Systems Approach to Evaluating Sensor Characteristics for Real-Time Monitoring of High-Risk Indoor Contaminant Releases

Date Published
06/2006
Publication Type
Journal Article
Authors
DOI
10.1016/j.atmosenv.2006.01.052
Abstract

Rapid detection of toxic agents in the indoor environment is essential to protecting building occupants from accidental or intentional releases. While there is much research dedicated to designing sensors to detect airborne toxic contaminants, little research has addressed how to incorporate such sensors into a monitoring system designed to protect building occupants. To design sensor systems, sensor designers must quantify design tradeoffs, such as response time and accuracy, to optimize the performance of an overall system. We illustrate the importance of a systems approach for properly evaluating such tradeoffs, using data from tracer gas experiments conducted in a three-floor unit at the Dugway Proving Grounds, Utah. We apply Bayesian statistics to assess the effects of various sensor characteristics, such as response time, threshold level and accuracy, on overall system performance. We evaluated the system performance by the time (and thus amount of data) needed to characterize the release (location, amount released, and duration). We demonstrate that a systems perspective is necessary to understand the potential benefits of selecting values of specific sensor characteristics to optimize sensor system performance.

Journal
Atmospheric Environment
Volume
40
Year of Publication
2006
Issue
19
Pagination
3490-3502
ISSN Number
13522310
Short Title
Atmospheric Environment
Refereed Designation
Refereed
Keywords
Organizations
Research Areas
Download citation