Unattached radon progeny as an experimental tool for dosimetry of nanoaerosols: Proposed method and research strategy

Publication Type
Journal Article
Authors
LBL Report Number
LBNL-117E
Abstract
The study of aerosol exposure and dosimetry measurements and related quantitation of health effects are important to the understanding of the consequences of air pollution, and are discussed widely in the scientific literature. During the last 10 years the need to correlate aerosol exposure and biological effects has become especially important due to rapid development of a new, revolutionary industry – nanotechnology. Nanoproduct commerce is predicted to top $1 trillion by 2015. Quantitative assessment of aerosol particle behavior in air and in lung deposition, and dosimetry in different parts of the lung, particularly for nanoaerosols, remains poor despite several decades of study. Direct measurements on humans are still needed in order to validate the hollow cast, animal studies, and lung deposition modeling. We discuss here the use of nanoscale radon decay products as an experimental tool in the study of local deposition and lung dosimetry for nanoaerosols. The issue of the safe use of radon progeny in such measurements is discussed based on a comparison of measured exposure in 3 settings: general population, miners, and in a human experiment conducted at the Paul Scherer Institute (PSI) in Switzerland. One of the properties of radon progeny is that they consist partly of 1 nm radioactive particles called unattached activity; having extremely small size and high diffusion coefficients, these particles can be potentially useful as radioactive tracers in the study of nanometer-sized aerosols. We present a theoretical and experimental study of the correlation between the unattached activity and aerosol particle surface area, together with a description of its calibration and method for measurement of the unattached fraction
Journal
Inhalation Toxicology
Volume
22
Year of Publication
2010
Number
9
Pagination
760-766
Organizations
Research Areas
Download citation