Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems

Date Published
09/2012
Publication Type
Journal Article
Authors
DOI
10.1039/C2EE23187E
Abstract

A validated multi-physics numerical model that accounts for charge and species conservation, fluid flow, and electrochemical processes has been used to analyze the performance of solar-driven photoelectrochemical water-splitting systems. The modeling has provided an in-depth analysis of conceptual designs, proof-of-concepts, feasibility investigations, and quantification of performance. The modeling has led to the formulation of design guidelines at the system and component levels, and has identified quantifiable gaps that warrant further research effort at the component level. The two characteristic generic types of photoelectrochemical systems that were analyzed utilized: (i) side-by-side photoelectrodes and (ii) back-to-back photoelectrodes. In these designs, small electrode dimensions (mm to cm range) and large electrolyte heights were required to produce small overall resistive losses in the system. Additionally, thick, non-permeable separators were required to achieve acceptably low rates of product crossover.

Journal
Energy & Environmental Science
Volume
5
Year of Publication
2012
Issue
12
Pagination
9922-9935
ISSN Number
1754-5692
Short Title
Energy Environ. Sci.
Organizations
Research Areas
Download citation