Unraveling deterministic mesoscopic polarization switching mechanisms: spatially resolved studies of a tilt grain boundary in bismuth ferrite

Publication Type
Journal Article
Authors
DOI
10.1002/adfm.200900100
Abstract
The deterministic mesoscopic mechanism of ferroelectric domain nucleation is probed at a single atomically-defined model defect: an artificially fabricated bicrystal grain boundary (GB) in an epitaxial bismuth ferrite film. Switching spectroscopy piezoresponse force microscopy (SS-PFM) is used to map the variation of local hysteresis loops at the GB and in its immediate vicinity. It is found that the the influence of the GB on nucleation results in a slight shift of the negative nucleation bias to larger voltages. The mesoscopic mechanisms of domain nucleation in the bulk and at the GB are studied in detail using phase-field modeling, elucidating the complex mechanisms governed by the interplay between ferroelectric and ferroelastic wall energies, depolarization fields, and interface charge. The combination of phase-field modeling and SS-PFM allows quantitative analysis of the mesoscopic mechanisms for polarization switching, and hence suggests a route for unraveling the mechanisms of polarization switching at a single defect level and ultimately optimizing materials properties through microstructure engineering. ©2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Notes
cited By 45
Journal
Advanced Functional Materials
Volume
19
Year of Publication
2009
Number
13
Pagination
2053-2063
ISSN Number
1616301X
Keywords
Research Areas
Download citation