Predictive simulation of non-steady-state transport of gases through rubbery polymer membranes

Date Published
01/2018
Publication Type
Journal Article
Authors
DOI
10.1016/j.polymer.2017.11.055
Abstract

A multiscale, physically-based, reaction-diffusion kinetics model is developed for non-steady-state transport of simple gases through a rubbery polymer. Experimental data from the literature, new measurements of non-steady-state permeation and a molecular dynamics simulation of a gas-polymer sticking probability for a typical system are used to construct and validate the model framework. Using no adjustable parameters, the model successfully reproduces time-dependent experimental data for two distinct systems: (1) O2 quenching of a phosphorescent dye embedded in poly(n-butyl(amino) thionylphosphazene), and (2) O2, N2, CH4 and CO2 transport through poly(dimethyl siloxane). The calculations show that in the pre-steady-state regime, permeation is only correctly described if the sorbed gas concentration in the polymer is dynamically determined by the rise in pressure. The framework is used to predict selectivity targets for two applications involving rubbery membranes: CO2 capture from air and blocking of methane cross-over in an aged solar fuels device.

Journal
Polymer
Volume
134
Year of Publication
2018
Pagination
125 - 142
ISSN Number
00323861
Short Title
Polymer
Refereed Designation
Refereed
Keywords
Organizations
Research Areas
Download citation