range of cases.

Methods
Modeling of individual building’s energy-saving potentials
Thediscrepancy between themedianUSoffice and themedianUS zero
energy verified building is assumed to be the technical building
energy-saving potentials. We propose four key categories to account
for this energy-saving potential, including imperfect design/con-
struction, subpar controls/operation, occupancy influence, and
equipment efficiency, as shown in Fig. 3. The total technical energy
saving is described in Eq. (1).

S= S1 + S2 + S3 + S4 = ðα1 +α2 +α3 +α4Þ× EUIbase ð1Þ

where S1~S4 are the technical savings from equipment, occupancy
influence, subpar controls/operation, and imperfect design/construc-
tion, respectively, and α1~α4 are the saving potentials (%).

To understand and quantify each α term in Eq. (1), this study
conducted annual building energy simulations using the US DOE’s
EnergyPlus tool and collected some simulation results from literature
review.

TheASHRAE standard90.1prototypebuildingmodelwas used for
this study. The prototype building models44 were developed by PNNL.
They were derived from the DOE’s Prototype Building Models with
modifications based on input from the ASHRAE Standard 90.1 com-
mittee, the Advanced Energy Design Guide series, and building
industry experts. Theseprototypebuildings represent various building
types and are well-calibrated based on real data. They have been used
by the US DOE’s Building Energy Codes Program for evaluating
building energy codes and proposing code changes. A medium office
was selected as an example building type in this study. Supplementary
Fig. 1 shows the representative geometry and thermal zoning of the
prototype medium office building defined by the ASHRAE standard
90.1. It has three floors, with a total floor area of 4980 square meters
(m2). Each floor has one core zone (60% of floor area) and four peri-
meter zones (40% of floor area). A packaged air conditioning unit was
assumed to provide cooling and heating.

EnergyPlus building energy models were developed to consider
different design variations caused by the proposed four key cate-
gories. Supplementary Tables 2 and 3 show the energy potentials from
equipment and building design/construction, respectively.

Energy efficiency technology adoption and building stock
modeling
Consider the following discrete choices model45,46

si,t
St

=
ai,t expðui,tÞ

PN�1
i=0 ai,t expðui,tÞ

si,t
St

=
ai,t expðui,tÞ

PN�1
i =0 ai,t expðui,tÞ

, ð2Þ

where i=0,1, � � � ,N � 1 denotes the ith choice; t =0,1, � � � ,M � 1
denotes the tth time period; si,t=St is the market share of choice i for
the specific end use in time period t,

PN�1
i =0si,t=St = 1; ai,t is the avail-

ability of choice i for the specific end use in time period t; and ui,t is the
utility of choice i for the specific end use in time period t. For simpli-
city, we assume that index i=0 denotes baseline building, i= 1 denotes
HEEB, and i= 2 denotes NZEB.

We used net present value (NPV) to evaluate the utility of each
type of building. Specifically, the NPV of adoption of a building type
was calculated as the weighted sum of a projected stream of current
and future benefits and costs47:

NPV=NB0 +d1NB1 +d2NB2 + � � � +dnNBn =
Xn

t =0

dtNBt , ð3Þ

where t =0,1,2, � � � ,n is time period index; NBt =Bt � Ct is the net dif-
ference between benefit (Bt) and cost (Ct) that accrue at the time
period t; and dt is the discounting weight, with d0 = 1 and dt =

1
ð1 + rÞt ,

where r is the real discount rate.
The total conceptual first cost (TCC) considers only construction

cost (CC) and development cost (DC), specifically,

TCCj =CCj +DCj , ð4Þ

where: j =0,1,2 denotes baseline building, HEEB, and NZEB, respec-
tively. We further assumed that the costs of HEEB and NZEB are higher
than baseline building, i.e.,

TCCk = CC0 +4CCk

� �
+ DC0 +4DCk

� �
=CC0 × 1 +μk

� �
+DC0 × 1 + νk

� �
, ð5Þ
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where: k = 1,2 denotes HEEB and NZEB, respectively; construction
cost premium ΔCCk =CC0 ×μk and development cost premium
ΔDCk =DC0 × νk , with construction cost premium percentage μk >0
and development cost premium percentage νk >0. The assumed
values of μk and νk are listed in Supplementary Table 8.

The construction cost estimates used for each climate zone are
listed in Supplementary Table 9 for new building and Supplementary
Table 10 for energy retrofit of an existing building.

We assumed that cost premiums of the HEEB and NZEB would
decline over time autonomously or due to policies:

TCCk,t = CC0 +4CCk × 1� αk,t

� �� �
+ DC0 +4DCk × 1� βk,t

� �� �

=CC0 × 1 +μk × 1� αk,t

� �� �
+DC0 × 1 + νk × 1� βk,t

� �� �
,

ð6Þ

where αk,t (0≤αk,t ≤ 1) denotes the construction cost premiumdecline
percentage and βk,t (0 ≤βk,t ≤ 1) denotes the development cost pre-
mium decline percentage, t =0,1, � � � ,T .

As discussed previously in Sections 1 and 2, the utilization of AI
could further reduce both the construction cost premium and the
development cost premium, i.e.,

TCCk,t = CC0 +4CCk × 1� αk,t � ξk,t
� �� �

+ DC0 +4DCk × 1� βk,t � ζ k,t
� �� �

=CC0 × 1 +μk × 1� αk,t � ξk,t
� �� �

+DC0 × 1 + νk × 1� βk,t � ζ k,t
� �� �

,

ð7Þ

where ξk,t (0≤ ξk,t ≤ 1) and ζ k,t (0 ≤ ζ k,t ≤ 1) are the contributions of AI
to further decrease the construction cost premium and development
cost premium on top of the autonomous or policy-induced declines
over time, t =0,1, � � � ,T . We further assumed that Eq. 7 is subject to the
constraints 0≤ 1� αk,t � ξk,t ≤ 1 and 0≤ 1� βk,t � ζ k,t ≤ 1.

Assumptions. This study adopted the following assumptions to cal-
culate the NPV of each type of building:

• A 20-year time horizon with a discount rate of 20%48.
• Operation and maintenance cost: $9.135 per sqft49.
• Energy cost: $2.14 per sqft50.
• Supplementary Tables 8 and 9 summarize the cost premium for
HEEBs and NZEBs compared with the baseline buildings51.

• Supplementary Table 11 summarizes the decrease in cost pre-
mium for HEEBs and NZEBs51 due to the introduction of AI.

• Supplementary Table 12 shows the annual retrofit share of the
total surviving medium office floor space.

• Considering the national solar energy distribution and the total
rooftop areas of all medium office buildings34,52, the shares of
NZEBs cannot exceed the maximum allowed values as shown in
Supplementary Table 13. Similarly, Supplementary Table 14 shows
the maximum allowed NZEB share of the retrofitted medium
office buildings.

Data availability
Thebuilding energy consumption and carbonemissiondata generated
in this study are provided in the Supplementary Information.

References
1. UNFCCC. The Paris Agreement (United Nations Framework Con-

vention on Climate Change, 2015).
2. White House. Fact Sheet: President Biden Sets 2030 Greenhouse

Gas Pollution Reduction Target Aimed at Creating Good-Paying
Union Jobs and Securing U.S. Leadership on Clean Energy Tech-
nologies (The White House, 2021).

3. State Council. Action Plan for Carbon Dioxide Peaking Before 2030
(The State Council of the People’s Republic of China, 2021).

4. European Commission. Communication from the Commission to
the European Parliament, the Council, the European Economic and
Social Committee and the Committee of the Regions: Stepping up

Europe’s 2030 Climate Ambition Investing in a Climate-Neutral
Future for the Benefit of Our People (European Commission, 2020).

5. UN DESA. World Urbanization Prospects: The 2018 Revision (United
Nations Department of Economic and Social Affairs, Population
Division, 2018).

6. Gates, B. & Gates, M. Our 2019 Annual Letter: We Didn’t See This
Coming https://www.gatesnotes.com/2019-Annual-Letter?WT.mc_
id=02_12_2019_05_AL2019_GF-GFO_&WT.tsrc=GFGFO (2019).

7. US EIA. March 2022 Monthly Energy Review https://www.eia.gov/
totalenergy/data/monthly/pdf/mer.pdf (2012).

8. Barr, A. & Feigenbaum, E. A. The Handbook of Artificial Intelligence,
Vol. 2 (HeurisTech Press, 1982).

9. HolonIQ. Global AI Strategy Landscape https://www.holoniq.com/
wp-content/uploads/2020/02/HolonIQ-2020-AI-Strategy-
Landscape.pdf (2020).

10. Kontokosta, C. E., Spiegel-Feld, D. & Papadopoulos, S. The impact
of mandatory energy audits on building energy use. Nat. Energy 5,
309–316 (2020).

11. Ngarambe, J., Yun, G. Y. & Santamouris, M. The use of artificial
intelligence (AI) methods in the prediction of thermal comfort in
buildings: energy implications of AI-based thermal comfort con-
trols. Energy Build. 211, 109807 (2020).

12. Sutherland, B. R. Driving data into energy-efficient buildings. Joule
4, 2256–2258 (2020).

13. Ilieva, R. T. & McPhearson, T. Social-media data for urban sustain-
ability. Nat. Sustain. 1, 553–565 (2018).

14. Sovacool, B. K. & Griffiths, S. Culture and low-carbon energy tran-
sitions. Nat. Sustain. 3, 685–693 (2020).

15. Zhao, X., Askari, H. & Chen, J. Nanogenerators for smart cities in the
era of 5G and Internet of Things. Joule 5, 1391–1431 (2021).

16. Prenafeta-Boldú, F. X. & Kamilaris, A. AI assists in locating hidden
farms. Nat. Sustain. 2, 262–263 (2019).

17. Liu, J., Liu, L., Qian, Y. & Song, S. The effect of artificial intelligence
on carbon intensity: evidence from China’s industrial sector. Socio-
Econ. Plan. Sci. 83, 101002 (2022).

18. van Wynsberghe, A. Sustainable AI: AI for sustainability and the
sustainability of AI. AI Ethics 1, 213–218 (2021).

19. Goia, F. Search for the optimal window-to-wall ratio in office
buildings in different European climates and the implications
on total energy saving potential. Sol. Energy 132, 467–492
(2016).

20. Niachou, A., Papakonstantinou, K., Santamouris, M., Tsangrassoulis,
A. & Mihalakakou, G. Analysis of the green roof thermal properties
and investigation of its energy performance. Energy Build. 33,
719–729 (2001).

21. Sacks, R., Girolami, M. & Brilakis, I. Building information modelling,
artificial intelligence and construction tech. Dev. Built Environ. 4,
100011 (2020).

22. Pan, Y. & Zhang, L. Integrating BIM and AI for smart construction
management: current status and future directions. Arch. Comput.
Methods Eng. 30, 1081–1110 (2023).

23. Blanco, J. L., Fuchs, S., Parsons, M. & Ribeirinho, M. J. Artificial
Intelligence: Construction Technology’s Next Frontier (McKinsey &
Company, 2018).

24. Abioye, S. O. et al. Artificial intelligence in the construction indus-
try: a review of present status, opportunities and future challenges.
J. Build. Eng. 44, 103299 (2021).

25. Yang, T., Bandyopadhyay, A., O’Neill, Z., Wen, J. & Dong, B. From
occupants to occupants: a review of the occupant information
understanding for building HVAC occupant-centric control. Build.
Simul. 15, 913–932 (2022).

26. Kiliccote, S., Olsen, D., Sohn, M. D. & Piette, M. A. Characterization
of demand response in the commercial, industrial, and residential
sectors in the United States. WIREs Energy Environ. 5, 288–304
(2016).

Article https://doi.org/10.1038/s41467-024-50088-4

Nature Communications |         (2024) 15:5916 7

https://www.gatesnotes.com/2019-Annual-Letter?WT.mc_id=02_12_2019_05_AL2019_GF-GFO_&WT.tsrc=GFGFO
https://www.gatesnotes.com/2019-Annual-Letter?WT.mc_id=02_12_2019_05_AL2019_GF-GFO_&WT.tsrc=GFGFO
https://www.eia.gov/totalenergy/data/monthly/pdf/mer.pdf
https://www.eia.gov/totalenergy/data/monthly/pdf/mer.pdf
https://www.holoniq.com/wp-content/uploads/2020/02/HolonIQ-2020-AI-Strategy-Landscape.pdf
https://www.holoniq.com/wp-content/uploads/2020/02/HolonIQ-2020-AI-Strategy-Landscape.pdf
https://www.holoniq.com/wp-content/uploads/2020/02/HolonIQ-2020-AI-Strategy-Landscape.pdf


27. Fernandez, N. E. P. et al. Impacts of Commercial Building Controls
on Energy Savings and Peak Load Reduction (PNNL, 2017).

28. Merabet, G. H. et al. Intelligent building control systems for thermal
comfort and energy-efficiency: a systematic review of artificial
intelligence-assisted techniques. Renew. Sustain. Energy Rev. 144,
https://doi.org/10.1016/j.rser.2021.110969 (2021).

29. Srivastava, S.AI inConstruction—HowArtificial Intelligence is Paving
theWay for Smart Construction https://appinventiv.com/blog/ai-in-
construction/ (2023).

30. Saka, A. B. et al. Conversational artificial intelligence in the AEC
industry: a review of present status, challenges and opportunities.
Adv. Eng. Inform. 55, 101869 (2023).

31. Kor, M., Yitmen, I. & Alizadehsalehi, S. An investigation for integra-
tion of deep learning and digital twins towards Construction 4.0.
Smart Sustain. Built Environ. 12, 461–487 (2023).

32. Baduge, S. K. et al. Artificial intelligence and smart vision for
building andconstruction4.0:machine anddeep learningmethods
and applications. Autom. Constr. 141, 104440 (2022).

33. Regona, M., Yigitcanlar, T., Xia, B. & Li, R. Y. M. Opportunities and
adoption challenges of AI in the construction industry: a PRISMA
review. J. Open Innov. Technol. Mark. Complex. 8, 45 (2022).

34. US EIA. Commercial Building Energy Consumption Survey (CBECS)
https://www.eia.gov/consumption/commercial/data/2012/ (2012).

35. NBI. Getting to Zero Status Update and List of Zero Energy Projects
(New Building Institute, 2018).

36. ASHRAE. ANSI/ASHRAE/IES Standard 90.1-2019—Energy Standard for
Buildings Except Low-Rise Residential Buildings (ASHRAE, 2019).

37. Office, U. S. D. s. B. T. Building Energy Codes Program https://www.
energycodes.gov/ (2022).

38. Sun, K. & Hong, T. A framework for quantifying the impact of
occupant behavior on energy savings of energy conservation
measures. Energy Build. 146, 383–396 (2017).

39. Purdon, S., Kusy, B., Jurdak, R. & Challen, G. In 38th Annual IEEE
Conference on Local Computer Networks—Workshops. 84–92
(2013).

40. Jung, W. & Jazizadeh, F. Human-in-the-loop HVAC operations: a
quantitative review on occupancy, comfort, and energy-efficiency
dimensions. Appl. Energy 239, 1471–1508 (2019).

41. U.S. Department of State & U.S. Executive Office of the President.
The Long-Term Strategy of the United States: Pathways to Net-Zero
Greenhouse Gas Emissions by 2050 https://www.whitehouse.gov/
wp-content/uploads/2021/10/US-Long-Term-Strategy.pdf (2021).

42. IEA. Case Study: Artificial Intelligence for Building Energy Manage-
ment Systems (IEA, Paris, 2019).

43. Rao, S. The Benefits of AI In Construction (Constructible, 2021).
44. USDOEEERE.PrototypeBuildingModels (USDepartment of Energy,

Washington DC, 2023).
45. Greene,W.H.EconometricAnalysis8thedn (PearsonEducation, 2018).
46. Train, K. Discrete Choice Methods with Simulation 2nd edn (Cam-

bridge University Press, 2009).
47. U.S. EPA. Guidelines for Preparing Economic Analyses. Report No.

EE-0568 (US Environmental Protection Agency (EPA), Washington,
DC, 2010).

48. Harvard Green Building Services. Green Building Resource (Har-
vard, 2022).

49. IREM. 2012 Office Buildings—Income Expense Analysis (IREM
(Institute of Real Estate Management), 2012).

50. Constellation. Reducing Your Commercial Real Estate Operating
Costs (Constellation, 2023).

51. Gordian. RSMeans Construction Costs Data (Gordian, 2022).
52. Kurdgelashvili, L., Li, J., Shih, C.-H. & Attia, B. Estimating technical

potential for rooftop photovoltaics in California, Arizona and New
Jersey. Renew. Energy 95, 286–302 (2016).

53. Lee, S. M., Lee, D. & Kim, Y. S. The quality management ecosystem
for predictivemaintenance in the Industry4.0era. Int. J.Qual. Innov.
5, 4 (2019).

54. Oh, S., Ham, S. & Lee, S. Drone-assisted image processing scheme
using frame-based location identification for crack and energy loss
detection in building envelopes. Energies 14, 6359 (2021).

55. Parisi, F. et al. A new concept for large additive manufacturing in
construction: tower crane-based 3D printing controlled by deep
reinforcement learning. Constr. Innov. https://doi.org/10.1108/CI-
10-2022-0278 (2023).

56. Okpala, I., Nnaji, C. & Karakhan, A. A. Utilizing emerging technolo-
gies for construction safety risk mitigation. Pract. Period. Struct.
Des. Constr. 25, 04020002 (2020).

57. Zhao, Y., Li, T., Zhang, X. & Zhang, C. Artificial intelligence-based
fault detection anddiagnosismethods for building energy systems:
advantages, challenges and the future. Renew. Sustain. Energy Rev.
109, 85–101 (2019).

58. Pedró, F., Subosa,M., Rivas, A. &Valverde, P.Artificial Intelligence in
Education: Challenges and Opportunities for Sustainable Develop-
ment https://unesdoc.unesco.org/ark:/48223/
pf0000366994 (2019).

59. IECC. 2012 International Energy Conservation Code https://codes.
iccsafe.org/content/IECC2012 (2012).

Acknowledgements
This work was supported by Lawrence Berkeley National Laboratory
(LBNL) under Contract No. DE-AC02-05CH11231. We would like to thank
Dr. Jessica Granderson at LBNL for providing information related to
building control. The United States Government retains, and by
accepting the article for publication, the publisher acknowledges that
the United States Government retains, a non-exclusive, paid-up, irre-
vocable, worldwide license to publish or reproduce the published form
of this work, or allow others to do so, for United States Government
purposes.

Author contributions
C.D.: conceptualization, methodology, formal analysis, visualization,
and writing/original draft. J.K.: methodology, formal analysis, visuali-
zation, and writing/original draft. M.L.: conceptualization, writing/
reviewing, and editing. N.Z.: conceptualization, supervision, writing/
reviewing, and editing.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-50088-4.

Correspondence and requests for materials should be addressed to
Nan Zhou.

Peer review information Nature Communications thanks Yue Pan, Eti-
enne Saloux, Limao Zhang, and the other, anonymous, reviewer(s) for
their contribution to the peer review of this work. A peer review file is
available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Article https://doi.org/10.1038/s41467-024-50088-4

Nature Communications |         (2024) 15:5916 8

https://doi.org/10.1016/j.rser.2021.110969
https://appinventiv.com/blog/ai-in-construction/
https://appinventiv.com/blog/ai-in-construction/
https://www.eia.gov/consumption/commercial/data/2012/
https://www.energycodes.gov/
https://www.energycodes.gov/
https://www.whitehouse.gov/wp-content/uploads/2021/10/US-Long-Term-Strategy.pdf
https://www.whitehouse.gov/wp-content/uploads/2021/10/US-Long-Term-Strategy.pdf
https://doi.org/10.1108/CI-10-2022-0278
https://doi.org/10.1108/CI-10-2022-0278
https://unesdoc.unesco.org/ark:/48223/pf0000366994
https://unesdoc.unesco.org/ark:/48223/pf0000366994
https://codes.iccsafe.org/content/IECC2012
https://codes.iccsafe.org/content/IECC2012
https://doi.org/10.1038/s41467-024-50088-4
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-50088-4

Nature Communications |         (2024) 15:5916 9

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Potential of artificial intelligence in reducing energy and carbon emissions of commercial buildings at scale
	Results
	AI’s impact on energy and emission reductions
	AI reduces emissions of buildings

	Discussion
	Limitations
	AI’s impact at scale

	Methods
	Modeling of individual building’s energy-saving potentials
	Energy efficiency technology adoption and building stock modeling
	Assumptions


	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




