Development of High Power Density Metal-Supported Solid Oxide Fuel Cells

Date Published
12/2017
Publication Type
Journal Article
Author
DOI
10.1002/ente.201700242
Abstract

Symmetric‐structure metal‐supported solid oxide fuel cells (MS‐SOFCs) are fabricated by infiltrating catalysts on both anode and cathode side. Various aspects of the infiltration process are optimized. Performance is found to be sensitive to precursor dilution, catalyst loading, and catalyst calcining temperature. For an optimized cell with lanthanum strontium manganite (LSM) as cathode and Sm0.2Ce0.8O2−δ mixed with Ni (SDCN) as anode, peak power densities of 0.44, 1.1, and 1.9 W cm−2 are achieved at 600, 700, and 800 °C, respectively. A fully symmetric MS‐SOFC with SDCN as both the anode and cathode sides achieves moderate peak power densities of 0.12, 0.37, and 0.76 W cm−2 at 600, 700, and 800 °C, respectively. A solvent‐based infiltration technique is also explored and found to be more effective than capillary forces alone but not as effective as vacuum infiltration.

Journal
Energy Technology
Volume
5
Year of Publication
2017
Issue
12
Pagination
2175 - 2181
Short Title
Energy Technol.
Organizations
Research Areas
Download citation