Line Selection and Parameter Optimization for Trace Analysis of Uranium in Glass Matrices by Laser-Induced Breakdown Spectroscopy (LIBS)

Date Published
11/2013
Publication Type
Journal Article
Authors
DOI
10.1366/13-07066
Abstract

Laser-induced breakdown spectroscopy (LIBS) has been evaluated for the determination of uranium in real-world samples such as uraninite. NIST Standard Reference Materials were used to evaluate the spectral interferences on detection of uranium. The study addresses the detection limit of LIBS for several uranium lines and their relationship to non-uranium lines, with emphasis on spectral interferences. The data are discussed in the context of optimizing the choice of emission lines for both qualitative and quantitative analyses from a complex spectrum of uranium in the presence of other elements. Temporally resolved spectral emission intensities, line width, and line shifts were characterized to demonstrate the parameter influence on these measurements. The measured uranium line width demonstrates that LIBS acquired with moderately high spectral resolution (e.g., by a 1.25 m spectrometer with a 2400 grooves/mm grating) can be utilized for isotope shift measurements in air at atmospheric pressure with single to tens of parts per million (ppm) level detection limits, as long as an appropriate transition is chosen for analysis

Journal
Applied Spectroscopy
Volume
67
Year of Publication
2013
Issue
11
Pagination
1275-1284
Organizations
Download citation