Transfer learning for smart buildings: A critical review of algorithms, applications, and future perspectives

Date Published
02/2022
Publication Type
Journal Article
Authors
DOI
10.1016/j.adapen.2022.100084
Abstract

Smart buildings play a crucial role toward decarbonizing society, as globally buildings emit about one-third of greenhouse gases. In the last few years, machine learning has achieved a notable momentum that, if properly harnessed, may unleash its potential for advanced analytics and control of smart buildings, enabling the technique to scale up for supporting the decarbonization of the building sector. In this perspective, transfer learning aims to improve the performance of a target learner exploiting knowledge in related environments. The present work provides a comprehensive overview of transfer learning applications in smart buildings, classifying and analyzing 77 papers according to their applications, algorithms, and adopted metrics. The study identified four main application areas of transfer learning: (1) building load prediction, (2) occupancy detection and activity recognition, (3) building dynamics modeling, and (4) energy systems control. Furthermore, the review highlighted the role of deep learning in transfer learning applications that has been used in more than half of the analyzed studies. The paper also discusses how to integrate transfer learning in a smart building’s ecosystem, identifying, for each application area, the research gaps and guidelines for future research directions.

  
Journal
Advances in Applied Energy
Volume
5
Year of Publication
2022
Pagination
100084
ISSN Number
26667924
URL
Short Title
Advances in Applied Energy
Keywords
Organizations
Research Areas
Download citation