High-throughput prediction of the ground-state collinear magnetic order of inorganic materials using Density Functional Theory
Date Published |
06/2019
|
---|---|
Publication Type | Journal Article
|
Authors | |
---|---|
DOI |
10.1038/s41524-019-0199-7
|
Abstract |
We present a robust, automatic high-throughput workflow for the calculation of magnetic ground state of solid-state inorganic crystals, whether ferromagnetic, antiferromagnetic or ferrimagnetic, and their associated magnetic moments within the framework of collinear spin-polarized Density Functional Theory. This is done through a computationally efficient scheme whereby plausible magnetic orderings are first enumerated and prioritized based on symmetry, and then relaxed and their energies determined through conventional DFT + U calculations. This automated workflow is formalized using the atomatecode for reliable, systematic use at a scale appropriate for thousands of materials and is fully customizable. The performance of the workflow is evaluated against a benchmark of 64 experimentally known mostly ionic magnetic materials of non-trivial magnetic order and by the calculation of over 500 distinct magnetic orderings. A non-ferromagnetic ground state is correctly predicted in 95% of the benchmark materials, with the experimentally determined ground state ordering found exactly in over 60% of cases. Knowledge of the ground state magnetic order at scale opens up the possibility of high-throughput screening studies based on magnetic properties, thereby accelerating discovery and understanding of new functional materials. |
Journal |
npj Computational Materials
|
Volume |
5
|
Year of Publication |
2019
|
Issue |
1
|
Short Title |
npj Comput Mater
|
Refereed Designation |
Refereed
|
Organizations | |
Download citation |