Rutile Alloys in the Mn–Sb–O System Stabilize Mn 3+ To Enable Oxygen Evolution in Strong Acid

Date Published
10/2018
Publication Type
Journal Article
Authors
DOI
10.1021/acscatal.8b02689
Abstract

Electrocatalysis of the oxygen evolution reaction is central to several energy technologies including electrolyzers, solar fuel generators, and air-breathing batteries. Strong acid electrolytes are desirable for many implementations of these technologies, although the deployment of such device designs is often hampered by the lack of non-precious-metal oxygen evolution electrocatalysts, with Ir-based oxides comprising the only known catalysts that exhibit stable activity at low overpotential. During our exploration of the Mn–Sb–O system for precious-metal-free electrocatalysts, we discovered that Mn can be incorporated into the rutile oxide structure at much higher concentrations than previously known, and that these Mn-rich rutile alloys exhibit great catalytic activity with current densities exceeding 50 mA cm–2 at 0.58 V overpotential and catalysis onset at 0.3 V overpotential. While this activity does not surpass that of IrO2, Pourbaix analysis reveals that the Mn–Sb rutile oxide alloys have the same or better thermodynamic stability under operational conditions. By combining combinatorial composition, structure, and activity mapping with synchrotron X-ray absorption measurements and first-principles materials chemistry calculations, we provide a comprehensive understanding of these oxide alloys and identify the critical role of Sb in stabilizing the trivalent Mn octahedra that have been shown to be effective oxygen evolution reaction (OER) catalysts.

Journal
ACS Catalysis
Volume
8
Year of Publication
2018
Issue
12
Pagination
10938 - 10948
ISSN Number
2155-5435
Short Title
ACS Catal.
Refereed Designation
Refereed
Organizations
Download citation