Thermal performance and energy savings of white and sedum-tray garden roof: A case study in a Chongqing office building
Date Published |
12/2017
|
---|---|
Publication Type | Journal Article
|
Authors | |
---|---|
DOI |
10.1016/j.enbuild.2017.09.091
|
Abstract |
This study presents the experimental measurement of the energy consumption of three top-floor air-conditioned rooms in a typical office building in Chongqing, which is a mountainous city in the hot-summer and cold-winter zone of China, to examine the energy performance of white and sedum-tray garden roofs. The energy consumption of the three rooms was measured from September 2014 to September 2015 by monitoring the energy performance (temperature distributions of the roofs, evaporation, heat fluxes, and energy consumption) and indoor air temperature. The rooms had the same construction and appliances, except that one roof top was black, one was white, and one had a sedum-tray garden roof. This study references the International Performance Measurement and Verification Protocol (IPMVP) to calculate and compare the energy savings of the three kinds of roofs. The results indicate that the energy savings ratios of the rooms with the sedum-tray garden roof and with the white roof were 25.0% and 20.5%, respectively, as compared with the black-roofed room, in the summer; by contrast, the energy savings ratios were −9.9% and −2.7%, respectively, in the winter. Furthermore, Annual conditioning energy savings of white roof (3.9 kWh/m2) were 1.6 times the energy savings for the sedum-tray garden roof. It is evident that white roof is a preferable choice for office buildings in Chongqing. Additionally, The white roof had a reflectance of 0.58 after natural aging owing to the serious air pollution worsened its thermal performance, and the energy savings reduced by 0.033 kWh/m2·d. Evaporation was also identified to have a significant effect on the energy savings of the sedum-tray garden roof. |
Journal |
Energy and Buildings
|
Volume |
156
|
Year of Publication |
2017
|
Pagination |
343 - 359
|
ISSN Number |
03787788
|
Short Title |
Energy and Buildings
|
Keywords | |
Organizations | |
Research Areas | |
Download citation |